




VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE STANKOIMPORT

OPENSIDE PLANERS
DOUBLE HOUSING PLANERS
PLATE EDGE PLANERS
SHAPERS
SLOTTERS
HORIZONTAL BROACHING MACHINES
COLD SAWING MACHINES
HACK SAWING MACHINES
DYNAMIC BALANCING MACHINES



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE
STANKOIMPORT

USSR

MOSCOW

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

This catalogue contains short specifications of the most common types of machine tools exported by the Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport".

Detailed pamphlets sent on request.
All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport"

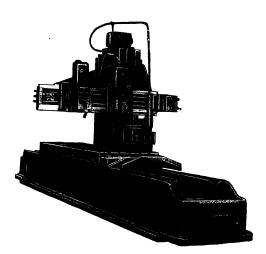
32/34, Smolenskaja-Sennaja pl.,
Moscow, USSR
For cables: Stankoimport Moscow
Phone: G4-21-32

#### CONTENTS

|                              |  |  |  |  | 1 | Model  |
|------------------------------|--|--|--|--|---|--------|
| Openside Planer              |  |  |  |  |   | 7134   |
| Openside Planer              |  |  |  |  |   | 7142 A |
| Double Housing Planer        |  |  |  |  |   | 7231   |
| Double Housing Planer        |  |  |  |  |   | 7231 A |
| Double Housing Planer        |  |  |  |  |   | 7242 A |
| Double Housing Planer        |  |  |  |  |   | 724 M  |
| Double Housing Planer        |  |  |  |  |   | 7256   |
| Double Housing Planer        |  |  |  |  |   | 7278   |
| Plate Edge Planer            |  |  |  |  |   | 7806   |
| Plate Edge Planer            |  |  |  |  |   | 728 A  |
| Crank Shaper                 |  |  |  |  |   | 736    |
| Hydraulic Shaper             |  |  |  |  |   | 737    |
| Slotter                      |  |  |  |  |   | 7417   |
| Hydraulic Slotter            |  |  |  |  |   | 7430   |
| Hydraulic Slotter            |  |  |  |  |   | 7450   |
| Horizontal Broaching Machine |  |  |  |  |   | 7 A 51 |
| Horizontal Broaching Machine |  |  |  |  |   | 7 A 52 |
| Horizontal Broaching Machine |  |  |  |  |   |        |
| Horizontal Broaching Machine |  |  |  |  |   |        |
| Horizontal Broaching Machine |  |  |  |  |   |        |
| Cold Sawing Machine          |  |  |  |  |   |        |
| Cold Sawing Machine          |  |  |  |  |   |        |
| Hack Sawing Machine          |  |  |  |  |   |        |
| Dynamic Balancing Machine .  |  |  |  |  |   |        |
| Dynamic Balancing Machine .  |  |  |  |  |   |        |
|                              |  |  |  |  |   |        |

Sanitized Copy Approved for Release 2010/10/19: CIA-RDP81-01043R000800160002-0

The Machine Tools produced in the USSR are outstanding for their high efficiency, convenience and safety in operation and long service.


The first class material, perfect modern design and skilful workmanship provide accuracy, high efficiency and durability of the Machine Tools.

Steady improvement of machine tool design in the USSR aims at the increase of productivity, accuracy, reliability and dependability of machine in operation, as well as the reduction of operator's fatigue by improving and convenient placing of all operating controls and the all-increasing automatization of operation.

The Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport" is able to offer a wide range of Machine Tools both universal and special types including Automatic Transfer Machines und Automatic Workshops.

#### **OPENSIDE PLANER**

MODEL 7134



The 7134 Planer is designed for planing large parts (castings or forgings) weighing up to 5 tons. Work pieces with a width greater than 1000 mm can be set on the table of the machine, but the maximum width planed is 1000 mm.

Flat and Vee ways of tables and beds, T-slots as well as vertical and inclined planes can be machined.

Two surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and one side head on the upright.

Table drive is by a D.C. electric motor, and table speeds are infinitely variable through a motor-generator system.

The reciprocating motion of the table is carried out in the following automatic cycle:

Slow speed at the beginning of cut:

Slow speed at the beginning of cut.

Increasing cutting speeds up to the predetermined speed:
Slowing down speed before end of cut;

Rapid table return.

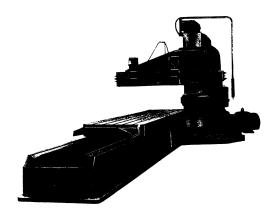
The vertical tool heads are provided with power feeds both in the horizontal and vertical directions; the side tool head is provided with power feeds in the vertical direction and hand feeds in the horizontal.

Feeds and set-up travel of the vertical and side heads are obtained by separate electric motors

The sliding ways and table driving mechanisms are automatically lubricated by an oil pump.

The machine is controlled from a pendant push-button station.

The machine is provided with automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| Capacity Distance from table to vertical tool head, mm: Minimum Maximum Minimum distance between axes of vertical heads, mm Maximum distance from axis of left vertical head to | 0<br>870<br>290                              | Range of vertical feeds of side head per table stroke, mm   0.25—12.5                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| column. mm                                                                                                                                                                      | 1070                                         | Drive                                                                                                              |
| Maximum extension of side<br>and vertical tool heads, mm<br>Maximum width planed, mm<br>Maximum height planed, mm                                                               | 265<br>1000<br>850                           | Number of electrical units                                                                                         |
| Maximum length planed, mm                                                                                                                                                       | 3000                                         | motor, kW 40                                                                                                       |
| Maximum weight of work piece admitted, kg                                                                                                                                       | 5000                                         | Speed, r.p. m                                                                                                      |
| Table                                                                                                                                                                           |                                              | Speed, r. p. m                                                                                                     |
| Working surface of table, mm<br>Number of T.slots<br>Width of T-slots, mm<br>Distance between slots, mm .                                                                       | $3000 \times 900 \atop 5 \atop 28 \atop 150$ | Cross rail elevating motor:   Power, kW 2.8     Speed, r. p. m 1500     Cross rail elamping motor:   Power, kW 0.6 |
| Speeds and Feeds                                                                                                                                                                |                                              | Speed, r. p. m 1500                                                                                                |
| Range of table cutting speeds,<br>m/min.<br>Range of table return speeds,                                                                                                       | 5—75                                         | Space Occupied Floor space, mm 7495 × 3275                                                                         |
| m/min.  Range of feeds of vertical heads per table stroke, mm:                                                                                                                  | 1575                                         | Height of machine, mm 2890                                                                                         |
| Vertical                                                                                                                                                                        | 0.125-6.2                                    | Weight                                                                                                             |
| Horizontal                                                                                                                                                                      | 0.5—25                                       | Net weight, kg approx. 20000                                                                                       |

managaring CTAHKOVIMIOPT dam

## **OPENSIDE PLANER**

MODEL 7142 A



The  $7142~\mathrm{A}$  Planer is designed for planing large parts (castings or forgings) weighing up to 10 tons. Work pieces with a width greater than 1500 mm can

be set on the table of the machine, but the maximum width planed is 1500 mm. Flat and Vee ways of tables and beds, T-slots as well as vertical and inclined planes can be machined.

Two surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and one side head on the upright.

Table drive is by a D.C. electric motor, and table speeds are infinitely

variable through a motor-generator system.

The reciprocating motion of the table is carried out in the following automatic cycle:

Slow speed at the beginning of cut;

Increasing cutting speeds up to the predetermined speed;

станкоимпорт

Slowing down speed before end of cut: Rapid table return.

The vertical tool heads are provided with power feeds both in the horizontal and vertical directions; the side tool head is provided with power feeds

in the vertical direction and hand feeds in the horizontal.

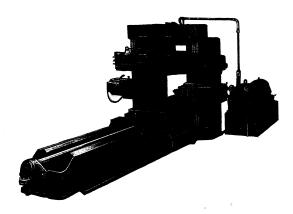
Feeds and set-up travel of the two vertical and side heads are obtained by separate electric motors.

The sliding ways and table driving mechanisms are automatically lubri-

cated by an oil pump.

The machine is controlled from a pendant push-button station.

The machine is provided with automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| SPECIFICATIONS                                                                                            |                                |                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Capacity Distance from table to vertical tool head, mm:                                                   |                                | Range of vertical feeds of side<br>head per table stroke, mm . 0.25—12.5<br>Speed of rapid power traverse,<br>m/min: |  |  |
| Minimum Maximum Minimum distance between axes of vertical heads, mm Maximum distance from axis            | 0<br>1270<br>290               | Vertical heads 2.33 Side head 1.07 Power travel of cross rail                                                        |  |  |
| of left vertical head to column, mm                                                                       | 1525<br>265                    | Drive Number of electrical units 12                                                                                  |  |  |
| Maximum width planed, mm . Maximum height planed, mm . Maximum length planed, mm . Maximum weight of work | 1500<br>1250<br>6000           | Motor-generator unit: Power of asynchronous motor, kW 40 Speed, r, p, m 1500                                         |  |  |
| piece admitted, kg <b>Table</b> Working surface of table, mm                                              | 10000<br>6000 : 1250           | Head feed motors:<br>  Power, kW 1.7<br>  Speed, r.p.m 1500<br>  Cross rail elevating motor:<br>  Power, kW          |  |  |
| Number of T-slots                                                                                         | 5<br>28<br>210                 | Power, kW   4.5                                                                                                      |  |  |
| Speeds and Feeds<br>Range of table cutting speeds,                                                        |                                | Speed. 1, p. m                                                                                                       |  |  |
| m/min                                                                                                     | 660                            | Space Occupied                                                                                                       |  |  |
| m/min. Range of feeds of vertical heads per table stroke, mm:                                             | 1560                           | Floor space, mm 13390 × 4010<br>Height of machine, mm 3600                                                           |  |  |
| Vertical                                                                                                  | $\substack{0.125-6.2\\0.5-25}$ | Weight Net weight, kg approx. 40000                                                                                  |  |  |

CTAHKOMMIO PI STORESCO

## **DOUBLE HOUSING PLANER**

MODEL 7231



The 7231 Hydraulic Planer is designed for planing large parts (castings and forgings) weighing up to 5 tons. Flat and Vee ways of tables and beds, T-slots as well as vertical and inclined planes can be machined.

Two surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and one side head on the uprights.

The table is driven hydraulically. Forward and return table speeds are

infinitely variable by means of a variable delivery pump.

The reciprocating motion of the machine table is carried out in the following automatic cycle:

Slow speed at the beginning of cut; Increasing cutting speeds up to the predetermined speed; Slowing down speed before end of cut; Rapid table return.

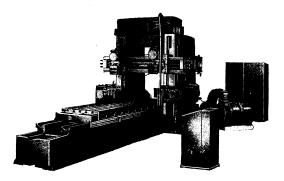
The vertical heads are provided with power feeds both in the horizontal and vertical directions; the side heads are provided with power feeds in the vertical direction and hand feeds in the horizontal.

Feeds and set-up travel of the two vertical and each of the side heads are obtained by separate electric motors.

The sliding ways are automatically lubricated by an oil pump.

The machine is controlled from a pendant push-button station.

The machine is provided with automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| Capacity  Distance from table to vertical tool heads, mm:  Minimum  Maximum  Distance between axes of vertical tool heads, mm: | 0<br>890                        | Speed of rapid power traverse, m/min;   2.33   Vertical heads   2.33   Side heads   1.07   Power travel of cross rail, m/min,   0.5                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum                                                                                                                        | 290                             | Hydraulic Pump                                                                                                                                                                                          |
| Maximum                                                                                                                        | 1470                            | Maximum delivery of pump,                                                                                                                                                                               |
| Maximum extension of side<br>and vertical tool heads, mm<br>Maximum width planed, mm.<br>Maximum height planed, mm             | 265<br>1000<br>850              | liters per min 400<br>Maximum pressure, atm 100                                                                                                                                                         |
| Maximum length planed, mm                                                                                                      | 3000                            | Drive                                                                                                                                                                                                   |
| Maximum weight of work piece admitted, kg                                                                                      | 5000                            | Number of electrical units . 7<br>Head feed motors:                                                                                                                                                     |
| Table                                                                                                                          |                                 | Power, kW 1.7<br>Speed r p m 1500                                                                                                                                                                       |
| Working surface of table, mm<br>Number of T-slots<br>Width of T-slots, mm<br>Distance between slots, mm .                      | $3000 	imes 900 \ 5 \ 28 \ 150$ | Speed, r, p, m.         1500           Cross rail elevating motor:         1.7           Speed, r, p, m.         1500           Cross rail clamping motor:         2.7           Power, kW.         0.6 |
| Speeds and Feeds                                                                                                               |                                 | Speed, r. p. m                                                                                                                                                                                          |
| Range of table cutting speeds<br>m/min.<br>Range of table return speeds,                                                       | 8—75<br>8—75                    | Hydraulic pump drive:     Power, kW 28     Speed, r. p. m 1000                                                                                                                                          |
| m/min.<br>Range of feeds of vertical tool                                                                                      | 0-15                            | Space Occupied                                                                                                                                                                                          |
| heads per table stroke, mm:<br>Vertical<br>Horizontal                                                                          | $0.125 - 6.2 \\ 0.5 - 25$       | Floor space, mm $7870 \times 3245$ Height of machine, mm                                                                                                                                                |
| Range of vertical feeds of side<br>tool heads per table stroke,                                                                |                                 | Weight                                                                                                                                                                                                  |
| mm                                                                                                                             | 0.25 - 12.5                     | Net weight, kg approx. 22000                                                                                                                                                                            |

СТАНКОИМПОРТ

## **DOUBLE HOUSING PLANER**

MODEL 7231 A



The 7231 A Planer is designed for planing large parts (castings and forgings) weighing up to 5 tons.

Flat and Vee ways of tables and beds, T-slots as well as vertical and inclined planes can be machined.

Two surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and one side head on the uprights.

Table drive is by a D.C. electric motor and table speeds are infinitely variable through a motor-generator system.

The reciprocating motion of the machine table is carried out in the following automatic cycle:

Slow speed at the beginning of cut; Increasing cutting speeds up to the predetermined speed;

Slowing down speed before end of cut;

Rapid table return.

The vertical heads are provided with power feeds both in the horizontal and vertical directions; the side heads are provided with power feeds in the vertical direction and hand feeds in the horizontal.

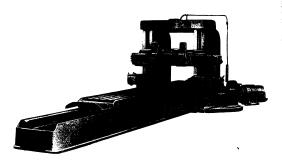
=СТАНКОИМПОРТ =

Feeds and set-up travel of the vertical and each of the side heads are obtained by separate electric motors,

The sliding ways and table driving mechanisms are automatically lubricated by an oil pump.

The machine is controlled from a pendant push-button station.

The machine is provided with automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| Capacity Distance from table to vertical tool head, mm: Minimiam Maximum Distance between axes of vertical tool heads, mm: Minimum Maximum Anximum extension of side | 0<br>890<br>290<br>1470 | Range of vertical feeds of side tool heads per table stroke, min |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|
| and vertical tool heads, mm                                                                                                                                          | 265                     | Drive                                                            |
| Maximum width planed, mm .                                                                                                                                           | 1000                    | Number of electrical units 13                                    |
| Maximum height planed, mm .                                                                                                                                          | 850                     | Motor-generator unit:                                            |
| Maximum length planed, mm                                                                                                                                            | 3000                    | Power of asynchronous<br>motor kW 46                             |
| Maximum weight of work                                                                                                                                               | 5000                    | motor, kW                                                        |
| piece admitted, kg                                                                                                                                                   | 3000                    | Head feed motors:                                                |
| Table                                                                                                                                                                |                         | Power, kW 1.5                                                    |
| Working surface of table, mm                                                                                                                                         | $3000 \times 900$       | Speed, r. p. m, 1500                                             |
| Number of T-slots                                                                                                                                                    | 5                       | Cross rail elevating motor:                                      |
| Width of T-slots, mm                                                                                                                                                 | 28                      | Power, kW 1.7                                                    |
| Distance between slots, mm .                                                                                                                                         | 150                     | Speed, r. p. m                                                   |
|                                                                                                                                                                      |                         | Power, kW , , 0.6                                                |
| Speeds and Feeds                                                                                                                                                     |                         | Speed, r. p. m                                                   |
| Range of table cutting speeds,<br>m/min.                                                                                                                             | 575                     |                                                                  |
| Range of table return speeds,                                                                                                                                        | 0 1.5                   | Space Occupied                                                   |
| m/min,                                                                                                                                                               | 1575                    | Floor space, mm                                                  |
| heads per table stroke, mm:                                                                                                                                          |                         | Weight                                                           |
| Vertical                                                                                                                                                             | 0.125—6.2<br>0.5—25     | Net weight, kg approx. 22000                                     |
| Horizontal                                                                                                                                                           | 0.0-20                  |                                                                  |

is a transferred and the properties of the  ${\rm MHOHO}$  . The transferred consideration and the second state of the second sta

## **DOUBLE HOUSING PLANER**

MODEL 7242 A



The 7242 A Planer is designed for planing large parts (castings and for-

gings) weighing up to 10 tons.

Flat and Vee ways of tables and beds, T-slots as well as vertical and inclined planes can be machined.

Two surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and one side head on the uprights.

Table drive is by a D.C. electric motor and table speeds are infinitely variable through a motor-generator system.

The reciprocating motion of the table is carried out in the following automatic cycle:

Slow speed at the beginning of cut;

Increasing cutting speeds up to the predetermined speed; Slowing down speed before end of cut;

Rapid table return.

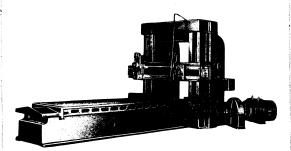
The vertical heads are provided with power feeds both in the horizontal and vertical directions; the side heads are provided with power feeds in the vertical direction and hand feeds in the horizontal.

Feeds and set-up travel of the two vertical and each of the side heads are obtained by separate electric motors.

The sliding ways and table driving mechanisms are automatically lubricated by an oil pump.

The machine is controlled from a pendant push-button station.

The machine is provided with automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| Capacity                                                | Range of vertical feeds of side                                                     |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|
| Distance from table to vertical tool head, mm:  Minimum | heads per table stroke, mm . 0.25—12.5<br>Speed of rapid power traverse,<br>m/min,: |
| Maximum 127                                             | Vertical heads 2.33                                                                 |
| Distance between axes of ver-<br>tical tool heads, mm:  | Side heads 1.07<br>Power travel of cross rail,                                      |
| Minimum 29                                              | ) m/min 0.9                                                                         |
| Maximum                                                 |                                                                                     |
|                                                         | Drive                                                                               |
| Maximum width planed, mm , 1500                         |                                                                                     |
| Maximum height planed, mm , 1250                        | Motor-generator unit:                                                               |
| Maximum length planed, mm 6000                          | Power of asynchronous                                                               |
| Maximum weight of work                                  | motor, kW 40                                                                        |
| piece admitted, kg 10000                                | Head feed motors:                                                                   |
| Table                                                   | Power, kW 1.7                                                                       |
| Working surface of table, mm $6000 \times 1250$         | Speed, r. p. m                                                                      |
| Number of T-slots                                       | Power kW 45                                                                         |
| Width of T-slots, mm 28                                 | Speed r.p.m. 1500                                                                   |
| Distance between slots, mm . 210                        | Cross rail clamping moor:                                                           |
| 0 1 1 1 1 1                                             | Power, kW 0.6                                                                       |
| Speeds and Feeds                                        | Speed, r. p. m                                                                      |
| Range of table cutting speeds,                          |                                                                                     |
| m/min. 6—60                                             | Space Occupied                                                                      |
| Range of table return speeds,<br>m/min. 15-60           | Height of machine, mm 3100                                                          |
| Range of feeds of vertical tool                         | Floor space, mm 13390 × 4275                                                        |
| heads per table stroke, mm:                             |                                                                                     |
| Vertical 0.125—6.2                                      | Weight                                                                              |
| Horizontal 0.5—25                                       | Net weight, kg approx. 40000                                                        |

**=** СТАНКОИМПОРТ **=** 

## **DOUBLE HOUSING PLANER**

MODEL 724 M



The 724 M Planer is designed for planing large parts (castings or forgings) weighing up to 10 tons. Three surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and the two side heads on the uprights.

The drive to the table is by a separate variable speed motor controlled by the generator-motor system.

Power feeds and rapid traverse for all tool heads are actuated by separate D. C. electric motors.

Clamping, unclamping and travel of the cross rail are operated by power. The principal mechanisms and sliding ways are automatically lubricated

The machine is controlled from a pendant push-button station and a control desk.

The machine is furnished with a safety device against overloads, and automatic interlocking devices for preventing engagements that may lead to breakages.

=СТАНКОИМПОРТ ==

#### SPECIFICATIONS

|                                                 |                                                                                                                                                                                                | D1 - 011 1                                 |                                                                                                                                                                                                           |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.5—50<br>3<br>1.5                              | Range of vertical feeds of side<br>heads per table stroke, mm .<br>Rapid power traverse of slides<br>m/min.:<br>Saddle .<br>Vertical tool slides<br>Power travel of cross rail,<br>m/min.      | 0<br>1300                                  | Capacity Distance from table to vertical tool head, mm: Minimum Maximum                                                                                                                                   |
|                                                 | Drive                                                                                                                                                                                          | 1050<br>200                                | Above table surface Below table surface                                                                                                                                                                   |
| 13<br>72<br>1000<br>1.75<br>1450<br>1.0<br>1500 | Number of electrical units Drive of converting units Power, kW Speed, r, p, m, D, C, feed drive motors (three): Power, kW Speed, r, p, m, Cross rail clamping motor: Power, kW Speed, r, p, m, | 330<br>4000<br>1500<br>1250<br>4000 × 1300 | Maximum extension of verti- cal and side tool heads, mm Length planed, mm Width planed, mm Height planed, mm Table Working surface of table, mm Speeds and Feeds Range of cutting speeds of table, m/min. |
|                                                 | Space Occupied                                                                                                                                                                                 | 1260                                       | Range of return speeds of<br>table, m/min,                                                                                                                                                                |
|                                                 | Floor space, mm<br>Height of machine, mm                                                                                                                                                       | 21                                         | Number of feeds of vertical<br>and side heads                                                                                                                                                             |
|                                                 | Weight                                                                                                                                                                                         |                                            | heads per table stroke, mm:                                                                                                                                                                               |
| prox. 32000                                     | Net weight, kg ap                                                                                                                                                                              | 0.25—25<br>0.5—50                          | Vertical feeds<br>Horizontal feeds                                                                                                                                                                        |

en de commente de la composition della compositi

## **DOUBLE HOUSING PLANER**

MODEL 7256



The 7256 Planer is designed for planing large parts (castings or forgings) weighing up to 20 tons. Three surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and the two

side heads on the uprights.

The drive to the table is by a separate variable speed motor controlled by the generator-motor system.

Power feeds and rapid traverse for all tool heads are actuated by sepa-

rate A. C. electric motors.

Clamping, unclamping and travel of the cross rail are operated by power. The principal mechanisms and sliding ways are automatically lubricated

by an oil pump. The machine is controlled from a pendant push-button station and a

The machine is furnished with a safety device against overloads, and automatic interlocking devices for preventing engagements that may lead to breakages.

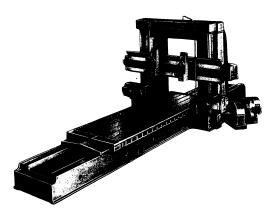
#### SPECIFICATIONS

1600

Capacity
Distance from table to vertical
tool head, mm:
Minimum . . .
Maximum . . .

Extreme position of axis of slides of side tool heads, mm:

Above table surface .
Below table surface .


1280 330

PROGRESS OF THE PROGRESS OF TH

| AND DESCRIPTION OF THE PARTY OF | The state of the s | CO. CAMBELLE AND |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Converting unit:                                     |
| Distance between uprights, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Motor:                                               |
| Maximum extension of verti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power, kW 115                                        |
| cal and side tool heads, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Speed, r. p. m                                       |
| Length planed, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D. C. generator:                                     |
| Width planed, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power, kW 250                                        |
| Height planed, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Speed, r. p. m 1470                                  |
| Maximum weight of work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exciter:                                             |
| piece admitted, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power, kW 24                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Speed, r. p. m 1460                                  |
| Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. C. table drive motor:                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power, kW 40-70                                      |
| Working surface of table, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $6000 \times 1800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Speed, r. p. m 1001250                               |
| Length of table stroke, mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ventilation motor:                                   |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power, kW 1.5                                        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Speed, r. p. m 1450                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Speed stabilizer:                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Motor:                                               |
| Speeds and Feeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power, kW 0.65                                       |
| Range of cutting speeds of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| table, m/min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Speed, r. p. m                                       |
| Range of return speeds of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. C. feed drive motors (three):                     |
| table, m/min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 - 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power, kW 2.8                                        |
| Number of feeds of vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| and side heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Range of feeds of vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cross rail elevating motor:                          |
| heads per table stroke, mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Vertical feeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25 - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| Horizontal feeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cross rail clamping motor: Power kW 0.8              |
| Range of vertical feeds of side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| heads per table stroke, mm .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Maximum speed of rapid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lubricating system motor:  Power kW 1.0              |
| power traverse, m/min.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Carriage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Speed, r. p. m 1500                                  |
| Tool slides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Space Occupied                                       |
| Power travel of cross rail,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| m/min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Floor space, mm 14000 × 5345                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height of machine, mm 4160                           |
| Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight                                               |
| Number of electrical units .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net weight, kg approx. 58150                         |

## DOUBLE HOUSING PLANER

MODEL 7278



The 7278 Planer is designed for planing large parts (castings or forgings) weighing up to 45 tons. Three surfaces on one work piece can be machined simultaneously by the two vertical tool heads on the cross rail and the two side heads on the uprights.

The drive to the table is by a separate variable speed motor controlled by the generator-motor system.

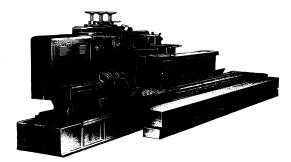
Power feeds and rapid traverse for all tool heads are actuated by separate A. C. electric motors.

Clamping, unclamping and travel of the cross rail are operated by power. The principal mechanisms and sliding ways are automatically lubricated by an oil pump.

The machine is controlled from a pendant push-button station and a control desk.

Станкоимпорт =

The machine is furnished with a safety device against overloads, and automatic interlocking devices for preventing engagements that may lead


#### SPECIFICATIONS

| Capacity  Distance from table to vertical tool head, mm:  Minimum  Maximum  Extreme position of axis of slides of side tool heads, mm: | 0<br>2560                   | Range of feeds of side heads   per table stroke, mm:   Vertical feeds   0.5—100   Horizontal feeds   0.25—100   Maximum speed of rapid   power traverse, m/min:   Saddle   2.5   Tool slides   2.5   Power travel of cross rail. |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Above table surface . Below table surface                                                                                              | 2165<br>395                 | m/min, 0.42                                                                                                                                                                                                                      |
| Distance between uprights, mm                                                                                                          | 3100<br>525<br>8000<br>3000 | Drive<br>Number of electrical units   14<br>  Drive of converting units  <br>  Power, kW   115<br>  Speed, r. p. m.   1500                                                                                                       |
| Height planed, mm                                                                                                                      | 2500                        | D. C. table drive motor:                                                                                                                                                                                                         |
| Speeds and Feeds                                                                                                                       | 6320 × 2100                 | Cross rail clearing motor: Power, kW . 14 Speed, r. p. m, 1500 Cross rail clamping motor:                                                                                                                                        |
| Range of cutting speeds of table, m/min.  Range of return speeds of table, m/min.  Number of feeds of vertical                         | 5—50<br>12—50               | Power, kW 1.7<br>Speed, r. p. m 1000<br>Space Occupied                                                                                                                                                                           |
| and side heads                                                                                                                         | 24                          | Floor space, mm $18600 \times 7030$<br>Height of machine, mm $6250$                                                                                                                                                              |
| Vertical feeds<br>Horizontal feeds                                                                                                     | $0.25 - 50 \\ 0.5 - 100$    | Weight Net weight, kg approx. 119800                                                                                                                                                                                             |

PRINCIPAL DESCRIPTION OF TARROUND TO PT CONTROL OF THE PRINCIPAL P

## PLATE EDGE PLANER

MODEL 7806



The 7806 Plate Edge Planer is designed for planing edge on sheet metal parts up to 200 mm in thickness.

Metal parts with a width greater than 1500 mm can be machined provided

they are supported at the free end by a special supporting device.

Besides straight edge planing a wide range of form planing operations can be carried out on sheet metal parts.

Planing is effected through the movement of the carriage in both directions of its traverse. The reciprocating motion of the carriage is carried out in the following automatic cycle:

Slow speed at the beginning of cut;

Increasing cutting speeds up to the predetermined speed; Slowing down speed before end of cut; Reverse motion of carriage to starting position.

Drive to the carriage is from a D. C. electric motor, housed in the carriage.

Motor speeds are infinitely variable through a motor-generator system.

The machine is provided with two tool slides mounted opposite each other.

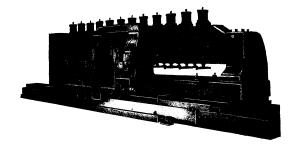
Both slides have power feeds in the vertical and horizontal directions.

The sliding ways of the carriage and bed ways, as well as the main drive reduction gears are automatically lubricated by an oil pump.

The machine can be controlled from the carriage, as well as from the control desks.

The machine is provided with safety devices and light signals to prevent

any breakages due to overloadings.


#### SPECIFICATIONS

| Capacity  Maximum travel of carriage, mm     | Speed of power set-up travel   of slides, m/min:   Vertical                       |
|----------------------------------------------|-----------------------------------------------------------------------------------|
| Maximum horizontal travel of                 | Drive                                                                             |
| tool slide, mm                               | Number of electrical units . 10<br>Motor-generator unit:<br>Power of asynchronous |
| Maximum height (thickness)<br>planed, mm 200 | motor, kW 28<br>Speed, r.p.m 1500                                                 |
| Table                                        | Feed box drive motors:<br>Power, kW 1.7                                           |
| Working surface of table, mm 6350 × 1800     | Speed, r. p. m                                                                    |
| Speeds and Feeds                             | Space Occupied                                                                    |
| Range of carriage speeds,<br>m/min,          | Floor space, mm $11310 \times 3775$<br>Height of machine, mm                      |
| carriage stroke, mm.:<br>Vertical 0.5—12.5   | Weight                                                                            |
| Horizontal 0.25—6.2                          | Net weight, kg approx, 28000                                                      |

**—** СТАНКОИМПОРТ **—** 

#### PLATE EDGE PLANER

MODEL 728 A



The  $728\,\mathrm{A}$  Planer is designed for planing edge on sheet metal parts from  $250\ to\ 500\ mm$  in thickness. Provision can be made for accommodating sheet metal parts from  $25\ to\ 250\ mm$  by supplementary clamping attachments, which, if desired, can be supplied on special order,

Planing is effected through the movement of the carriage in both direc-

tions of its traverse.

On the carriage is mounted a portal with two slides, and during the cutting operation it travels relatively to the stationary table with the work piece clamped on it. Owing to a swivelling arm, edges can be chamfered at different angles.

Sheet clamping is effected by pneumatic clamps; the machine is also pro-

vided with supplementary clamps and stops.

Drive to the carriage, feed mechanisms and slides is from a D. C. electric

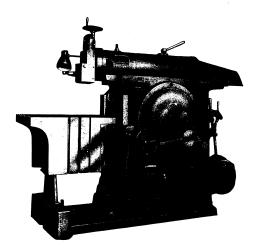
The carriage speeds are infinitely variable. The sliding ways and carriage mechanisms are automatically lubricated by two oil pumps.

The machine is controlled from a pendant push-button station or control desk.

To the machine are added removable slides by the help of which it is possible to perform various form planing operations.

The machine is provided with safety devices against overloads, as well

as automatic interlocking devices for preventing engagements that may lead to breakages.


#### SPECIFICATIONS

| Capacity  Maximum length planed, mm  Maximum width of sheet, mm  Thickness of sheet planed, | 12000<br>3500          | Main         drive         D. C.         electric electric motor:         40           Power, kW          500—1500           Portal         travel         setting         D. C. |
|---------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm:<br>Maximum<br>Minimum                                                                   | 500<br>250             | motor: Power, kW 4.4 Speed, r. p. m                                                                                                                                              |
| Travel of carriage, mm: Minimum Maximum Pneumatic clamping force on sheet, kg               | 2000<br>12500<br>72000 | Slide feed D. C. motors (two):   Power, kW 1.75     Speed, r. p. m 1450     Arm swivel D. C. motors (two):   Power, kW                                                           |
| Speeds and Feeds                                                                            |                        | Speed. r. p. m                                                                                                                                                                   |
| Range of carriage speeds,<br>m/min                                                          | 4—12<br>14             | Speed, r. p. m 1450<br>Coolant pump D. C. motor:                                                                                                                                 |
| Range of slide feeds per one<br>stroke, mm:<br>Vertical                                     | 0.2—4                  | Power, kW 0.52<br>Speed, r. p. m 1450<br>Channel emulsion feed asyn-                                                                                                             |
| Horizontal                                                                                  | 0.48                   | Chronous motor:<br>  Power, kW                                                                                                                                                   |
| mm/min.:<br>Carriage                                                                        | 250<br>125             | Space Occupied Floor space, mm 22840 × 6320                                                                                                                                      |
| Drive                                                                                       |                        | Height of machine, mm 4360                                                                                                                                                       |
| Number of electric units Total power required, kW                                           | 10<br>58               | Weight Net weight, kg approx. 157000                                                                                                                                             |

CTAHKOUMHOPT ::::

## **CRANK SHAPER**

MODEL 736



The 736 Shaper is designed for surfacing and finishing irregular shaped pieces as well as flat work that requires slotting or grooving.

The ram of the machine with the tool head is actuated by a rocker arm

mechanism.

The tool head may be swivelled in a vertical plane. The vertical feed of the tool slide is effected by hand.

The work table has both hand and power horizontal traverse, while

vertical traverse is by hand only.

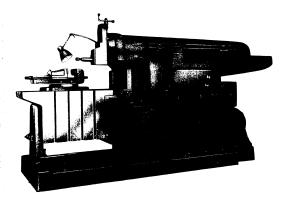
The automatic horizontal feed of the work table is actuated by a ratchet mechanism.

Sanitized Conv Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

The machine is driven by a separate electric motor, starting and stopping being effected through a push-button station.

The following accessories can be supplied on special order: a universal

per establishes terminister with the manufacture and the description of the control of the contr


The folowing accessories can be supplied on special order: a universal table, a mechanism for automatic vertical feed of tool slide and an automatic tool lifter.

#### SPECIFICATIONS

| Capacity Length of ram stroke, mm: Minimum Maximum Distance from lower edge of ram to table, mm: Minimum Maximum Maximum distance from tool | 95<br>650<br>65<br>370              | Maximum swivel of tool head (each side of center). \$\pm 60^\circ\$ Note: \$\pm 60^\circ\$ swivel is allowed when clearance between tool head and bed guides is not less than 10 mm. In all other cases swivel of \$\pm 20^\circ\$ is allowed. |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bottom to bed, mm , , ,                                                                                                                     | 700                                 | Speeds and Feeds                                                                                                                                                                                                                               |
| Table Working surface of table, mm:                                                                                                         |                                     | Number of ram double strokes<br>per minute — 12.5; 17.9; 25; 36.5; 52.5; 73<br>Table horizontal feeds, mm<br>per double stroke of ram:                                                                                                         |
| Top<br>Side .<br>Saddle of table<br>Maximum table traverse, mm:<br>Horizontal (power and                                                    | 650 × 450<br>450 × 400<br>450 × 420 | Minimum (per 1 tooth<br>of ratchet) 0.33<br>Maximum (per 10 teeth<br>of ratchet) 3.33                                                                                                                                                          |
| hand)                                                                                                                                       | 600<br>300                          | Drive<br>220/380 volt. 3 phase, 50 cycle<br>A. C. motor:                                                                                                                                                                                       |
| Ram and Tool Head                                                                                                                           | 1                                   | Power, kW 4.5                                                                                                                                                                                                                                  |
| Maximum adjustment of ram                                                                                                                   |                                     | Speed, r, p. m,                                                                                                                                                                                                                                |
| (each side of center), mm .<br>Maximum swivel of tool holder                                                                                | ± 250                               | Space Occupied                                                                                                                                                                                                                                 |
| (each side of center)<br>Maximum size of tool shank                                                                                         | ± 20                                | Floor space, mm                                                                                                                                                                                                                                |
| mm                                                                                                                                          | 20 	imes 30                         | Weight                                                                                                                                                                                                                                         |
| tool slide (by hand), mm .                                                                                                                  | 175                                 | Net weight, kg approx. 1975                                                                                                                                                                                                                    |

## HYDRAULIC SHAPER

MODEL 737



The 737 Shaper is designed for machining flats and irregular shaped pieces in small lot production.

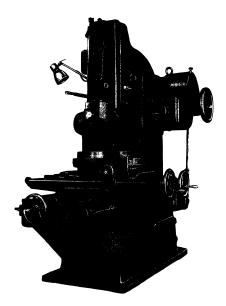
The machine incorporates hydraulic travel of ram and hydraulic feed of table at each stroke of ram. Horizontal and vertical rapid traverse of table is actuated by separate electric motor.

Length and position of ram stroke are regulated by adjustable stops.

Speeds and feeds are stepless variable.

The machine is controlled through a push-button station.

The following accessories can be supplied on special order: a universal table, a mechanism for automatic vertical feed of tool slide, and an automatic tool lifter.


СТАНКОИМПОРТ

#### SPECIFICATIONS

| Capacity                                      |            | Speeds and Feeds                                                |
|-----------------------------------------------|------------|-----------------------------------------------------------------|
| Maximum length of stroke,                     |            | Range of ram speeds, m/min. 3-37                                |
| mm                                            | 900        | Range of table feeds per ram<br>stroke mm 0-5                   |
| table, mm                                     | 400        | Rapid power traverse of table,<br>m/min.:                       |
| column, mm                                    | 1025       | Horizontal 2.58<br>Vertical 0.14                                |
| Table                                         |            |                                                                 |
| Working surface of table, mm:                 |            | Drive                                                           |
| Length                                        | 900        | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:                |
| Width                                         | 450        | Main drive:                                                     |
| Maximum travel of table                       |            | Power, kW 10                                                    |
| (power or hand), mm:<br>Horizontal            | 850        | Speed, r, p, m, 1000                                            |
| Vertical                                      | 320        | Rapid power traverse:                                           |
| vertical                                      | 020        | Power, kW 1.0                                                   |
| Tool Slide                                    |            | Speed. r. p. m                                                  |
| Maximum size of tool shank                    |            | Space Occupied                                                  |
| accommodated, mm: Width Height                | 30<br>45   | Floor space, mm $3280 \times 1710$ Height of machine, mm $1740$ |
| Maximum vertical travel of                    | 900        | Weight                                                          |
| tool slide, mm<br>Maximum swivel of tool head | 200<br>60° | Net weight, kg approx. 4000                                     |
|                                               |            |                                                                 |

## SLOTTER

MODEL 7417



The 7417 Slotter is designed for cutting flat and irregular shapes, keyways, for machining dies, and for a variety of other production and tool-room works.

The machine is started through a friction clutch.

When the friction clutch lever is disengaged it automatically applies a brake for quickly stopping the ram.

Number of the ram strokes is set by the gear box, while longitudinal,

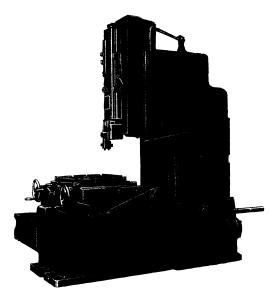
eross and rotary table feeds — by ratchet mechanism.

The ram is easily adjusted to suit the work, both for stroke and position.

The feed mechanisms are equipped with overload protecting devices. The rotary table is graduated by 360°.

The table and ram traverse are power and hand operated.

#### SPECIFICATIONS


| 2                                                                        | PECIFI      | CATIONS                                                                                                                   |
|--------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|
| Capacity                                                                 |             | Speeds and Feeds                                                                                                          |
| Length of ram stroke, mm:  Minimum  Maximum  Distance, end of ram to top | 0<br>160    | Number of ram double strokes<br>per minute                                                                                |
| of table, mm:  Minimum  Maximum  Distance, rear edge of table            | 25<br>450   | Range of table longitudinal<br>and cross feeds, mm per<br>double stroke of ram 0.081—1.21<br>Range of table rotary feeds, |
| to column, mm:  Minimum  Maximum  Distance, tool post seat to            | 25<br>500   | per double stroke of ram 0.054°-0.81°                                                                                     |
| column mm                                                                | 480         | Drive<br>220 380 volt, 3 phase, 50 cycle                                                                                  |
| ways, mm                                                                 | 320         | A. C. motor:<br>Power, kW 2.8                                                                                             |
| Table                                                                    |             | Speed, r. p. m 1000                                                                                                       |
| Diameter of table working surface, mm                                    | 500<br>475  | Space Occupied Floor space, mm 1880 × 1410                                                                                |
| Cross, mm                                                                | 530<br>360° | Height of machine, mm 2150                                                                                                |
| Ram                                                                      |             | Weight                                                                                                                    |
| Maximum swivel of ram head<br>Maximum tilting of ram                     | ± 90°       | Net weight, kg approx. 2270                                                                                               |

=СТАНКОИМПОРТ

## HYDRAULIC SLOTTER

g jakon kun kejikanji o in may organ gangganjah kungarangga kaganyan in angar i kora ni sina ora kejikana agri Tali tili kari tili jali tili kari karang angar ganggangan in Salah angar karin karin in tili tili tili karina

MODEL 7430



The 7430 Hydraulic Slotter is designed for cutting flat and irregular shapes, key-ways, for machining dies, and for a variety of other production

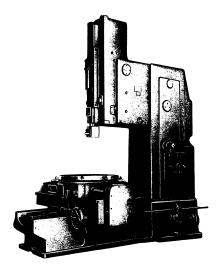
The machine has hydraulic ram drive and hydraulic drive of table feeds. Cutting speed is uniform and cutting pressure constant from the beginning of every cut to its end.

The rotary table is mounted on a carriage which travels horizontally in longitudinal directions on a saddle which in turn moves transversely on the ways of the base.

Like carriage and saddle, table has hand adjustment and power rapid traverse in either direction.

The ram may be tilted forward any amount up to 10°.

A pendant gives the operator complete and continous control of all machine movements from any working position.


#### SPECIFICATIONS

| Capacity Stroke of ram. mm: Minimum Maximum height of work admitted, mm Maximum diameter of work admitted, mm | 125<br>380<br>500<br>700 | Speeds and Feeds   Range of ram speeds (hydraulic), m/min.                                                                      |
|---------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Distance, tool post seat to column, mm                                                                        | 560<br>420<br>1600       | Drive   220/380 volt 3 phase, 50 cycle   A. C. motors:   Main drive:   Power, kW   7   Speed, r. p. m.   1500   Rapid traverse: |
| Rotary table diameter, mm .<br>Maximum travel of table, mm:<br>Longitudinal<br>Cross                          | 650<br>635<br>635        | Power, kW                                                                                                                       |
| Ram  Maximum forward inclination of tilting ram-guide                                                         | 10°                      | Weight Net weight, kg approx. 4825                                                                                              |

SOFT AND THE REPORT OF THE PROPERTY OF THE PRO

## HYDRAULIC SLOTTER

MODEL 7450



The 7450 Hydraulic Slotter is designed for cutting flat and irregular shapes, key-ways, for machining dies, and for variety of other production

and tool-room works.

The machine has hydraulic ram drive and hydraulic drive of table feeds. Cutting speed is uniform and cutting pressure constant from the beginning of every cut to its end.

The rotary table is mounted on a carriage which travels horizontally in longitudinal directions on a saddle which in turn moves transversely on the

Sanitized Conv Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

ways of the base. Like carriage and saddle, table has hand adjustment and power rapid traverse in either direction.

The ram may be tilted forward any amount up to 10°.

A pendant gives the operator complete and continuous control of all machine movements from any working position.

#### SPECIFICATIONS

| Capacity                                            |            | Speeds and Feeds                                               |
|-----------------------------------------------------|------------|----------------------------------------------------------------|
| Stroke of ram, mm: Minimum Maximum                  | 125<br>580 | Range of ram speeds (hydrau-<br>lic), m/min                    |
| Maximum height of work admitted, mm                 | 700        | stroke of ram (infinite), mm:   Longitudinal 0—1.5   Cross 0—3 |
| admitted mm                                         | 900        | Range of rotary table feeds<br>per one stroke of ram . 1—1 16' |
| column mm                                           | 1000       | · Drive                                                        |
| ways, mm                                            | 750        | 220/380 volt, 3 phase, 50 cycle                                |
| Maximum cutting pressure, kg                        | 2000       | A. C. motors:<br>Main drive:                                   |
| Table                                               |            | Power, kW 10<br>Speed, r. p. m 1000<br>Rapid traverse:         |
| Rotary table diameter, mm .                         | 900        | Power, kW 1.7                                                  |
| Maximum travel of table, mm:<br>Longitudinal        | 950        | Speed, r. p. m 1000                                            |
| Cross                                               | 800        | Space Occupied                                                 |
| Ram                                                 |            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$           |
|                                                     |            | Weight                                                         |
| Maximum forward inclination<br>of tilting ram-guide | 10°        | Net weight, kg approx. 7800                                    |

=СТАНКОИМПОРТ ==

## HORIZONTAL BROACHING MACHINE

MODEL 7A510



The 7.4.510 Horizontal Hydraulic Broaching Machine is designed for internal broaching of various shapes, where accuracy, fine finish and high production are reguired. It is particularly adapted for use in mass and large lot production.

The machine can be operated on either a semi-automatic or automatic cycle.

The automatic cycle of the machine includes the following automatic movements (after the work has been loaded and the starting lever pressed): approach of broaching tool and clamping it in puller, cutting stroke, fall of work into tray, return stroke, unclamping of broach and withdrawing it to starting position.

The semi-automatic cycle differs from the automatic one in that the machine stops after finishing the cutting stroke: the work is then unloaded and the return stroke started by pressing the lever.

The cutting and return strokes as well as the approach and withdrawal movements of the broach are effected by hydraulic means.

One lever controls the machine movements.

The length of stroke can be varied by means of adjustable dogs.

A separate pump is provided for the cooling system and ample coolant is supplied at both sides of the work.

The machine is equipped with three motors.

\_\_\_\_СТАНКОИМПОРТ

Sanitized Conv Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

#### SPECIFICATIONS

| Capacity Normal pulling capacity, tons Maximum pulling capacity, tons | 10<br>11 | Main drive pump:  Power, kW                              |
|-----------------------------------------------------------------------|----------|----------------------------------------------------------|
| Maximum stroke, mm<br>Diameter of hole in face                        | 1250     | Power, kW 2.8                                            |
| plate, mm                                                             | 100      | Speed, r. p. m                                           |
| Speeds                                                                |          | Power, kW 0.125                                          |
| Range of cutting speeds (in-<br>finitely variable), m/min.            | 1.513    | Speed, r. p. m                                           |
| Speed of return stroke, m/min.                                        | 25       | Space Occupied                                           |
| Speed of approach and with-<br>drawal movements of bro-               |          | Floor space, mm 6080 × 880<br>Height of machine, mm 1200 |
| ach, m/min.                                                           | 16       | Height of machine, mm 1200                               |
| Drive<br>220/380 volt, 3 phase, 50 cycle                              |          | Weight                                                   |
| A, C. motors:                                                         |          | Net weight, kg approx. 4000                              |

## HORIZONTAL BROACHING MACHINE

MODEL 7 A 520



The 7A520 Horizontal Hydraulic Broaching Machine is designed for internal broaching of various shapes, where accuracy, fine finish and high production are required. It is particularly adapted for use in mass and large lot production.

The machine can be operated on either a semi-automatic or automatic cycle.

The automatic cycle of the machine includes the following automatic movements (after the work has been loaded and the starting lever pressed): approach of broaching tool and clamping it in puller, cutting stroke, fall of work into tray, return stroke, unclamping of broach and withdrawing it to starting position.

The semi-automatic cycle differs from the automatic one in that the machine stops after finishing the cutting stroke; the work is then unloaded and the return stroke started by pressing the lever.

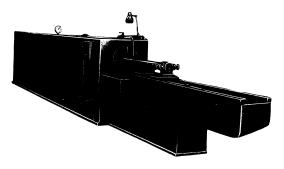
The cutting and return strokes as well as the approach and withdrawal movements of the broach are effected by hydraulic means.

One lever controls the machine movements.

The length of stroke can be varied by means of adjustable dogs.

A separate pump is provided for the cooling system and ample coolant is supplied at both sides of the work.

CTARROMMIO PT COMPRESSION CONTRACTOR CONTRAC


The machine is equipped with three motors.

#### SPECIFICATIONS

| 20                  | Main drive pump:                                            |                | Capacity                                                                                     |
|---------------------|-------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| 1000                | Power, kW                                                   | 20             | Normal pulling capacity, tons                                                                |
| 2.8                 | Pump for approach and<br>withdrawal of broach:<br>Power, kW | 26<br>1600     | Maximum pulling capacity,<br>tons                                                            |
| 1500                | Speed, r. p. m                                              | 130            | mm                                                                                           |
| 0.125<br>3000       | Power, kW                                                   |                | Speeds                                                                                       |
|                     | Space Occupied                                              | $1.5-11 \\ 25$ | Range of cutting speeds (in-<br>finitely variable), m/min.<br>Speed of return stroke, m/min. |
| 6700 × 1870<br>1280 | Floor space, mm<br>Height of machine, mm                    | 16             | Speed of approach and with-<br>drawal movements of broach,<br>m/min.                         |
|                     | Weight                                                      |                | Drive                                                                                        |
| pprox. 6000         | Net weight, kg a                                            |                | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:                                             |

## HORIZONTAL BROACHING MACHINE

MODEL 7540



The 7540 Broaching Machine is designed for internal broaching of various sizes and shapes in large work pieces, where accuracy, fine finish and high production are required.

The operational cycle of the machine is semi-automatic, with automatic approach and withdrawal of the broach.

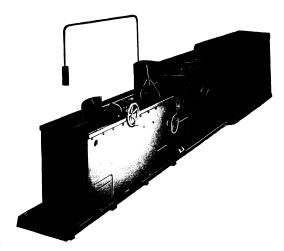
Working speeds and rapid power withdrawal of slide is effected hydraulically.

The machine has an infinite range of cutting speeds. The cutting speeds may be varied without affecting the return speed.

An automatic stop is provided for controlling the length of the stroke. The length of the stroke can be varied by means of this stop or started in any position, either on cutting or return stroke, by the hand lever.

1

1


\*

#### SPECIFICATIONS

| Capacity                                                     |                  | Drive                                                     |
|--------------------------------------------------------------|------------------|-----------------------------------------------------------|
| Normal pulling capacity, ton                                 | 40<br>55         | Power of hydraulic pump<br>motor, kW 40                   |
| Maximum pulling capacity, ton<br>Maximum stroke of slide, mm | 2000             | Hydraulic pump delivery,                                  |
| Size of face plate, mm                                       | $750 \times 750$ | liters per min 400                                        |
| Hole diameter in face plate,                                 | 260 A            | Space Occupied                                            |
| Speeds                                                       |                  | Floor space, mm 8350 × 2025<br>Height of machine, mm 1350 |
| Maximum cutting speed, m/min.                                | 6.8              | rieight of machine, min 1000                              |
| Maximum return speed, m/min,<br>Power approach and with-     | 20               | Weight                                                    |
| drawal of broach, m/min                                      | 12               | Net weight, kg approx. 10500                              |

## HORIZONTAL BROACHING MACHINE

MODEL 7551



The 7551 Horizontal Hydraulic Broaching Machine is designed for internal broaching of various shapes in large work pieces, where accuracy, fine finish and high production are required.

The machine is hydraulically driven.

Coolant is supplied at beginning and end of broach cutting action, and also to facilitate the disposal of chips from the broach.

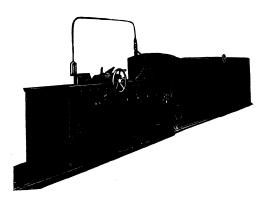
Offset of broach axis relative to face plate axis is obtained by the slide

tool which has vertical adjustment.

At the end of the forward and return strokes, the slide is automatically stopped by adjustable stops.

СТАНКОИМПОРТ подотности

The machine is provided with an overload safety device.


The machine has steady rests for supporting both broach and work piece; it has a traversable tray.

#### SPECIFICATIONS

| Capacity                                                     |             | Return speed, m/min.:                                       |
|--------------------------------------------------------------|-------------|-------------------------------------------------------------|
| Maximum pulling capacity, ton<br>Maximum diameter of broach, | 70          | Minimum 0.3<br>Maximum 23                                   |
| mm                                                           | 300         | Drive                                                       |
| Hole diameter in face plate,                                 | 350         | Hydraulic pump delivery,<br>liters per min, 400             |
| Maximum longitudinal travel,<br>mm                           | 1900        | Maximum pressure, atm                                       |
| piece, mm:                                                   |             | electric motors:<br>Main drive:                             |
| Without tray                                                 | 1600<br>480 | Power, kW 55                                                |
| Maximum length of work                                       |             | Coolant pump:                                               |
| piece, mm:<br>Without tray                                   | 800         | Power, kW 1.0<br>Speed, r. p. m                             |
| With tray                                                    | 250         |                                                             |
|                                                              |             | Space Occupied                                              |
| Speeds                                                       |             | Floor space, mm $9205 \times 2100$<br>Height of machine. mm |
| Cutting speeds, m/min.:<br>Minimum                           | 0.3         | Weight                                                      |
| Maximum                                                      | 3.7         | Net weight, kg approx. 16000                                |

## HORIZONTAL BROACHING MACHINE

MODEL 7552



The 7552 Horizontal Hydraulic Broaching Machine is designed for internal broaching of various shapes in large pieces, where accuracy, fine finish and high production are required.

The machine is hydraulically driven.

Coolant is supplied at beginning and end of broach cutting action, and

serves also to facilitate the disposal of chips from the broach.

Offset of broach axis relative to face plate axis is obtained by the slide tool which has vertical adjustment.

At the end of the forward and return strokes, the slide is automatically

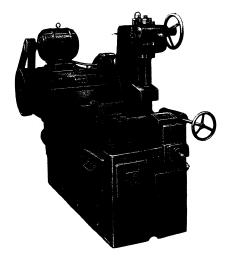
The state of the s

stopped by adjustable stops.

The machine is provided with an overload safety device.

The machine has steady rests for supporting both broach and work piece; it has a traversable tray.

3


4

## SPECIFICATIONS

| Capacity                           |             | Drive                                                        |
|------------------------------------|-------------|--------------------------------------------------------------|
| Maximum pulling capacity, ton      | 100         | Hydraulic pump delivery,                                     |
| Maximum diameter of broach,        | =00         | liters per min. 400                                          |
| mm                                 | 500         | Maximum pressure, atm 100<br>220/380 volt, 3 phase, 50 cycle |
| Hole diameter in face plate,       | 550         | electric motors:                                             |
| mm<br>Maximum longitudinal travel, |             | Main drive:                                                  |
| mm                                 | 2000        | Power, kW                                                    |
| Maximum diameter of work           |             | Speed, r. m. p. 1000                                         |
| piece, mm:                         | 2000        | Coolant pump:<br>Power, kW 1.0                               |
| Without tray                       | 600         | Speed, r. p. m                                               |
| Maximum length of work             |             | District Control                                             |
| piece, mm:                         |             | 0                                                            |
| Without tray                       | 1000<br>250 | Space Occupied                                               |
| With tray                          | 200         | Floor space, mm 10315 × 2037                                 |
| Minimum                            | 0.3         | Height of machine, mm . 2415                                 |
| Maximum                            | 3.7         |                                                              |
| Return speed, m/min.:              |             | Weight                                                       |
| Minimum                            | 0.3<br>23   | Net weight, kg approx. 19000                                 |
| Maximum                            | 23          | Het Weight, ag                                               |

## **COLD SAWING MACHINE**

MODEL 8 E 66



The 8 B 66 Cold Sawing Machine is designed for cutting off round and square stocks and other structural shapes.

This machine is exceptionally rigid and strong, its bed being of extra heavy box section construction, proportionally designed to withstand all stresses during the operation. The saw carriage houses the whole of the gear drive to the saw spindle. All gears of the saw carriage are made of special heat-treated steel.

heat-treated steel.

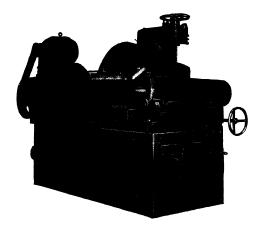
All moving shafts are mounted in ball bearings, and a built in pump affords forced feed lubrication to the drive.

e de la comprese de constante de constante de constante de constante de la constante de la constante de const

The saw spindle has six different speeds, so that correct saw speeds may The saw spindle has six different speeds, so that correct saw speeds may be obtained to suit the material being cut. The working feed and return stroke of the saw carriage, the lifting mechanism, and the vertical and horizontal vises are operated through a hydraulic system.

A special form of control valves ensures perfectly regular feed; vise con-

To yalves are interlocked in such a manner that the saw blade cannot feed forward until the work has been securely clamped.


An outer bogey can be provided to support the ends of long bars.

#### SPECIFICATIONS

| Capacity Cutting capacity for rounds, mm Cutting capacity for squares, mm Cutting capacity for 1-beams Cutting capacity for channels | 240<br>220<br>No. 50<br>No. 40 | Range of feeds (hydraulic), mm/min. 25–500  Drive  220/380 volt, 3 phase, 50 cycle A.C. motor: Power, kW |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|
| Saw Blade Diameter of saw blade, mm . Speeds and Feeds                                                                               | 710                            | Speed, r. p. m                                                                                           |
| Number of saw spindle speeds<br>Range of spindle speeds,<br>r, p, m,                                                                 | 6<br>3.3—25.5                  | Weight Net weight, kg approx. 3800                                                                       |

## **COLD SAWING MACHINE**

MODEL 8A67



The 8 A 67 Cold Sawing Machine has been designed for cutting off round

and square stocks and other structural shapes.

This machine is exceptionally rigid and strong, its bed being of extra heavy box section construction, proportionally designed to withstand all stresses during the operation.

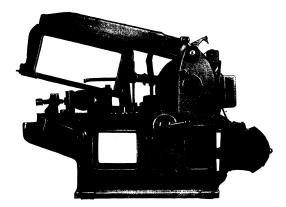
The saw spindle has six different speeds, so that correct saw speeds may be obtained to suit the material being cut.

The working feed and return stroke of the saw carriage, the vertical and

horizontal vises are operated through a hydraulic system.

An outer bogey can be provided to support the ends of long bars.

СТАНКОИМПОРТ


#### SPECIFICATIONS

| Capacity                                                                   |          | Drive                                                                  |
|----------------------------------------------------------------------------|----------|------------------------------------------------------------------------|
| Cutting capacity for rounds,<br>mm                                         | 350      | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:<br>Saw spindle drive: |
| mm                                                                         | 300      | Power, kW 10                                                           |
| Cutting capacity for I-beams                                               | No. 60   | Speed, r. p. m 1000                                                    |
| Cutting capacity for channels                                              | No. 40   | Hydraulic pump:<br>Power, kW 2.8                                       |
| Saw Blade                                                                  |          | Speed, r. p. m 1500                                                    |
| Diameter of saw blade, mm .                                                | 1010     |                                                                        |
|                                                                            |          | Space Occupied                                                         |
| Speeds and Feeds Number of saw spindle speeds Range of saw spindle speeds, | 6        | Floor space, mm                                                        |
| r. p. m                                                                    | 2-20     | Weight                                                                 |
| mm/min                                                                     | 12 - 450 | Net weight, kg approx. 7000                                            |

навической под 1900 г. СТАНКОИМПОРТ поетого общественной начинать начина постоя поетого поетого поетого поетого

## HACK SAWING MACHINE

MODEL 872 A



The 872 A Hydraulic Hack Sawing Machine is designed for cutting off bars, tubings, structural shapes with hack-saw blades.

The cutting can be carried out in the plane normal to the work center line

The number of saw frame double strokes is changed by means of shifting belts to various steps of the pulleys.

The machine is equipped with a hydraulic device securing lifting the saw

frame at return stroke as well as lowering and feeding during the cutting

On the completion of the cutting operation the pressure on the saw is automatically eased off, preventing breakage of the saw blade and the saw frame is lifted to the starting position.

The feeds are infinitely variable and are set up depending on material sawn.

The machine is equipped with overload protecting devices.

AND THE PERSON OF THE PERSON O

#### SPECIFICATIONS

| Capacity                                                   | Drive                                                                                       |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Maximum width of material                                  | 220/380 volt, 3 phase, 50 cycle<br>A. C. motor:<br>250 Power, kW 1.7<br>Speed, r, p, m 1500 |
| Saw Frame                                                  | Space Occupied                                                                              |
| Number of saw frame double                                 | Floor space, mm 1470 × 825                                                                  |
| strokes per minute 85 and 1<br>Length of saw frame stroke, |                                                                                             |

## DYNAMIC BALANCING MACHINE

MODEL 9734



The 9734 Balancing Machine is designed for quickly and accurately measuring and locating dynamic unbalance of rotating machine parts, such as: steam turbine rotors, high speed electrical machine rotors and others.

The left and the right stands of the machine are mounted on a bed with longitudinal ways.

The bed is constructed of three parts: each a rigid box-shaped iron casting,

The housings of the stands are of steel welded design.

The spindle of the machine is mounted in precision ball bearings.

The machine is controlled from a central control desk, which is mounted

on the spindle head.

The machine is also provided with push-button controls, located on the stands.

## SPECIFICATIONS

|                                                   | DI DOIL I | 011110110                                                                                 |             |
|---------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|-------------|
| Capacity  Distance, axis of centers to bed, mm    | 1200      | Maximum diameter of work<br>to be balanced, mm<br>Maximum diameter of work<br>journal, mm | 2500<br>300 |
| Distance between centers of supports, mm: Minimum | 300       | Weight of work to be balan-<br>ced, kg:<br>Minimum                                        | 300         |
| Maximum                                           | 4000      | Maximum                                                                                   | 3200        |

СТАНКОИМПОРТ опросожения выполняющий станкои мпорт настания

•

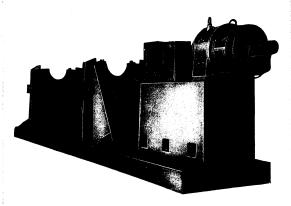
#### Speeds

Maximum work speed (infinitely variable), r. p. m. . . .

Main drive D. C. motor:
Power, kW . . . .
Speed, r. p. m. . . .
(for set-up purposes, provision

is made to reduce motor speed to 20-40 r. p. m.)

#### Space Occupied


Floor space, mm . . . . . 7560 × 1800 Height of machine, mm . . . . 1820

#### Weight

560

## DYNAMIC BALANCING MACHINE

MODEL 9736 A



The 9736 A Balancing Machine is designed for quickly and accurately measuring and locating dynamic unbalance of rotating machine parts, such as: high speed electrical machine rotors, steam turbine rotors, etc.

The left and the right stands of the machine are mounted on a bed with longitudinal ways.

The bed is constructed of three parts, each a rigid box shaped iron casting.

The housings of the stands are of steel welded design. The spindle of the machine is mounted in precision ball bearings.

The machine is controlled from a central control desk, which is mounted on the spindle head. The machine is also provided with push-button controls, located on the stands.

СТАНКОИМПОРТ

•

#### SPECIFICATIONS

| Capacity                                                               |               | Drive                                                                            |
|------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|
| Distance, axis of centers to<br>bed, mm<br>Distance between centers of | 1560          | Main drive D. C. motor:  Power, kW                                               |
| supports, mm:  Minimum  Maximum  Maximum of work                       | 350<br>6300   | (for set-up purposes, provision is made to reduce motor speed to 20—40 r. p. m.) |
| to be balanced, mm<br>Maximum diameter of work                         | 3200          |                                                                                  |
| journal mm                                                             | 500           | Space Occupied                                                                   |
| Weight of work to be balan-<br>ced, kg:                                |               | Floor space, mm 10900 × 1900<br>Height of machine, mm 2800                       |
| Minimum                                                                | 1000<br>16000 | rieight of machine, min                                                          |
| Speeds                                                                 |               | Weight                                                                           |
| Maximum work speed (infini-<br>tely variable), r. p. m.                | 450           | Net weight (without motors),<br>kg approx. 11500                                 |

=СТАНКОИМПОРТ =

#### Vsesojuznoje Exportno-Importnoje Objedinenije

#### "STANKOIMPORT"

#### **EXPORTS AND IMPORTS:**

Machine Tools

Woodworking Machinery

Metal Working Machinery (Presses, Hammers, Shears, Cold Forming Machines, Punching Machines)

Rolling Mills (imports)

Measuring Instruments and Apparatus (for metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools Mechanic's Tools and Chucks

Sintered Carbide and Hard-Alloy Products Abrasive Products

Ball and Roller Bearings

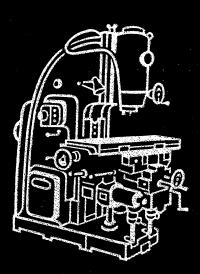
Microscopes of all types

Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photographic Cameras

Binoculars


Magnifiers

Lenses

Crude Optical Glass Blocks and Blanks

Design and specifications of the machine tools illustrated herein are subject to change without notice.

Order M 159



# MILLING MACHINES

STANKOIMPORT

## VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE STANKOIMPORT

DRUM TYPE MILLING MACHINES

VERTICAL ROTARY CONTINUOUS MILLING MACHINES

VERTICAL MILLING MACHINES

PROFILE MILLING MACHINES

PLANER TYPE MILLING MACHINES

UNIVERSAL MILLING MACHINES

HORIZONTAL MILLING MACHINES

KEYWAY MILLING MACHINES



USSR MOSCOW

## This catalogue contains short specifications of the most common types of machine tools exported by the Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport". Detailed pamphlets sent on request. All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport"

32/34, Smolenskaja-Sennaja pl., Moscow, USSR

For cables: Stankoimport Moscow Phone: G4-21-32

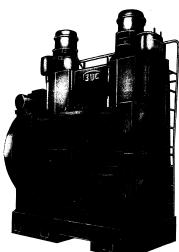
#### CONTENTS

| Drum Type Milling Machine                  |      |      |      |   |   |    |   | Model    |
|--------------------------------------------|------|------|------|---|---|----|---|----------|
| Drum Type Milling Machine                  | ٠    |      |      |   |   | ٠. | ٠ | 6022     |
| Vertical Rotary Continuous Milling Machine | •    | •    | ٠, ٠ |   |   | ٠  |   | 6023     |
| Vertical Potary Continuous Milling Machine | •    |      |      |   | • |    |   | 621      |
| Vertical Rotary Continuous Milling Machine |      |      |      |   |   |    |   | 623      |
| Vertical Milling Machine                   | ٠    |      |      |   |   |    |   | 6 H 11   |
| Vertical Milling Machine                   | ٠    |      |      |   |   |    |   | 6 H 12   |
| Vertical Milling Machine                   |      |      |      |   |   |    |   | 6 H 13   |
| Vertical Two Spindle Profile Milling Machi | ne   |      | ٠.   |   |   |    |   | 1 C 70   |
| Profile Milling Machine                    |      |      |      |   |   |    |   | ОФ-8     |
| Profile Milling Machine                    |      |      |      |   |   |    |   | 642 K    |
| Die-Sinking and Profile Milling Machine .  |      |      |      |   |   |    |   | 642      |
| Die-Sinking and Profile Milling Machine .  |      |      |      |   |   |    |   | 6441 A   |
| Three-Dimensional Pantograph Engraving M   | facl | nine | ٠.   |   |   |    |   | 6461     |
| Two-Dimensional Pantograph Engraving Ma    | chi  | ne   |      |   |   |    |   | 6463     |
| Two-Head Planer Type Milling Machine .     |      |      |      |   |   |    |   | 6622     |
| Three-Head Planer Type Milling Machine .   |      |      |      |   |   |    |   | 6632     |
| Four-Head Planer Type Milling Machine      |      |      |      |   |   |    |   | 6642     |
| Four-Head Planer Type Milling Machine .    |      |      |      |   |   |    |   | 6652     |
| Four-Head Planer Type Milling Machine .    |      |      |      | • |   | •  | • | 6662     |
| Universal Milling Machine                  | •    |      |      | • | • | •  |   | 678 M    |
| Universal Milling Machine                  |      |      |      | • |   |    | ٠ | 679      |
| Universal Milling Machine                  |      |      |      |   | • | ٠  | • | 6 H 81   |
| Universal Milling Machine                  |      |      |      |   | • |    | • | 6 H 82   |
| Universal Milling Machine                  | •    |      |      | • |   | •  |   | 6 П 82   |
| Horizontal Milling Machine                 |      | •    |      | • | • | ٠  | ٠ | 6 H 83   |
| Horizontal Milling Machine                 | •    |      | . •  |   | ٠ | ٠  | ٠ |          |
| Vertical Kenway Milling Machine            |      |      |      |   |   |    |   | 6 H 83 I |
|                                            |      |      |      |   |   |    |   |          |

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

The Machine Tools produced in the U.S.S.R. are outstanding for their high efficiency, convenience and safety in operation and long service.

The first-class material, perfect modern design and skilful workmanship provide accuracy, high efficiency and durability of the Machine Tools.


Steady improvement of machine tool design in the U.S.S.R. aims at the increase of productivity, accuracy, reliability and dependability of machine in operation, as well as the reduction of operator's fatigue by improving and convenient placing of all operating controls and the all-increasing automatization of operation.

The Vsesojuznoje Exportno-Importnoje Objedinenije "Stankoimport" is able to offer a wide range of Machine Tools both universal and special types including Automatic Transfer Machines and Automatic Workshops.



## DRUM TYPE MILLING MACHINE

MODEL 6022



The 6022 Drum Type Milling Machine is designed for milling of flat surface of cylinder heads, cases, cylinder blocks and other similar work on mass production basis.

Two upper spindle heads are used for two-side rough milling and two lower heads — for finish milling.

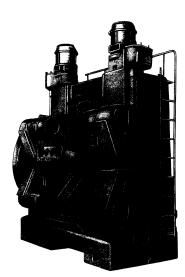
The right-hand spindle heads as well as the left-hand heads are powered by individual electric motors mounted on the top of the housings. Spindle speeds are changed by means of change gears.

The drum, carrying the work pieces, is driven by a separate electric

The dulin, carrying the work peecs, is directly a spanned with motor through a feed box.

Change of feed (speed of drum rotation) is accomplished by means of change gears. Machine control is accomplished by means of push-button stations, located on front and rear sides of the machine.

The machine is equipped with four electric motors.


#### SPECIFICATIONS

| Capacity   Distance between housings, mm   900                                                                  | Range of spindle speeds, r.p. m.:  1-st range 2-nd range For rough milling 23—75 37—118 For finish milling 37—118 60—190 Number of drum feeds. Time of one complete turn of drum, min.:  Minimum 12.7 Maximum 41  Drive  220 380 volt, 3 phase, 50 cycle A. C. motors: |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spindle Heads  Number of spindle heads 4 Spindle nose acc. to GOST 836-47 Diameter of spindle hole, mm 29  Drum | Spindle heads (2 motors):   Power, kW                                                                                                                                                                                                                                  |
| Drum diameter, mm 1000 Drum length, mm 650                                                                      |                                                                                                                                                                                                                                                                        |
| Speeds and Feeds Number of each spindle speeds 6                                                                | Weight Net weight (without attachments), kg approx. 25000                                                                                                                                                                                                              |



## DRUM TYPE MILLING MACHINE

MODEL 6023



The 6023 Drum Type Milling Machine is designed for milling of flat surfaces of cylinder heads, cases, cylinder blocks and other similar work on mass production basis,

Two upper spindle heads are used for two-side rough milling and two lower heads — for finish milling.

СТАНКОИМПОРТ

The right-hand spindle heads as well as the left-hand heads are powered by individual electric motors mounted on the top of the housings.

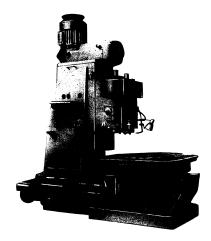
Spindle speeds are changed by means of change gears.

The drum, carrying the work pieces, is driven by a separate electric motor

through a feed box.

Change of feed (speed of drum rotation) is accomplished by means of change gears. Machine control is accomplished by means of push-button stations, located on front and rear sides of the machine.

The machine is equipped with four electric motors.


#### SPECIFICATIONS

| Capacity                                                                                        | Range of spindle speeds,                                                                                                                                      |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distance between housings   mm                                                                  | r. p. m.:  For rough milling 23—75 37—118 For finish milling 37—18 60—190 Number of drum feed Time of one complete turn of drum, min: Minimum 12.7 Maximum 41 |
| work piece contour that can<br>be milled, mm 2300                                               | Drive                                                                                                                                                         |
| Spindle Heads Number of spindle heads Spindle mose Lace to GOST 836-47 Diameter of spindle hole | 220,380 volt, 3 phase, 50 cycle                                                                                                                               |
| Drum                                                                                            | Power, kW 0.6                                                                                                                                                 |
| Drum diameter, mm          1000           Drum length, mm          900                          | Speed, r. p. m                                                                                                                                                |
| Speeds and Feeds  Number of each spindle speeds 6                                               | Floor space, mm                                                                                                                                               |



## **VERTICAL ROTARY CONTINUOUS** MILLING MACHINE

MODEL 621



The 621 Two Spindle Vertical Rotary Continuous Milling Machine is designed for fast production on steel and cast-iron parts with flat surfaces to be milled with one or two cuts, using face milling cutters, and is adapted for lot and mass production.

By changing several gears the machine may be set up for milling of light

The two independent spindle head makes it possible to perform rough and finish milling at one setting of the work.

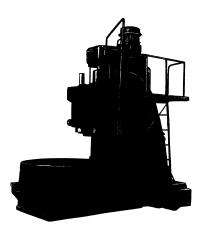
СТАНКОИМПОРТ

The table of the machine is rotated on the ways in the cross slide.

The table is driven through a feed box, two pairs of gears and worm and wheel.

Spindle speeds and table circular feeds are changed by means of pick-off

Machine control is accomplished by means of push-buttons. Push-button stations are conveniently located on both sides of the machine column.


#### SPECIFICATIONS

| SI                                                               | PECIFIC    | CATIONS                                                                                                  |    |
|------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------|----|
| Capacity                                                         |            | Speeds and Feeds                                                                                         |    |
| Distance from center line of spindle to column vertical ways, mm | 300        | Number of speeds of each<br>spindle .<br>Range of spindle speeds,<br>r. p. m.:<br>Spindle for rough mil- | 8  |
| ways, mm:                                                        |            | ling 37.5—19                                                                                             | 90 |
| Minimum<br>Maximum                                               | 500<br>800 | Spindle for finish mil-<br>ling 60—30                                                                    | nn |
| Distance from spindle face to<br>top of table, mm:               |            |                                                                                                          | 12 |
| Minimum                                                          | 0<br>450   | 1000 mm), mm/min 75—95                                                                                   | 50 |
|                                                                  |            | Drive                                                                                                    |    |
| Table                                                            |            |                                                                                                          |    |
| Table diameter, mm<br>Maximum cross travel of                    | 1000       | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:<br>Main drive:                                          |    |
| table, mm                                                        | 300        | Power, kW                                                                                                |    |
| Spindle Head                                                     |            | Table circular feed drive:<br>Power, kW 2.                                                               | .8 |
| Number of spindles<br>Maximum vertical travel of                 | 2          | Speed, r. p. m                                                                                           | 10 |
| spindle head, mm                                                 | 350        | Space Occupied                                                                                           |    |
| Maximum travel of spindle<br>quill, mm                           | 100        | Floor space, mm $2610 \times 153$<br>Height of machine, mm $310$                                         |    |
| Center distance between spind-                                   | 836-47     | Weight                                                                                                   |    |
| les. mm                                                          | 330        | Net weight, kg approx. 790                                                                               | 0  |
|                                                                  |            |                                                                                                          |    |



## **VERTICAL ROTARY CONTINUOUS** MILLING MACHINE

MODEL 623



The 623 Two Spindle Vertical Rotary Continuous Milling Machine is designed for fast production on steel and cast-iron parts with flat surfaces to be milled with one or two cuts, using face milling cutters, and is especially adapted for mass production.

By changing several gears the machine may be set up for milling of light metal parts.

The two independent spindle head makes it possible to perform rough and

finish milling at one setting of the work.

The machine is equipped with two electric motors, controlled from the main push-button station.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

٥,

Spindle speeds and table circular feeds are changed by means of pickoff gears.

Horizontal adjustment to the table, vertical adjustment to the spindle

head and axial adjustment of each spindle are accomplished by hand.

#### SPECIFICATIONS

| 0.15                                                              | CILI        | CATIONS                                                                               |
|-------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------|
| Capacity                                                          |             | Speeds and Feeds                                                                      |
| Distance from center line of spindle to column vertical ways, mm  | 360         | 'Number of speeds of each spindle                                                     |
| Minimum                                                           | 750         | ling                                                                                  |
| Maximum                                                           | 1100        | Spindle for finish mil-<br>ling 47.5—235                                              |
| Distance from spindle face to top of table, mm:  Minimum  Maximum | 100<br>600  | Number of table circular feeds Range of table circular feeds (referred to diameter of |
|                                                                   |             | 1000 mm), mm/min 60—750                                                               |
| Table                                                             |             | Drive                                                                                 |
| Table diameter, mm<br>Maximum cross travel of<br>table, mm        | 1500<br>350 | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:<br>Main drive:<br>Power, kW 14—20    |
| Spindle Head                                                      |             | Speed, r.p.m                                                                          |
| Number of spindles                                                | 2           | Speed, r. p. m 1500                                                                   |
| Maximum vertical travel of spindle head (by hand), mm             | 350         | Space Occupied                                                                        |
| Maximum travel of spindle quill, mm                               | 150         | Floor space, mm                                                                       |
| Spindle nose acc. to GOST 83                                      |             |                                                                                       |
| Center distance between spind-                                    |             | Weight                                                                                |
| les, mm                                                           | 470         | Net weight, kg approx. 15000                                                          |



# **VERTICAL MILLING MACHINE**

MODEL 6H11



The 6H11 Vertical Milling Machine has been designed for miscellaneous milling operations on general manufacturing work, using various types of cutters such as end mills, face milling cutters, etc.

The machine has a height table with a fixed spindle head, all adjustments being made through the knee.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

•

The machine is supplied with a climb cutting device which eliminates backlash in the table feed screw; thus, either climb or conventional milling operations can be performed.

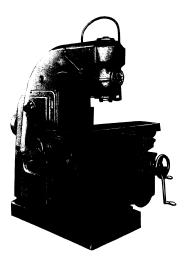
Power rapid traverse in three directions for the table is provided.

The machine has dial selectors for quick change of spindle speeds and

A heavy flywheel mounted on the spindle insures a smooth flow of power to the spindle.

The speed and feed ranges offer great efficiency in milling operations on parts made of various grades of steel, cast iron, aluminium, bronze, using conventional high speed steel or sintered carbide cutters.

Two separate motors are used for driving the spindle and feeding the table.


#### SPECIFICATIONS

| Capacity                          | Longitudinal 35—980             |
|-----------------------------------|---------------------------------|
| Working surface of table,         | Cross                           |
|                                   | Vertical 12—380                 |
| mm:                               | Table rapid traverse, mm:       |
|                                   | Longitudinal 2900               |
| top of table, mm:                 | Congitudinal 2900               |
| Minimum 30                        | Cross                           |
| Maximum 380                       | Vertical 1100                   |
| Distance, center of spindle to    | - ·                             |
| face of column, mm 270            | Drive                           |
| Maximum table traverse (by        | 220/380 volt. 3 phase, 50 cycle |
| power or manually), mm:           | A.C. motors:                    |
| Longitudinal 560                  | Main drive:                     |
| Cross 200                         | Power, kW 4.5                   |
| Vertical 350                      | Speed, r. p. m                  |
| Spindle nose No. 2, acc. to       | Feed drive:                     |
| GOST 836-47                       | Power, kW 1.7                   |
| GOS1 650-41                       |                                 |
|                                   | Speed, r. p. m 1500             |
| Speeds and Feeds                  |                                 |
| Number of spindle speeds 16       | Space Occupied                  |
| Range of spindle speeds,          | Floor space, mm 2060 × 1530     |
| r. p. m 65—1800                   | Height of machine, mm 2300      |
| Number of table feeds (longi-     |                                 |
| tudinal, cross and vertical) 16   | Weight                          |
| Range of table feeds, mm/min.:    |                                 |
| realige of table feeds, miniming. | Net weight, kg approx. 2100     |
|                                   | 14                              |



# VERTICAL MILLING MACHINE

MODEL 6H12



The 6H12 Vertical Milling Machine has been designed for miscellaneous milling operations using various types of cutters such as end mills, face milling cutters, etc.

The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

Rapid traverse in three directions is provided for the table. The machine can also be operated as an automatic cycle milling machine with continuous

СТАНКОИМПОРТ

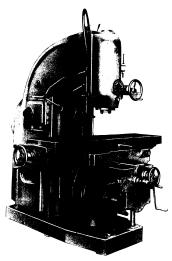
or intermittent cycle. With these features the machine is adaptable to both

milling operations on general manufacturing and mass production work.

Dial selectors are provided for quick change of spindle speeds and table feeds.

Two separate motors are used for driving the spindle and feeding the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.


# SPECIFICATIONS

| υ.                                                                                   | LECIL             | CATIONS                                                                                         |                            |
|--------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|----------------------------|
| Distance, spindle face to top                                                        | 250×320           | Range of vertical feeds.<br>mm/min.<br>Table rapid traverse, mm/min.:<br>Longitudinal and cross | 8—390<br>2300              |
| of table, mm: Minimum                                                                | 30<br>400         | Vertical                                                                                        | 770                        |
| Spindle nose No. 3, acc, to GOST<br>Maximum table traverse<br>(power or manual), mm: |                   | 220/380 volts, 3 phase, 50 cycle<br>A. C. motors:<br>Main drive:                                |                            |
| Longitudinal<br>Cross<br>Vertical                                                    | 700<br>260<br>370 | Power, kW                                                                                       | 7<br>1500                  |
| Speeds and Feeds                                                                     |                   | Power, kW                                                                                       | 1.7<br>1500                |
| Number of spindle speeds<br>Range of spindle speeds.                                 | 18                | Space Occupied                                                                                  |                            |
| Number of table feeds (longi-                                                        | 80—1500           | Floor space, mm                                                                                 | $2100 \times 1740 \\ 1875$ |
| tudinal, cross and vertical)<br>Range of longitudinal and                            | 18                | Weight                                                                                          |                            |
| cross feeds, mm/min 23.                                                              | 51180             | Net weight, kg ap                                                                               | prox. 2900                 |



# **VERTICAL MILLING MACHINE**

MODEL 6H13



The 6H13 Vertical Milling Machine has been designed for miscellaneous milling operations using various types of cutters such as end mills, face

The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

Vertical movement is provided to the spindle head and rapid traverse in three directions — for the table. The machine can also be operated as an

СТАНКОИМПОРТ

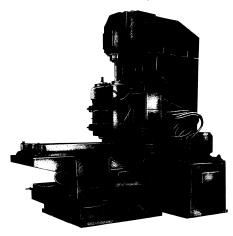
Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

automatic cycle milling machine with continuous or intermittent cycle. With these features the machine is adaptable to both milling operations on general manufacturing and mass production work.

Dial selectors are provided for quick change of spindle speeds and table feeds.

Two separate motors are used for driving the spindle and feeding the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.


# SPECIFICATIONS

| Capacity                                                    |                   | Range of vertical feeds,                                               |                    |
|-------------------------------------------------------------|-------------------|------------------------------------------------------------------------|--------------------|
| Working surface of table,                                   |                   | mm/min                                                                 | 8 - 390            |
| mm Distance, spindle face to top of table, mm:              | $1600 \times 400$ | Table rapid traverse, mm/min.:<br>Longitudinal and cross .<br>Vertical | 2300<br>770        |
| Minimum                                                     | 30<br>450         | Drive                                                                  |                    |
| Spindle nose No. 3, acc. to GO                              | OST 836-47        | 220/380 volt, 3 phase, 50 cycle                                        |                    |
| Maximum table traverse                                      |                   | A. C. motors:                                                          |                    |
| (power or manual), mm:                                      |                   | Main drive:                                                            |                    |
| Longitudinal                                                | 900               | Power, kW                                                              | 10                 |
| Cross                                                       | 320               | Speed, r. p. m. , . , ,                                                | 1750               |
| Vertical                                                    | 420               | Feed drive:                                                            | 0.0                |
|                                                             |                   | Power, kW                                                              | 2.8                |
| Speeds and Feeds                                            |                   | Speed, r. p. m                                                         | 1750               |
| Number of spindle speeds<br>Range of spindle speeds,        | 18                | Space Occupied                                                         |                    |
| r. p. m.<br>Number of table feeds (longi-                   | 30-1500           | Floor space, mm 2370<br>Height of machine, mm                          | $\times$ 2140 2245 |
| tudinal, cross and vertical) .<br>Range of longitudinal and | 18                | Weight                                                                 |                    |
| cross feeds, mm/min                                         | 23.5 - 1180       | Net weight, kg approx                                                  | x. 4300            |



# VERTICAL TWO SPINDLE HYDRAULIG PROFILE MILLING MACHINE

MODEL 1C70



The 1C70 Vertical Two Spindle Hydraulic Profile Milling Machine is designed for two-dimensional form milling. Milling of the form contour is done, depending on the shape of the work piece, with the end mills or cylindrical cutters, using the flat templates and semi-automatic cycle (with the hand control).

Copying of the contour is accomplished by means of the simultaneous movement of the upper and lower tables of the machine in two directions.

Longitudinal and cross movements of the table is accomplished by means of hydraulic cylinders.

СТАНКОИМПОРТ

Ü

Ü

Rotation to the two spindles of the milling head is taken from a spline shaft of the gear box. The spindles are mounted in quills; the spindle quills can be adjusted along their axes for the vertical setting of the cutters.

The hydraulic copying device is mounted on the right side of the milling head and the electric control stops are located on its left side.

Vertical movement of the milling head and its clamping to the column

ways are accomplished by means of hydraulic cylinders.

12 spindle speeds are obtained through the speed gear box. When it is necessary, the range of the spindle speeds may be changed by means of the pick-off gears.

The templates are mounted on the template table located at the left side of the upper table.

# SPECIFICATIONS

| Capacity  Number of spindles  Center distance between spind- les, mm  Maximum overhang of cutter from the spindle face, mm  Maximum dimensions of work piece machined, mm:  Length  Width  Height | 2<br>500<br>150<br>350<br>350<br>150 | Maximum longitudinal travel of upper table, mm.  Height from floor to top of upper table, mm  Speeds and Feeds  Number of spindle speeds. Range of spindle speeds. r, p, m. Feeds along the contour, | 400<br>900<br>12<br>75—950                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Maximum depth of milling, mm                                                                                                                                                                      | 15                                   | mm/min.:<br>Minimum<br>Maximum                                                                                                                                                                       | 30<br>400                                               |
| Cutters                                                                                                                                                                                           |                                      | Drive                                                                                                                                                                                                |                                                         |
| Diameter of cutter, mm:                                                                                                                                                                           | 20                                   |                                                                                                                                                                                                      |                                                         |
| Maximum                                                                                                                                                                                           | 100                                  | Number of electric motors Total power of all motors, kW                                                                                                                                              | 4<br>17.2                                               |
| Maximum                                                                                                                                                                                           |                                      |                                                                                                                                                                                                      |                                                         |
| Milling Head  Maximum travel of milling head on ways, mm                                                                                                                                          |                                      | Total power of all motors, kW<br>Main drive motor:<br>Power, kW<br>Speed, r, p, m,                                                                                                                   | 17.2                                                    |
| Milling Head Maximum travel of milling head on ways, mm Adjustment for length of tra-                                                                                                             | 100<br>250                           | Total power of all motors, kW<br>Main drive motor:<br>Power, kW                                                                                                                                      | 17.2<br>14                                              |
| Milling Head  Maximum travel of milling head on ways, mm                                                                                                                                          | 100                                  | Total power of all motors, kW<br>Main drive motor:<br>Power, kW<br>Speed, r, p, m,                                                                                                                   | $17.2$ $14$ $1500$ $2400 \times 3435$                   |
| Milling Head Maximum travel of milling head on ways, mm Adjustment for length of tra- vel, mm                                                                                                     | 250<br>150                           | Total power of all motors, kW Main drive motor: Power, kW Speed. r, p, m  Space Occupied Floor space, mm                                                                                             | $17.\overline{2}$ $14$ $1500$ $2400 \times 3435$ $3000$ |



# HYDRAULIC PROFILE MILLING MACHINE

MODEL OΦ-8



The OΦ-8 Profile Milling Machine is designed for automatic two-dimensional profile milling of the complicated contours from templates or models. The work piece is clamped on the working table itself or in attachment, placed on the table, and a model or template — on the table of the template.

Copying movements (longitudinal and cross travel of the table) are hydraulically operated and controlled by the tracing device.

Vertical setting movement is provided for the spindle head.

СТАНКОИМПОРТ

Vertical feed of the spindle head permits machining profile of blind slots and recesses. Either external or internal profiles can be milled on the

# SPECIFICATIONS

| Capacity                                          | Speeds and Feeds                         |
|---------------------------------------------------|------------------------------------------|
| Distance from spindle face to                     | Number of spindle speeds 9               |
| top of table, mm:                                 | Range of spindle speeds,                 |
| Minimum 190                                       | r. p. m                                  |
| Maximum 390                                       | Range of spindle feeds,                  |
| Distance from center line of                      | mm/min,                                  |
| spindle to column, mm                             | Range of table feeds, mm min. 60-200     |
| Distance between spindle and                      | Rapid traverse of spindle and            |
| tracer centers, mm:<br>Longitudinal direction 625 | table, m/min 1.2                         |
| Cross direction . 80                              | Drive                                    |
| Maximum dimensions of con-                        |                                          |
| tour machined, mm:                                | 220/380 volt, 3 phase, 50 cycle          |
| Length 625                                        | A. C. motors:                            |
| Width                                             | Spindle drive:                           |
| 200                                               | Power, kW 2.8                            |
| Spindle                                           | Speed, r. p. m 1500<br>Hydraulic system: |
| Taper hole in spindle Morse No. 4                 | Power, kW 1.7                            |
| Maximum vertical travel of                        | Speed, r. p. m                           |
| spindle, mm 200                                   | Tracer oscillating motion:               |
|                                                   | Power, kW 0.125                          |
| Work Table                                        | Speed, r. p. m                           |
| Working surface of table, mm 800 × 300            | Coolant pump:                            |
| Maximum travel of table, mm:                      | Power, kW 0.125                          |
| Longitudinal 650                                  | Speed, r, p. m, 3000                     |
| Cross                                             |                                          |
| _                                                 | Space Occupied                           |
| Template Table                                    | Floor space, mm 1445 × 1530              |
| Surface of table, mm 320 × 250                    | Height of machine, mm 2010               |
| Maximum travel of table, mm:                      |                                          |
| Longitudinal 60                                   | Weight                                   |
| Cross 40                                          | Net weight, kg approx. 3100              |

HYDRAULIC PROFILE MILLING MACHINE MODEL 642K



The 642K Profile Milling Machine is designed for automatic two-dimensional profile milling of different type work pieces (connecting rods, cams, turbine blades, etc.).

Copying movements (longitudinal and cross travel of the table) are hydraulically operated and controlled by the tracing device.

Scale of copying is 1:1.

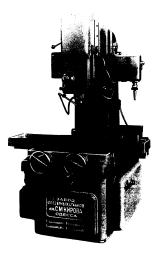
Either external or internal profiles can be milled on the machine. Setting of spindle head at different height allows machining of contours in different planes.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

Ĉ.

Vertical feed of the spindle permits milling of profile of blind slots and recesses.


# SPECIFICATIONS

| Capacity                                             | Speeds and Feeds                                     |
|------------------------------------------------------|------------------------------------------------------|
| Distance from spindle face to                        | Number of spindle speeds 4                           |
| top of table, mm:<br>Minimum 200                     | Range of spindle speeds,<br>r.n.m. 200-1600          |
| Maximum 400                                          | r. p. m                                              |
| Distance from center of<br>spindle to column, mm 350 | feeds (hydraulic), mm/min. 30-300                    |
| Distance from rear face of                           | Range of table feeds (hydrau-<br>lic), mm/min 60-300 |
| table to column, mm:                                 | Rapid traverse of spindle head                       |
| Minimum 65<br>Maximum 315                            | and table, m/min 1                                   |
| Distance between spindle and                         | Drive                                                |
| tracer finger centers, mm . 560                      | Dilve                                                |
| ,                                                    | 220/380 volt, 3 phase, 50 cycle                      |
| Spindle Head                                         | A. C. motors:                                        |
| Maximum vertical travel of                           | Spindle drive (two-speed):                           |
| spindle head (hydraulic or                           | Power, kW 2.5/2.8                                    |
| manual), mm 200                                      | Speeds, r. p. m 1500/3000                            |
| Taper hole in spindle Morse No. 4                    | Hydraulic system:                                    |
|                                                      | Power, kW 1.7                                        |
| Work Table                                           | Speed, r. p. m                                       |
| Surface of table (size overall),                     | Tracer oscillating motion:<br>Power, kW 0.125        |
| mm 1250 × 320                                        | Power, kW 0.125<br>Speed, r. p. m 3000               |
| Working surface of table, mm 800 × 320               | Coolant pump:                                        |
| Maximum travel of table (hy-                         | Power, kW 0.1                                        |
| draulic), mm:                                        | Speed, r. p. m                                       |
| Longitudinal 400                                     | Speed, 1. p. m                                       |
| Cross 250                                            |                                                      |
| man late malls                                       | Space Occupied                                       |
| Template Table                                       | Floor space, mm 1380 × 1460                          |
| Working surface of table, mm 320 × 250               | Height of machine, mm 2190                           |
| Maximum travel of table (ma-                         |                                                      |
| nual), mm:                                           | Weight                                               |
| Longitudinal 60<br>Cross 40                          |                                                      |
| C1088                                                | Net weight, kg approx. 2775                          |



# HYDRAULIC DIE-SINKING AND PROFILE MILLING MACHINE

MODEL 642



The 642 Die-Sinking and Profile Milling Machine is designed for automatic three-dimensional profile milling of forging stamping and die-casting dies, molds for plastic materials, metal patterns, etc.

Copying movements are hydraulically operated and controlled by the

tracing device.

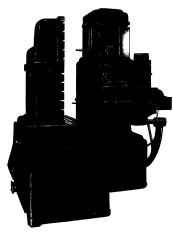
Scale of copying is 1:1.

The tracing mechanism of the machine allows operations requiring the

СТАНКОИМПОРТ

copying and duplicating of convex and concave surfaces with  $87^{\circ}$  angle of rise.

Light contact pressure of the tracer finger allows the use of wood, plastics, light metal, or other easily workable material.


# SPECIFICATIONS

| Capacity                         |                           | Speeds and Feeds                                   |
|----------------------------------|---------------------------|----------------------------------------------------|
| Distance from spindle face to    |                           | Number of spindle speeds 6                         |
| top of table, mm:                |                           | Range of spindle speeds,                           |
| Minimum                          | 200                       | r, p, m                                            |
| Maximum                          | 400                       | Range of spindle head vertical                     |
| Distance from spindle center     |                           | feeds (hydraulic), mm/min 30-300                   |
| to column, mm                    | 350                       | Number of table feeds 30                           |
| table to column, mm:             |                           | Range of table intermittent<br>feeds mm 0—6        |
| Minimum                          | 65                        | feeds, mm 0—6<br>Rapid traverse of spindle head    |
| Maximum                          | 315                       | and table, m/min                                   |
| Distance between spindle and     | 913                       | and table, m/min                                   |
| tracer centers, mm               | 560                       |                                                    |
|                                  |                           | Drive                                              |
| Spindle Head                     |                           | 220/380 volt, 3 phase, 50 cycle                    |
| Maximum vertical travel of       |                           | A. C. motors:                                      |
| spindle head (hydraulic),        |                           | Spindle drive (three-speed                         |
| mm                               | 90                        | motor):                                            |
| Maximum vertical travel of       |                           | Power, kW 1.3/1.5/1.8                              |
| spindle (manual), mm             | 110                       | Speed, r. p. m 1000/1509/3000<br>Hydraulic system: |
| Taper hole in spindle Morse      | No. 4                     | Power, kW 1.7                                      |
| Work Table                       |                           | Speed, r, p, m,                                    |
|                                  |                           | Tracer oscillating motion:                         |
| Surface of table (size overall), | × 320                     | Power, kW 0.125                                    |
|                                  | $\times$ 320 $\times$ 320 | Speed, r, p, m,                                    |
| Maximum table travel (hv-        | ×. 320                    | Coolant pump:                                      |
| draulic or manual), mm:          |                           | Power, kW 0.125                                    |
| Longitudinal                     | 400                       | Speed, r. p. m 3000                                |
| Cross                            | 250                       |                                                    |
|                                  |                           | Space Occupied                                     |
| Template Table                   |                           | Floor space, mm 1460 × 1630                        |
| Maximum table travel (ma-        | × 250                     | Height of machine, mm 2100                         |
| nual), mm:                       |                           | Weight                                             |
| Longitudinal                     | 60                        | •                                                  |
| Cross                            | 40                        | Net weight, kg approx. 2880                        |



# DIE-SINKING AND PROFILE MILLING MACHINE WITH ELECTRONIC CONTROL

MODEL 6441A



The 6441A Die-Sinking and Profile Milling Machine is designed for the automatic reproduction of profiles in two dimensions or the reproduction of reliefs in three dimensions from master forms. Scale of reproduction is 1:1.

Tracer pressure necessary for reproduction is extremely light and sensitive. Therefore the master forms used can be made of wood, cement, light metals, etc.

The machine is ideally suited to the production of blanking, trimming or piercing dies and punches, extrusion dies forging, stamping and die-casting dies, molds for plastic

materials, cams, templates, metal pattern works and odd-shape milling in general.

There are two types of operations used for three-dimensional work, either relief or impression. The first of these makes use of automatic horizontal traverse of the table, tracer controlled horizontal movement of the spindle head and intermittent vertical feed of the spindle head, the cutter breing set to a given depth before the operation is started. The entire surface of the master is covered by the tracer in a series of parallel horizontal strokes.

СТАНКОИМПОРТ

The second type makes use of intermittent feed of the table, tracer controlled horizontal movement of the spindle head and automatic vertical traverse of the spindle head. The entire surface of the master is covered by the tracer in a series of parallel vertical strokes.

For two-dimensional work horizontal movement of the table and vertical movement of the spindle head are used.

The tracer mechanism is the same for all types of work.

Machine control is with the use of electronic devices.

#### SPECIFICATIONS

| SPECIFICATIONS                                                                                                        |             |                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|--|
| Capacity Dimensions of machined surfaces (length × width × height), mm 900 × 500 × Table Working surface of table, mm |             | Range of intermittent feeds, mm/stroke:                                                       |  |
| Spindle Head                                                                                                          |             | Deline                                                                                        |  |
| Maximum traverse of spindle<br>head, mm:<br>Longitudinal<br>Vertical                                                  | 250<br>500  | Drive  220 380 volt, 3 phase, 50 cycle A. C. motors: Spindle drive (two-speed motor):         |  |
| Spindle                                                                                                               |             | Power, kW 2.1                                                                                 |  |
| Maximum traverse of spindle (manual), mm                                                                              | 100<br>No.4 | Speeds, r. p. m 1500/3000<br>Amplifier drive (two motors):                                    |  |
| Distance from center of<br>spindle to top of table, mm<br>Minimum                                                     | 100         | Power, kW 0.9<br>Speed, r. p. m 3000<br>Coolant pump:                                         |  |
| Maximum                                                                                                               | 600         | Power, kW 0.125                                                                               |  |
|                                                                                                                       |             | Speed, r. p. m 3000                                                                           |  |
| Working surface, mm:                                                                                                  | 100         | D. C. motors: Vertical, horizontal and longitudinal feed drive (three motors): Power, kW 0.37 |  |
| Master support 900 ×                                                                                                  |             | Speed, r, p. m, 1000                                                                          |  |
| Work support 900 ×                                                                                                    | 650         | Amplifier drive (two mo-                                                                      |  |
| Tracer Mechanism                                                                                                      |             | tors):                                                                                        |  |
| Maximum travel (manual),                                                                                              |             | Power, kW 0.5                                                                                 |  |
| mm:                                                                                                                   |             | Speed, r. p. m 2850                                                                           |  |
| Longitudinal                                                                                                          | 100<br>100  | Space Occupied                                                                                |  |
| Vertical                                                                                                              | 150         | Floor space, mm 3500 × 2680                                                                   |  |
| Speeds and Feeds                                                                                                      |             | Height of machine, mm 2430                                                                    |  |
| Number of spindle speeds .                                                                                            | 12          | *** * * *                                                                                     |  |
| Range of spindle speeds,                                                                                              |             | Weight                                                                                        |  |
|                                                                                                                       | -950        | Net weight, kg approx. 7500                                                                   |  |

# THREE-DIMENSIONAL PANTOGRAPH **ENGRAVING MACHINE**

MODEL 6461



The 6461 Pantograph Engraving Machine is designed for three-dimensional engraving work from enlarged templates or models of any shape, the reduction range being limited between 1:8 and 1:1.5. Jewellery dies, hobs, punches, different concave, convex and spherical surfaces, etc., can be produced on this machine. High speed profiling can also be accomplished. Milling works on small parts can be done with the hand movement of the table and the pantograph being clamped.

Maximum area covered by cutter point on 1:2 reduction is a circle of 150 mm in diameter.

СТАНКОИМПОРТ

#### SPECIFICATIONS

| Capacity                                                            |                | Speeds                                         |
|---------------------------------------------------------------------|----------------|------------------------------------------------|
| Reduction range 1                                                   | : 1.5—1:8      | Number of spindle speeds 6                     |
| Distance from spindle nose to<br>work table surface, mm:<br>Minimum | 0              | Range of spindle speeds,<br>r, p, m, 1750—9600 |
| Maximum<br>Cutter spindle vertical move-                            | 250            | Drive                                          |
| ment on 1 : 2 reduction, mm                                         | 20             | 220/380 volt, 3 phase, 50 cycle                |
| Work Table                                                          |                | A, C. motor:                                   |
| Working surface, mm<br>Maximum table traverse, mm:                  | $200\times300$ | Power, kW 0.6<br>Speed, r. p. m                |
| Longitudinal                                                        | 250            |                                                |
| Cross                                                               | 150<br>250     | Space Occupied                                 |
|                                                                     | 200            | Floor space, mm 1250 × 1100                    |
| Template Table                                                      |                | Height of machine, mm 1600                     |
| Working surface, mm                                                 | 300 	imes 450  |                                                |
| Maximum table traverse, mm:<br>Longitudinal                         | 200            | Weight                                         |
| Vertical                                                            | 140            | Net weight, kg approx. 560                     |



# TWO-DIMENSIONAL PANTOGRAPH ENGRAVING MACHINE

MODEL 6463

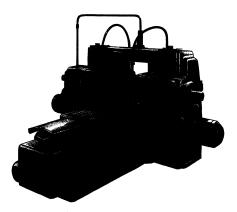


The 6463 Pantograph Engraving Machine is designed for flat surface engraving work from enlarged template or model clamped on a template table. Engraving is accomplished by means of special cutter and pantograph mechanism.

Maximum area covered by cutter point on 1:1 reduction is a circle of 150 mm in diameter.

СТАНКОМ М ПОРТ СТАНКОИ МПОРТ

#### Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0


# SPECIFICATIONS

| Capacity                                                                                 | Speeds and Feeds                                                                |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Reduction range 1:1—1:50 Distance from spindle nose to work table surface, mm: Minimum 0 | Number of spindle speeds 4 Range of spindle speeds, r. p. m                     |
| Maximum 250                                                                              | Drive                                                                           |
| Work Table  Working surface, mm 200 × 300  Maximum table traverse, mm:  Longitudinal 175 | 220/380 volt, 3 phase, 50 cycle A. C. motor: Power, kg 0.15 Speed, r, p. m 3000 |
| Cross 100                                                                                | Space Occupied                                                                  |
| Vertical                                                                                 | Floor space, mm $1020 \times 600$<br>Height of machine, mm $1250$               |
| Template Table                                                                           | Weight                                                                          |
| Working surface, mm $300 \times 450$                                                     | Net weight, kg approx. 270                                                      |



# TWO-HEAD PLANER TYPE MILLING MACHINE

MODEL 6622



The 6622 Two-Head Planer Type Milling Machine is designed for fast production on steel and cast-iron parts with flat surfaces to be milled using face milling cutters.

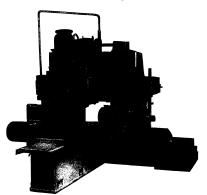
face milling cutters.

Two side heads can be used for machining at the same time. The heads are completely self-contained units with independent set-up and feed movements and are powered by individual motors. The machine is operated by means of push-button control built into the main pendant station.

Independent feed and rapid traverse with automatic cycle set-up are provided for the table.

СТАНКОИМПОРТ

Sanitized Copy Approved for Release 2010/10/19: CIA-RDP81-01043R000800160002-0


# SPECIFICATIONS

| Capacity  Distance between head spindle faces, mm:  Minimum Maximum | 300<br>650         | Number of table feeds Range of table feeds, mm/min. Number of head vertical feeds Head vertical feeds, mm/min. Rapid table traverse, m/min |
|---------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Distance from center line of<br>head spindle to top of table.       |                    | Drive                                                                                                                                      |
| mm:                                                                 |                    | 220/380 volt, 3 phase, 50 cycle                                                                                                            |
| Minimum                                                             | 75                 | A. C. motors:<br>Majn drive (2 motors):                                                                                                    |
| Maximum                                                             | 400                | Power, kW                                                                                                                                  |
| Distance between housings,<br>mm                                    | 820                | Speed, r. p. m 1500<br>Table feed drive:                                                                                                   |
| Table                                                               |                    | Power, kW 1.7                                                                                                                              |
|                                                                     | 1000 17 450        | Speed, r, p, m, 1500                                                                                                                       |
| Working surface of table, mm<br>Maximum table travel, mm .          | 1600 × 450<br>1600 | Space Occupied                                                                                                                             |
| Speeds and Feeds                                                    |                    | Floor space, mm                                                                                                                            |
| Number of each spindle speeds<br>Range of spindle speeds.           | 18                 | Weight                                                                                                                                     |
| r. p. m.                                                            | 25-1250            | Net weight, kg approx, 7900                                                                                                                |



# THREE-HEAD PLANER TYPE MILLING MACHINE

MODEL 6632



The 6632 Three-Head Planer Type Milling Machine is designed for fast production on steel and cast-iron parts with flat surfaces to be milled using face milling cutters.

face milling cutters.

One rail head and two side heads can be used for machining at the same time. All heads are completely self-contained units with independent set-up and feed movements and are powered by individual motors. All three heads are of swivelling type.

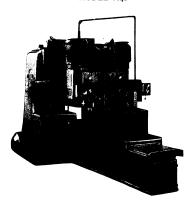
are of swivelling type.

Automatic rail lowering and elevating mechanism is provided. It is operated by means of push-button control built into the main pendant station.

Independent feed and rapid traverse are provided for the table, and automatic cycle set-up can be furnished on special request. If necessary the table may be stopped automatically at the end of working stroke. The machine is equipped with seven electric motors.

СТАНКОИМПОРТ

СТАНКОИМПОРТ


•

#### SPECIFICATIONS

| Capacity  Height from rail head spindle face to top of table, mm: Minimum Maximum Distance from center line of side head spindle to top of | 150<br>830                     | Range of feeds, mm/min: 19—950   Table   19—950   9.5—475   Rapid traverse, mm/min: 3000   Table   5000   Spindle heads   1500   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000   5000 |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| table, mm:<br>Minimum                                                                                                                      | 100                            | Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maximum Distance between side head spindle faces, mm:                                                                                      | 600                            | 220/380 volt, 3 phase, 50 cycle A. C. motors: Main drive (3 motors):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minimum                                                                                                                                    | 375                            | Power kW 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Maximum                                                                                                                                    | 775                            | Speed, r, p, m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Distance between housings,<br>mm                                                                                                           | 950                            | Table feed drive: Power, kW 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table                                                                                                                                      |                                | Speed, r. p. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Working surface of table, mm<br>Maximum table travel, mm                                                                                   | ${2200 \times 650 \atop 2200}$ | Rapid traverse drive:<br>  Power, kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spindle Heads                                                                                                                              |                                | Rail traverse drive:<br>Power, kW 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of rail heads                                                                                                                       | 1                              | Speed, r, p. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of side heads                                                                                                                       | 2                              | Coolant pump:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maximum angle of swivel of                                                                                                                 |                                | Power, kW 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| spindle heads Spindle nose acc, to G                                                                                                       | ± 30°<br>OST 836-47            | Speed, r. p. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                            |                                | Space Occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Speeds and Feeds Number of each spindle speeds Range of each spindle speeds,                                                               | 12                             | Floor space, mm $5900 \times 4350$ Height of machine, mm $3360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| r, p, m                                                                                                                                    | 475 - 600                      | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of table and heads<br>feeds                                                                                                         | 18                             | Net weight, kg approx. 23000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# FOUR-HEAD PLANER TYPE MILLING MACHINE

MODEL 6642



The 6642 Four-Head Planer Type Milling Machine is designed for fast production of steel and cast-iron parts with flat surfaces to be milled using

face milling cutters.

Two rail heads and two side heads can be used for machining at the same time. All heads are completely self-contained units with independent set-up and feed movements and are powered by individual motors,

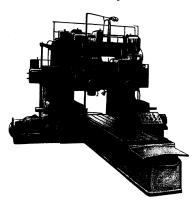
All four heads are of swivelling type.

Automatic rail lowering and elevating mechanism is provided. It is operated by means of push-button control built into the main pendant station.

Independent feed and rapid traverse are provided for the table, and automatic cycle set-up can be furnished on special request. If necessary the table may be stopped automatically at the end of working stroke.

The machine is equipped with eight electric motors.

CTAHKOMMNOPT


# SPECIFICATIONS

| Capacity                                  |                   | Number of table and head                                 |
|-------------------------------------------|-------------------|----------------------------------------------------------|
| Height from rail head spindle             |                   | feeds                                                    |
| face to top of table, mm:                 |                   | Range of feeds, mm/min.:                                 |
| Minimum                                   | 150               | Table 19—950                                             |
| Maximum                                   | 1000              | Spindle heads 9.5—475                                    |
| Distance between rail head                |                   | Rapid traverse, mm/min.:                                 |
| spindles, mm:                             |                   | Table                                                    |
| Minimum                                   | 450               | Spindle heads 1500<br>Speed of rail traverse mm/min. 600 |
| Maximum                                   | 1600              | Speed of rail traverse, mm/min. 600                      |
| Distance between side head                |                   | D.                                                       |
| spindle faces, mm:                        |                   | Drive                                                    |
| Minimum                                   | 675<br>1075       | 220/380 volt, 3 phase, 50 cycle                          |
| Maximum                                   | 1075              | A. C. motors:                                            |
| Distance from center line of              |                   | Main drive (four motors):                                |
| side head spindle to top of<br>table, mm: |                   | Power, kW 14                                             |
| Minimum                                   | 75                | Speed, r. p. m 1500                                      |
| Maximum                                   | 800               | Table feed drive:<br>Power, kW 4.5                       |
| Distance between housings,                |                   | Speed, r, p, m,                                          |
| mm , ,                                    | 1250              | Rail traverse drive:                                     |
|                                           |                   | Power, kW                                                |
| Table                                     |                   | Speed, r, p, m,                                          |
| Working surface of table, mm              | $3000 \times 900$ | Rapid traverse drive:                                    |
| Maximum table travel, mm .                | 3000              | Power, kW 4.5                                            |
|                                           |                   | Speed, r, p. m                                           |
| Spindle Heads                             |                   | Coolant pump:                                            |
| Number of rail heads                      | 2                 | Power, kW 0.15                                           |
| Number of side heads                      | 2                 | Speed, r, p, m                                           |
| Maximum swivel of spindle                 |                   |                                                          |
| heads                                     | ± 30°             | Space Occupied                                           |
| Spindle nose acc. to G                    | OST 836-47        | Floor space, mm 7650 × 4650                              |
| 0 1 1 P 1-                                |                   | Height of machine, mm 3600                               |
| Speeds and Feeds                          |                   |                                                          |
| Number of each spindle speeds             | 12                | Weight                                                   |
| Range of each spindle speeds,             | 45.5 000          | =                                                        |
| r, p, m,                                  | 47.5-600          | Net weight, kg approx. 31000                             |



# FOUR-HEAD PLANER TYPE MILLING MACHINE

MODEL 6652



The 6652 Four-Head Planer Type Milling Machine is designed for regular and high speed milling on steel and cast-iron parts using face milling

Two rail heads and two side heads can be used for machining at the same time. All heads are completely self-contained units with independent set-up adjustment, infinitely variable feed, and are powered by individual

All four heads are of swivelling type.

Change of spindle speeds is accomplished by means of hand operated

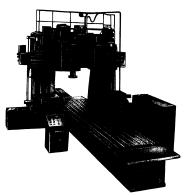
Infinitely variable table feed is provided by the use of D. C. electric motor for feed drive. From the feed box movement is transmitted to the main worm, driving the table.

СТАНКОИМПОРТ СТАНКОИМПОРТ

\*

Start and stop of the main drive motors and the table drive motors are by means of push-buttons on the pendant station. Reserve of spindles and by means of push-nutrons on the pendant station, reserve on spindies and adjustment of table feed are made from a centralized control station. Spindle heads feed movement is interlocked with the movement of the table and is controlled from the centralized control station by means of hydraulically operated and electrically controlled mechanisms.

Rail clamping to the housings and spindle heads clamping to the rail are


made from the centralized control station.

# SPECIFICATIONS

|                     | CITTIONS                                                  | DI DOIL I   |                                                            |
|---------------------|-----------------------------------------------------------|-------------|------------------------------------------------------------|
|                     | Speeds and Feeds                                          |             | Capacity                                                   |
| 12                  | Number of each spindle speeds<br>Range of spindle speeds. |             | Height from rail head spindle<br>face to top of table, mm: |
| 37.5-475            | r, p, m.                                                  | 200         | Minimum                                                    |
|                     | Range of feeds, mm min.:                                  | 1400        | Maximum                                                    |
| 23.5-1180           | Table                                                     |             | Distance between rail head                                 |
|                     | Spindle heads                                             |             | spindles, mm:                                              |
|                     | Rapid traverse, mm/min.:                                  | 550         | Minimum                                                    |
| 4000                | Table                                                     | 2350        | Maximum                                                    |
| 2000                | Spindle heads                                             |             | Distance between side head                                 |
|                     | Speed of rail traverse.                                   |             | spindle faces, mm:                                         |
| 600                 | mm/min,                                                   | 850         | Minimum                                                    |
|                     |                                                           | 1400        | Maximum                                                    |
|                     | Drive                                                     |             | Distance from center line of                               |
|                     | 220/380 volt, 3 phase, 50 cycle<br>A. C. motors:          |             | side head spindle to top of<br>table, mm:                  |
|                     | Main drive (four motors):                                 | 155         | Minimum                                                    |
| 20                  | Power, kW                                                 | 1070        | Maximum                                                    |
| 20                  | Table rapid traverse                                      |             | Maximum weight of work                                     |
|                     | drive:                                                    | 8000        | piece admitted, kg                                         |
| 13.5                | Power, kW                                                 |             |                                                            |
| 1010                | Rail traverse drive:                                      |             | Table                                                      |
| 14                  | Power, kW                                                 | 4950 × 1950 | Working surface of table, mm                               |
| • •                 | D.C.motor for table feed:                                 |             | Maximum table travel, mm                                   |
| 10                  | Power, kW                                                 | 1500        | sinamum table travel, mm .                                 |
|                     |                                                           |             | Spindle Heads                                              |
|                     | Space Occupied                                            | 2           | Number of rail heads                                       |
| 11150×5600          | Floor space, mm , ,                                       | 2           | Number of side heads                                       |
| 4600                | Height of machine, mm                                     | _           | Maximum swivel of spindle                                  |
|                     |                                                           | ± 30°       | heads                                                      |
|                     | Weight                                                    |             | Maximum diameter of face                                   |
| pprox. <b>64000</b> | Net weight, kg ap                                         | 400         | milling cutters, mm                                        |
|                     |                                                           |             |                                                            |

# FOUR-HEAD PLANER TYPE MILLING MACHINE

MODEL 6662



The 6662 Four-Head Planer Type Milling Machine is designed for regular and high speed milling on steel and cast-iron parts using face milling cutters. Two rail heads and two side heads can be used for machining at the same time.

All heads are completely self-contained units with independent set-up adjustment, infinitely variable feed, and are powered by individual motors. All four heads are of swivelling type.

Change of spindle speeds is accomplished by means of hand operated levers. Infinitely variable table feed is provided by the use of D. C. electric motor for feed drive. From the feed box movement is transmitted to the main worm driving the table.

Start and stop of the main drive motors and the table drive motors are by means of push-buttons on the pendant station.

CTAPROMAGOPT

\*

•

•

Reverse of spindles and adjustment of table feed are made from a

centralized control station.

Spindle heads feed movement is interlocked with the movement of the table and is controlled from the centralized control station by means of hydraulically operated and electrically controlled mechanisms.

Rail clamping to the housings and spindle heads clamping to the rail are

made from the centralized control station.

#### SPECIFICATIONS

|                       | 0.1.1.0.1.0                       | DI LIOIT I         |                                                            |
|-----------------------|-----------------------------------|--------------------|------------------------------------------------------------|
|                       | Speeds and Feeds                  |                    | Capacity                                                   |
| 12                    | Number of each spindle<br>speeds  |                    | Height from rail head spindle<br>face to top of table, mm: |
| 37.5-475              | Range of spindle speeds. r. p. m  | 200<br>1900        | Minimum                                                    |
| 23.5—1180<br>11.8—590 | Table Spindle heads               | 550                | Distance between rail head<br>spindles, mm:<br>Minimum     |
| 4000                  | Rapid traverse, mm/min.:<br>Table | 2900               | Maximum Distance between side head                         |
| 2000                  | Spindle heads                     | 1400               | spindle faces, mm:<br>Minimum                              |
| 600                   | mm/min.                           | 1950               | Maximum  Distance from center line of                      |
|                       | Drive                             |                    | side head spindle to top of                                |
|                       | 220/380 volt, 3 phase, 50 cycle   |                    | table, mm:                                                 |
|                       | A.C. motors:                      | 155                | Minimum                                                    |
|                       | Main drive (four motors):         | 1550               | Maximum                                                    |
| 28                    | Power, kW                         |                    | Maximum weight of work                                     |
|                       | Table rapid traverse              | 14000              | piece admitted, kg                                         |
| 13.5                  | drive:<br>Power, kW               |                    |                                                            |
| 10.0                  | Rail traverse drive:              |                    | Table                                                      |
| 14                    | Power, kW                         |                    | Working surface of table,                                  |
|                       | D.C. motor for table              | $6000 \times 1800$ | mm                                                         |
|                       | feed:                             | 6500               | Maximum table travel, mm .                                 |
| 10                    | Power, kW                         |                    | •                                                          |
|                       |                                   |                    | Spindle Heads                                              |
|                       | Space Occupied                    | 2                  | Number of rail heads                                       |
| $14600 \times 6050$   | Floor space, mm 1                 | 2                  | Number of side heads                                       |
| 5100                  | Height of machine, mm             |                    | Maximum swivel of spindle                                  |
|                       | Weight                            | ±30°               | heads                                                      |
| 00000                 | •                                 |                    | Maximum diameter of face                                   |
| pprox. 80000          | Net weight, kg ap                 | 500                | mills, mm                                                  |
|                       |                                   |                    |                                                            |



# UNIVERSAL MILLING MACHINE

MODEL 678M



The 678M Universal Milling Machine is designed for use in tool room where great accuracy and versatility are required. The spindle speed changes are obtained through a gear box.

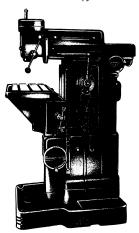
Power feeds as well as hand feeds are provided for both longitudinal and vertical movements of the table. The feed changes are obtained through a

feed box. Table stop is accomplished either automatically by means of adjustable dogs or by hand.

Cross movement of spindle ram is by hand only.

The attachments supplied with each machine include: plain horizontal table, universal swivelling table, circular dividing table, universal dividing head with accessories, vertical swivelling milling head, universal swivelling vice, etc.

СТАНКОИМПОРТ


# SPECIFICATIONS

| Capacity                                                       |            | Speeds and Feeds                                                        |                  |
|----------------------------------------------------------------|------------|-------------------------------------------------------------------------|------------------|
| Distance, plain table to center<br>line of horizontal spindle, |            | Number of spindle speeds .<br>Range of speeds, r.p. m.:                 | 6                |
| mm:<br>Minimum                                                 | 68         | Horizontal spindle 12                                                   | 0-1170<br>8-1740 |
| Maximum                                                        | 348        | Number of table feeds                                                   | 6                |
| face to arbor support                                          |            |                                                                         | 19—184           |
| bushing, mm                                                    | 178        | Vertical                                                                | 22214            |
| surface to face of spindle                                     | 280        | Drive                                                                   |                  |
| Distance, center line of horizontal spindle to overarm,<br>mm  | 65         | 220/380 volt, 3 phase, 50 cycle<br>A.C. motors:<br>Main and feed drive: |                  |
| Table                                                          |            | Power, kW                                                               | 1.7<br>1500      |
| Working surface of main table, mm 550 >                        | < 195      | Coolant pump:<br>Power, kW                                              | 0.125            |
| Maximum travel of table<br>(power and hand), mm:               |            | Speed, r. p. m.                                                         | 3000             |
| Longitudinal                                                   | 250<br>280 | Space Occupied                                                          |                  |
| Spindle Ram                                                    |            | Floor space, mm 970<br>Height of machine, mm                            | × 1090<br>1525   |
| Maximum cross travel of ram.                                   | 140        | Weight                                                                  |                  |
| Taper hole in spindle Morse N                                  |            | Net weight, kg appro                                                    | ox. 825          |



# UNIVERSAL MILLING MACHINE

MODEL 679



The 679 Universal Milling Machine is designed for use in tool rooms

where great accuracy and versatility are required.

Change of spindle speeds, table feeds and cross feeds of horizontal spindle ram are obtained through gear box and feed box with a single

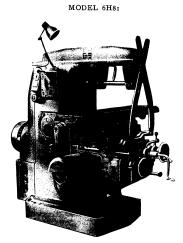
lever operating mechanisms.

Power feeds are provided for both longitudinal and vertical movement of the table. Power cross feed is accomplished by horizontal spindle ram

A great versatility of the machine is provided by a number of attachments supplied with the machine. It includes: vertical spindle, circular dividing table, universal swivelling table, dividing head, machine vice, etc.

СТАНКОИМПОРТ

CTAHKONMARDPE


į

# SPECIFICATIONS

| Capacity Distance, plain table surface to                            |               | Taper hole of vertical spindle Morse No. 4                             |
|----------------------------------------------------------------------|---------------|------------------------------------------------------------------------|
| spindle, mm:                                                         |               | Speeds and Feeds                                                       |
| Minimum                                                              | 30<br>360     | Number of spindle speeds . 8<br>Range of speeds, r. p. m.:             |
| Distance, plain table surface<br>to face of vertical spindle,<br>mm: |               | Horizontal spindle                                                     |
| Minimum                                                              | 0<br>265      | feeds 8 Range of table longitudinal                                    |
| Distance, face of horizontal<br>ram to center line of verti-         |               | and vertical feeds, mm/min. 25-285<br>Range of horizontal spindle      |
| cal spindle, mm                                                      | 155           | ram feeds, mm/min 25-285                                               |
| Table                                                                |               | Drive                                                                  |
| Working surface of main table, mm                                    | 700 	imes 260 | 220/380 volt, 3 phase, 50 cycle<br>A. C. motor:                        |
| Maximum travel of table, mm:                                         |               | Power, kW 2.8                                                          |
| Longitudinal<br>Vertical                                             | 300<br>300    | Speed, r. p. m                                                         |
|                                                                      |               | Space Occupied                                                         |
| Spindle Ram                                                          |               | Floor space, mm 1150 × 1400                                            |
| Maximum cross travel of spindle ram, mm                              | 200           | Height of machine, mm 1650                                             |
| Maximum travel of vertical<br>spindle along its axis (ma-            |               | Weight                                                                 |
| nual), mm                                                            | 80            | Net weight, kg:                                                        |
| Taper hole of horizontal spindle                                     | orse No. 4    | Without accessories approx. 1050<br>Including accessories approx. 1250 |



# UNIVERSAL MILLING MACHINE



The 6H81 Universal Milling Machine has been designed for miscellaneous milling operations encountered in the tool room, using various types of cutters such as plain and helical cylindrical cutters, side milling cutters, end mills, form cutters, etc.

The employment of a universal dividing head or some special attachments increases the variety of work that may be assigned to the machine, including spur and helical gears, worms, worm wheels, bevel gears, racks, etc.

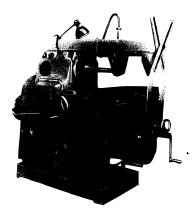
The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

СТАНКОИМПОРТ

÷

.

The machine is supplied with a climb cutting device which eliminates backlash in the table feed screw; thus, either climb or conventional milling operations can be handled. Two separate motors are used for driving the spindle and feeding the table. Power feed and rapid traverse in three directions are provided for the table.


# SPECIFICATIONS

|                                                                                             | SPECIFI                    | CATIONS                                          |
|---------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|
| Capacity Working surface of table, mm Distance, center line of spindle to top of table, mm: | $1000\times250$            | Range of table feeds, mm/min.                    |
| Minimum                                                                                     | $^{0}_{340}$               | <b>Drive</b> 220/380 volt, 3 phase, 50 cycle     |
| center line of table, mm: Minimum Maximum                                                   | 170<br>370                 | A. C. motors: Main drive: Power, kW 4.5          |
| Distance, center line of spindle<br>to overarm, mm<br>Maximum table traverse, mm:           | 150                        | Speed, r, p, m,                                  |
| Longitudinal                                                                                | 560<br>200<br>340<br>± 45° | Coolant pump: Power, kW 0.1 Speed, r. p. m. 3000 |
| Speeds and Feeds                                                                            |                            | Space Occupied Floor space, mm 2060 × 1940       |
| Number of spindle speeds Range of spindle speeds,                                           | 16                         | Height of machine, mm 1600                       |
| r, p, m,                                                                                    | 65—1800<br>16              | Weight Net weight, kg approx. 2000               |



# UNIVERSAL MILLING MACHINE

MODEL 6H82



The 6H82 Universal Milling Machine has been designed for miscellaneous milling operations encountered in the tool room, using various types of cutters such as plain and helical cylindrical cutters, side milling cutters, end mills, etc.

The employment of a universal dividing head or some special attachments increases the variety of work that may be assigned to the machine including spur and helical gears, worms, worm wheels, bevel gears, racks, etc.

The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

The machine is supplied with a climb cutting device which eliminates

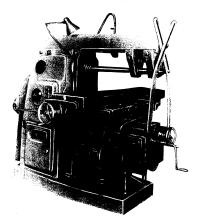
backlash in the table feed screw; thus either climb or conventional milling

СТАНКОИМПОРТ

operations can be handled. Two separate motors are used for driving the spindle and feeding the table.

Dial selectors are provided for quick change of spindle speeds and table feeds. Power feed and rapid traverse in three directions are provided for the table. The machine can also be operated as an automatic cycle milling machine providing continuous or intermittent cycle to the longitudinal movement of the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.


# SPECIFICATIONS

| Capacity  Working surface of table, mm $1250 \times 320$ | Rapid traverse of table,        |
|----------------------------------------------------------|---------------------------------|
| Distance, center line of spindle                         | Longitudinal and cross 2300     |
| to top of table, mm:                                     | Vertical                        |
| Minimum 30                                               |                                 |
| Maximum                                                  | Drive                           |
| Spindle nose No. 3, acc. to GOST 836-47                  | 220/380 volt, 3 phase, 50 cycle |
| Maximum table traverse, mm:                              | A. C. motors:                   |
| Longitudinal 700                                         | Main drive:                     |
| Cross 260                                                | Power, kW                       |
| Vertical                                                 | Speed, r. p. m 1500             |
| Swivel of table                                          | Feed drive:                     |
|                                                          | Power, kW 1.7                   |
| Speeds and Feeds                                         | Speed. r. p. m 1500             |
| Number of spindle speeds                                 | Space Occupied                  |
| r. p. m                                                  | Floor space, mm                 |
| Number of table feeds 18                                 | Height of machine, mm 1615      |
| Range of table feeds, mm/min.:                           |                                 |
| Longitudinal and cross 23.5-1180                         | Weight                          |
| Vertical 8390                                            | Net weight, kg approx. 2800     |



# UNIVERSAL MILLING MACHINE

MODEL 6H83



The 6H83 Universal Milling Machine has been designed for miscellaneous milling operations encountered in the tool room, using various types of cutters such as plain and helical cylindrical cutters, side milling cutters, end mills, form cutters, etc.

The employment of a universal dividing head or some special attachments increases the variety of work that may be assigned to the machine including spur and helical gears, worms, worm wheels, bevel gears, racks, etc.

The modern design of the machine, its rigidity, ample power together

The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools. The machine is supplied with a climb cutting device which eliminates backlash in the table feed screw; thus either climb or conventional milling operations can be handled.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

é

Sanitized Copy Approved for Release 2010/10/19 ; CIA-RDP81-01043R000800160002-0

Two separate motors are used for driving the spindle and feeding the table.

Power feed and rapid traverse in three directions are provided for the table. Dial selectors are provided for quick change of spindle speeds and table feeds.

The machine can also be operated as an automatic cycle milling machine providing continuous or intermittent cycle to the longitudinal movement of the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.

#### SPECIFICATIONS

| Capacity Working surface of table, mm Distance, center line of spindle to top of table, mm: | Vertical                             |
|---------------------------------------------------------------------------------------------|--------------------------------------|
| Minimum                                                                                     | 30 Drive                             |
| Maximum                                                                                     | 310                                  |
| Spindle nose No. 3, acc. to GOST 836                                                        | 6-47 220/380 volt, 3 phase, 50 cycle |
| Maximum table traverse, mm;                                                                 | A. C. motors:                        |
|                                                                                             | 900 Main drive:                      |
|                                                                                             | 320 Power, kW 10                     |
|                                                                                             | 320                                  |
|                                                                                             | 500 Speed, 1. p. m                   |
| Angle of table swivel ±                                                                     | 45 Feed drive:                       |
|                                                                                             | Power, kW 2.8                        |
| Casada and Toods                                                                            | Speed, r. p. m                       |
| Speeds and Feeds                                                                            | • • •                                |
| Number of spindle speeds<br>Range of spindle speeds,                                        | 18 Space Occupied                    |
|                                                                                             | 1500 Floor space, mm 2370 × 2140     |
|                                                                                             |                                      |
| Number of table feeds                                                                       | 18 Height of machine, mm 1700        |
| Range of table feeds, mm.min.:<br>Longitudinal and cross 23.5—1                             | Weight                               |
|                                                                                             |                                      |
| Vertical 8—                                                                                 | -390 Net weight, kg approx. 3800     |

# HORIZONTAL MILLING MACHINE

MODEL 6H82Γ



The 6H82T Horizontal Milling Machine has been designed for miscellaneous milling operations in both tool room and production lines using various types of cutters such as plain and helical cutters, side milling cutters, form cutters, etc. With the employment of special attachments spur and bevel gears and racks can be machined.

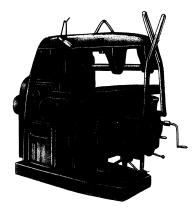
The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

The machine is supplied with a climb cutting device which climinates backlash in the table feed screw; thus either climb or conventional milling operations can be handled. Two separate motors are used for driving the spindle and feeding the table.

СТАНКОИМПОРТ

Dial selectors are provided for quick change of spindle speeds and table feeds. Power feed and rapid traverse in three directions are provided for the table. The machine can also be operated as an automatic cycle milling machine, providing continuous or intermittent cycle to the longitudinal movement of the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.


#### SPECIFICATIONS

| Capacity Working surface of table, mm Distance, center line of spindle to top of table, mm: Minimum Maximum Spindle nose No. 3, acc. to GO Maximum table traverse, mm: Longitudinal Cross Vertical | 30<br>400                           | Vertical                       | 2300<br>770<br>7<br>1500 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|--------------------------|
| Speeds and Feeds                                                                                                                                                                                   |                                     |                                | 1500                     |
| Number of spindle speeds .<br>Range of spindle speeds,<br>r,p,m<br>Number of table feeds<br>Range of table feeds, mm/min.:<br>Longitudinal and cross<br>Vertical                                   | 30—1500<br>18<br>23 5—1180<br>8—390 | Space Occupied Floor space, mm | 1615                     |



# HORIZONTAL MILLING MACHINE

MODEL 6H83Γ



The  $6H83\Gamma$  Horizontal Milling Machine has been designed for miscellaneous milling operations in both tool room and production lines using various types of cutters such as plain and helical cutters, side milling cutters, form cutters, etc.

cutters, form cutters, etc.

With the employment of special attachments spur and bevel gears and racks can be machined.

The modern design of the machine, its rigidity, ample power together with the high speeds and feeds provide all the operating conditions for the application of cemented carbide cutting tools.

The machine is supplied with a climb cutting device which eliminates backlash in the table feed screw; thus either climb or conventional milling operations can be handled.

СТАНКОИМПОРТ

C

Two separate motors are used for driving the spindle and feeding the table.

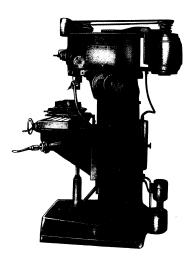
Dial selectors are provided for quick change of spindle speeds and table

Dial selectors are provided for quick change of spindle speeds and table feeds.

Power feed and rapid traverse in three directions are provided for the table.

The machine can also be operated as an automatic cycle milling machine providing continuous or intermittent cycle to the longitudinal movement of the table.

Lever and push-button control located at the front of the machine is duplicated at the left-hand side for convenience in complete hand control.


# SPECIFICATIONS

| Capacity   Working surface of table, mm   1600 × 400                                                                                                                                                 | Rapid traverse of table, mm/min.:   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of spindle speeds   18   Range of spindle speeds   7, p. m.   30—1500   Number of table feeds   18   Range of table feeds   18   Range of table feeds   18   19   19   19   19   19   19   19 | Space Occupied           Floor space, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



# **VERTICAL KEYWAY MILLING MACHINE**

MODEL 692A



The 692A Vertical Keyway Milling Machine is designed for milling keyways on shafts and other work pieces.

The sinking infeed of the cutter spindle, its rapid raising and lowering

The sinking infeed of the cutter spindle, its rapid raising and lowering movements, as well as the reciprocating motion of the spindle carriage are hydraulically performed.

Milling keyways is accomplished through an automatic cycle, comprising: reciprocating longitudinal motion of spindle carriage and down feed of

СТАНКОИМПОРТ

Sanitized Copy Approved for Release 2010/10/19 ; CIA-RDP81-01043R000800160002-0

ſ,

cutter at each successive stroke. The spindle carriage can be set in any initial position.

The machine is driven by a two-speed motor through V-belt.

#### SPECIFICATIONS

| Capacity  Maximum width of keyway, mm                                                                               | 20<br>300                    | Range of carriage speeds (infinitely variable) mm/min. Range of vertical feeds (infinitely variable), mm per stroke |
|---------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Table                                                                                                               |                              | Drive                                                                                                               |
| Working surface of table, mm<br>Cross travel of table (by<br>hand), mm<br>Vertical travel of table (by<br>hand), mm | $900 \times 250$ $150$ $300$ | 220/380 volt, 3 phase, 50 cycle A. C. motor (two-speed):  Main drive: Power, kW                                     |
| Spindle  Maximum travel of spindle sleeve. mm                                                                       | 100                          | Space Occupied Floor space, mm 1400 × 1350 Height of machine, mm 1750                                               |
| Number of spindle speeds Range of spindle speeds, r. p. m.                                                          | 12<br>270—3380               | Weight  Net weight, kg approx. 1300                                                                                 |

# VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

# "STANKOIMPORT"

# EXPORTS AND IMPORTS:

Machine Tools

Woodworking Machinery

Metal Working Machinery (Presses, Hammers, Shears, Cold

Forming Machines, Punching Machines)

Rolling Mills (imports)

Measuring Instruments and Apparatus (for metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodwork-

ing)

Metal and Wood Cutting Tools

Mechanic's Tools and Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of All Types

Motion-Picture Equipment and Accessories Geodetic Instruments and Equipment

Photographic Cameras

Binoculars

Magnifiers

Lenses

Crude Optical Glass Blocks and Blanks

Design and specifications of the machine tools illustrated herein are subject to change without notice.

Vneshtorgizdat Order M 158



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

# **MICROSCOPES**

BIOLOGICAL MICROSCOPES
POLARIZING MICROSCOPES
METALLOGRAPHIC MICROSCOPES
ELECTRON MICROSCOPES



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE
"STANKOIMPORT"

USSR

MOSCOW

# ${\bf CONTENTS}$

| Biological Microscopes                                                                                                                                                                                                                                                                                                              | °a.   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Biological Microscope, Model M-10 School Microscope, Model M-10 Macat Inspection Microscope, Model MHC-7 Macat Inspection Microscope, Model MHC-7 Biological Microscope, Model MBH-1 Biological Microscope, Model MBH-2 Travelling Biological Microscope, Model MBH-2 Travelling Biological Microscope, Model MBH-4                 | 1 1 1 |
| Accessories for Biological Microscopes                                                                                                                                                                                                                                                                                              |       |
| Binocular Attachment, Model AV-12 Chiversal Photomicrographie Attachment, Model MΦII-1 Micrometer Experiece, Model AM-9-2 Drawing Apparatus, Model PA-4 Phase-Contrast Equipment, Model K6-1 Mechanical Stage, Model CT-12 Normal Incident Illuminator, Model 0II-1 Dark Ground Condenser, Model 0II-1 Microscopy Lamp, Model 0II-7 | 30 50 |
| Polarizing Microscopes                                                                                                                                                                                                                                                                                                              |       |
| Polarizing Microscope, Model MIH-4 Petrological Microscope, Model MIH-5 Ore Microscope, Model MHH-6.                                                                                                                                                                                                                                | 4     |
| Metallographic Microscopes                                                                                                                                                                                                                                                                                                          |       |
| Horizontal Metallographic Microscope, Model MHM-8 Vertical Metallographic Microscope, Model MHM-6                                                                                                                                                                                                                                   | 4     |
| Electron Microscope, Model 9M-3                                                                                                                                                                                                                                                                                                     |       |

# BIOLOGICAL MICROSCOPES

As a rule, microscopes designed for the examination of translucent objects, illuminated by transmitted light, are called biological microscopes.

Translucent specimens may be examined in either a bright or dark field.
The biological microscope may also be employed for the examination of opaque objects in low power work using an epicondenser.

The fields of application of biological microscopes are exceptionally wide. Botany, zoology, biochemistry, medicine, agriculture, industrial laboratories are a far from complete list of those branches of science and economy in which biological microscopes have found wide spread use

copes have found wide-spread use.

In accordance with the field of application and the type of research, the biological microscopes may be furnished with special accessories and devices enlarging their operating capacity.

# BIOLOGICAL MICROSCOPE, MODEL M-10

The M-10 Microscope (Fig. 1) is a medium type biological microscope, designed for use in biological and other laboratories, clinics, universities and scientific research institutions.

stres and scientific research institutions.

This microscope satisfies the chief requirements of the biologist, physician or agronomist.

Magnifications achieved by the various combinations of objectives and eyepieces range from 56° to 600°.

Fig. 2 shows a diagrammatical sectional view of the microscope.

of the microscope.

The base I of the stand is of horse-shoe form and has three supporting pads which provide a stable position of the microscope on the table.

The weight of the base is such that the microscope is kept from upsetting even when the limb 2 is in a horizontal position.

To protect the stand from falling over from accidental side blows, two additional lugs are provided, underneath, between the main supporting pads. porting pads.



Fig. 1 M-10 Biological Microscope



The vertical extention of the base is fitted into the slot of the limb 2. The latter has the form of a segment.

The limb is pivoted on the base with the pin 3 and can be inclined to any angle

By the aid of a special wrench, furnished with the microscope, the effort required for tilting the limb can be regulated. In this way the desirable position of the body 4 in relation to the observer can

be ensured. The stop screws 5 provide for setting the body in a precise ver-

tical or horizontal position. The cut-out portion in the center of the limb allows the latter to be used as a convenient handle for carrying the microscope from

place to place. The space, provided by this same cut-out portion, allows objects having a large lateral size (for instance, flat plates or pans) to be set up on the stage 6.

The upper part of the limb carries the fine focusing mechanism 7.

The fine focusing mechanism comprises a system of gears and a lever. It is actuated by two heads arranged on the right- and left-hand side of the limb. One revolution of the heads, on which shaft the driving gear of the me-chanism is mounted, advances the body 0.1 mm.

The left-hand head is furnished with a graduated drum having 50 divisions on its circum-ference. One drum scale division corresponds to a body movement of 0.002 mm.

4

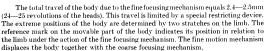



Fig. 2 Diagrammatical sectional view of M-10 Microscope

23

22

24

The coarse focusing mechanism comprises a rack 8 fastened to the body and a pinion 9 engaging the rack.

Heads 10 are mounted on the pinion shaft 9. Rotating the heads raises or the body. One full revolution of the heads 10 provides a body travel of 20 mm. Rotating the heads 10 away from the observer lowers the body and vice versa.

The tube is of the telescopic type. By extending the draw tube 11, the mechanical tube length can be varied in a range from 150 to 200 mm. A scale inscribed on the

draw tube indicates the regulated tube length.

draw tube indicates the regulated tube length.

Interchangeable eyepieces 12 are inserted into the upper part of the tube. The standard microscope set contains Huyghenian eyepieces, designed in such a manner, that a change of eyepiece power does not affect the focusing adjustment. The initial magnification is engraved on each eyepiece.

The lower part of the body carries the revolving nosepiece 13 for holding and rapidly changing the objectives 14. Rotating the body of the nosepiece brings one of the objectives in line with the tube opening. The correct position of the objective is fixed by a spring dick.

of the objectives in line with the tube opening. The correct position of the objective is fixed by a spring click.

The revolving nosepiece and its objective holes are aligned with the microscope axis with such accuracy that on changing the higher powers, the specimen set in the center of the field of view with the low power objective always remains in the field of view of the consequently replaced high power objective. Besides this, when changing from one objective to another, the specimen always remains visible and only a small adjustment of the fine focusing heads is necessary to obtain a sharp image.

The standard microscope set includes achromatic objectives computed for a mechanical tube length of 160 mm and a cover-glass thickness of 0.17 mm. Each objective is stored in a plastics case on which the initial magnification and numerical aperture of the objective are engraved.

aperture of the objective are engraved.

An angle shaped bracket 15, carrying the rack 16, is fastened by screws to the tail of the limb. This rack engages a pinion 17 mounted in the movable part 18 of the bracket.

The movable part of the bracket or substage carries the spring fitting 19 into which the mount 20 of the two-lens condenser 21 and the swing-out holder 22 of the filter 23 are inserted.

The pinion 17 and the rack 16 provide for vertical adjustment of the substage

together with the condenser.

The design of the condenser adjustment provides a smooth movement with sufficient friction to prevent the substage 18 from running down under its own

The upward movement of the condenser is limited by a stop screw in such manner, that in the extreme upper position of the substage a space remains, between the front lens of the condenser and the object stage, to introduce an oil-immersion fluid used in some cases.

The two-lens condenser 21 has a maximum numerical aperture of 1.2. The condenser is furnished with an iris diaphragm and operates in conjunction with the plain and concave mirror 24.

plain and concave mirror 24.

The fork-shaped mirror holder 25 allows either mirror surface to be directed toward the source of light.

The object stage 6 of the microscope is fastened to the stationary part of bracket

15. The stage is circular and its upper part has rotary and centring movements

actuated by special screws.

The stage clips 26, inserted into holes provided in the upper part of the stage,

serve to clamp the specimen.



If required, the condenser in its mount 20 may be removed from the spring fitting 19 and replaced by some other condenser or by cylindrical diaphragms.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on top for carrying.

There are sliding holders in the case for storing objectives and eyepieces, as well as a box for clips, filters, spare wrench and other accessories.

# SPECIFICATIONS

| Range of total magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | from 56× to                  |                |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|----------|
| Achromatic objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8×                           | 40×            |          |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8×                           | 40×            |          |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                         | 0.65           |          |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.2                         | 4.35           |          |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 0.6            |          |
| field of view with 10× eyepiece, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.75                         | 0.35           |          |
| Huyghenian eyepieces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7×                           | 10×            | 15×      |
| magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7×                           | 104            | 15×      |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                           | 25             | 17       |
| linear field of view, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                           | 14             | 8        |
| Objective changer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . double revolving nosepiece |                |          |
| Body tube variable length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from 150 to                  | 200            |          |
| Focusing adjustments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                |          |
| coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by rack and                  | pinion         |          |
| fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | micrometric<br>to 0.002 mm   | mechanism,re   | ading    |
| Illuminating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reversible m                 | irror plane an | d con-   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cave two-len                 | s condenser 1. | 2 N.A.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | aphragm and    | inter-   |
| And the second s | changeable f                 | ilter          |          |
| Object stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | circular, with               | t centring and | . rotat- |
| 0 11 12 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing adjustme                 | ents           |          |
| Overall dimensions of microscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 015 100                      |                |          |
| (height × length × width), mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 315 × 190 ×                  | 170            |          |
| Overall dimensions of case, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 350 × 250 ×                  | 199            |          |
| Weight of microscope in case, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.8                         |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                |          |

#### MICROSCOPE SET

Microscope stand comprising horse-shoe hase, limb, body with coarse and fine focusing adjustments, revolving nosepiece, circular rotary object stage and illuminating system Achromatic objective, 8° × 0.20, in case Achromatic objective, 40° × 0.65, in case Huyghenian eyepiece, 10° Huyghenian eyepiece, 10° Huyghenian eyepiece, 10° Opal glass
Blue filter
(Cips for holding specimens (2 pieces)
Wrenches for adjustment (2 pieces)
Flannel napkin
Squirrel-hair brush
Case for microscope
Box for microscope accessories
Description and instruction manual
Certificate

# SCHOOL MICROSCOPE, MODEL MY

Two achromatic objectives and two Huy-ghenian eyepieces are furnished with the instrument.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on top for carrying.

If desired, various accessories may be fur-

nished on special order with the school microscope to provide more universal application.

Experience has shown that the school micro-

scope meets the requirements of schools and colleges and provides the possibility of familiarizing students and pupils with the principles of nicroscopy and the chief methods of its procedure.

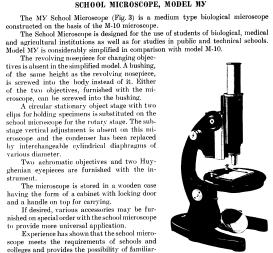



Fig. 3 My School microscope

| Range of total magnification     | from 80× to 600×<br>8× and 40× (optical data same<br>as for Model M-10 objectives)                            |
|----------------------------------|---------------------------------------------------------------------------------------------------------------|
| Huyghenian eyepieces             | 10× and 15× (optical data same<br>as for Model M-10 evenieces)                                                |
| Object stage                     | circular, stationary, with clips                                                                              |
| Focusing adjustments:            |                                                                                                               |
| coarse                           | by rack and pinion                                                                                            |
| fine                             | micrometric mechanism without<br>graduated drum                                                               |
| Illuminating system              | reversible mirror plane and con-<br>cave and three interchangeable<br>diaphragms of 1, 3 and 6 mm<br>diameter |
| Overall dimensions of microscope |                                                                                                               |
| (height × length × width), mm    | $315\times190\times170$                                                                                       |

SPECIFICATIONS



6

#### MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb, body with coarse and fine focusing adjustments, stationary object stage with clips and mirror Achromatic objective, 88 × 0.20, in case Achromatic objective, 40 × 0.65, in case Huyghenian eyepiece, 10× Huyghenian eyepiece, 15× Interchangeable diaphragms (3 pieces) (Clips for holding specimens (2 pieces) Wrench for adjustment Flannel napkin Squirrel-hair brush Case for microscope accessories Description and instruction manual Certificate

#### MEAT INSPECTION MICROSCOPE, MODEL MUC-7

The MHG-7 Meat Inspection Microscope (Fig. 4) is a medium type biological microscope constructed on the basis of the M-10 microscope.

The Meat Inspection Microscope is designed for the inspection of meat to determine the presence of trichina and finds wide application in the food-stuffs industry and in

sunitary inspection.

In comparison with the M-10 microscope the Meat Inspection Microscope has a number of simplifications in design concerning the object

or simplifications in design concerning the object stage, limb, body, revolving nosepiece and illu-minating system.

The instrument has a straight body of invariable tube length. The body is supplied with a coarse focusing mechanism. The revolving nosepiece is replaced by a bushing into which the objectives are screwed.

The illuminating system—without con-

the objectives are screwed.

The illuminating system — without condenser and adjustable substage — comprises a reversible plane and concave mirror fastened on a pivoted fork-shaped holder and three interchangeable cylindrical diaphragms of various diameter.

diameter.

The stationary object stage is rectangular

The stationary object stage is rectangular in form and the compressing slide (Fig. 5) is moved about on its surface.

The compressing slide of the Meat Inspection Microscope comprises two plates of thick glass fastened together by two screws. It serves to flatten out the specimens of meat and sinew which are being examined for the presence of trichina. trichina.

Fig. 4 MHC-7 Meat Inspection Microscope The compressing slide can be moved by Microscope hand on the stage along a straight-edge. This allows all of the specimens, between the glass plates, to be examined. Rectangles with numerals from 1 to 28 are engraved on both the lower and upper plates. The

inspected specimens are arranged inside these rectangles.

The microscope is furnished with two achromatic objectives and one Huyghenian

eyepiece.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on top for carrying.



Fig. 5 Compressing Slide



# SPECIFICATIONS

| Range of total magnification                 |                                  |
|----------------------------------------------|----------------------------------|
| Achromatic objectives: initial magnification | 3.7× 8×                          |
|                                              |                                  |
| focal length, mm                             | 33.1 18.2                        |
| working distance, mm                         | 27.7 8.91                        |
| Huyghenian eyepiece                          | 7× (optical data same as for     |
|                                              | Model M-10 eyepiece)             |
| Object stage                                 | stationary, rectangular, size:   |
|                                              | 100 × 170 mm                     |
| Focusing adjustment                          | by rack and pinion               |
| Illuminating system                          | reversible plane and concave     |
|                                              | mirror and three interchangeable |
|                                              | diaphragms of 1, 3 and 6 mm dia- |
|                                              | meter                            |
| Size of compressing slide, mm                | 50 	imes 220                     |
| Overall dimensions of microscope             |                                  |
| (height × length × width), mm                | $315 \times 190 \times 170$      |
| Overall dimensions of case, mm               | $350 \times 250 \times 195$      |
| Weight of microscope, kg                     |                                  |
| Weight of microscope in case, kg             | 11.65                            |

#### MICROSCOPE SET

MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb, body with coarse focusing adjustment, rectangular object stage with straight-edge and mirror Achromatic objective,  $3.7^{\times} \times 0.11$ , in case Achromatic objective,  $8^{\times} \times 0.20$ , in case Huyghenian eyepiece,  $7^{\times}$  Interchangeable diaphragms (3 pieces) Clips for holding specimens (2 pieces) Compressing slide in case Wrench for adjustment Flannel napkin Squirrel-hair brush Case for microscope Box for microscope accessories Description and instruction manual Certificate

# TEXTILE MICROSCOPE, MODEL MUC-9

fied body, object stage and mummaning system.

The instrument has a straight body of invariable tube length. The microscopic is furnished with a coarse focusing mechanism. The circular object stage is of the stationary type.

The revolving nosepiece is replaced by a bushing into which objectives are screwed.

screwed.

Instead of a condenser, this microscope uses interchangeable cylindrical diaphragms. Two achromatic objectives and two eyepieces are furnished with the microscope.

The microscope is provided with a mechanical stage for shifting the inspected cotton fibre in a longitudinal direction.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on the top for carrying.

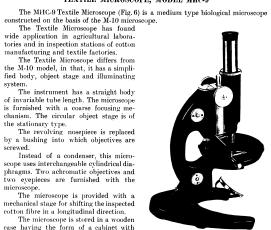



Fig. 6
MIC-9 Textile Microscope

# SPECIFICATIONS

| Range of total magnification                | from 56× to 300×                                                                                               |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Achromatic objectives:                      | 8× 20×                                                                                                         |
| initial magnification<br>numerical aperture | 8× 20×<br>0.20 0.40                                                                                            |
| Huyghenian eyepieces                        | $7^{\times}$ and $15^{\times}$ (optical data same as for Model M-10 eyepieces)                                 |
| Object stage                                | circular, stationary type                                                                                      |
| Illuminating system                         | reversible plane and concave<br>mirror and three interchangeable<br>diaphragms, of 1, 3 and 6 mm dia-<br>meter |
| Overall dimensions of microscope            |                                                                                                                |
| (height × lenght × width), mm               | $315 \times 190 \times 170$                                                                                    |
| Overall dimensions of case, mm              | $350 \times 250 \times 195$                                                                                    |
| Weight of microscope, kg                    | 7.8                                                                                                            |
| Weight of microscope in case, kg            | 11.5                                                                                                           |



#### MICROSCOPE SET

MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb, body with coarse focusing adjustment, circular stationary object stage and mirror
Achromatic objective, 88 × 0.20, in case
Achromatic objective, 20 × 0.40, in case
Huyghenian evepiece, 78
Huyghenian evepiece, 78
Huyghenian evepiece, 78
Meychanian evep

#### BIOLOGICAL MICROSCOPE, MODEL MBH-1

The MBH-1 Microscope (Fig. 7) is a medium type biological microscope and is a further development and an improvement of the M-10 microscope. This instrument provides for research microscopy with a magnification from  $56^{\circ}$  to  $1350^{\circ}$ ; the latter value being the maximum useful power for optical microscope. scopes

A further increase in magnification is of no avail and even detrimental as it leads to a decrease in magnineation is of no avail and even detrimental as it leads to a decrease in illumination without gain in raising the limit of the resolving power of the microscope, that is, the possi-bility of examining more minute details of

the specimen.

The MBH-1 Microscope differs from the

The MBH-1 Microscope differs from the M-10 microscope chiefly in its form which possesses a number of distinct features in comparison with the earlier arrangement. It is lower in height than the M-10 model and has an inclined eyepiece tube which allows the observer to be comfortably seated at a table during operation.

The object stage is always horizontal. This is necessary when conducting research

This is necessary when conducting research on liquids.

The coarse and fine focusing mechanisms

are arranged at the lower end of the limb. This allows both arms to rest on the table during microscopy and decreases the fatigue of the observer.

The optical system (Fig. 8) of the MBH-1

Microscope differs from the M-10 model in that a prism 1, changing the path of the rays to an angle of 45° to the horizontal plane, is arranged between the objective and

The main parts of the instrument are: base 2 of the stand, housing with fine focusing mechanism 3, object stage 4, limb 5, revolving

necularisms, one-green sages, inclined monocular body 7, condenser substage bracket 8, condenser 9, objectives 10 and eyepiece 11.

The base of the stand has a horse-shoe form and imports high stability to the

The base of the stand has a horse-shoe form and imports mgn stating to the microscope.

The housing 3 is fastened by screws to the base. On one side it has guides for the condenser substage bracket 8 and on the other side, guides for the limb 5. The fine focusing mechanism is mounted inside the housing.

One revolution of the fine focusing head on whose shaft the driving gear of the mechanism is mounted, advances the body 0.1 mm. The total adjustment of the body, by means of the fine focusing mechanism, equals 2.2—2.4 mm.

The extreme positions of the body are determined by scratches on the base. A reference mark on the movable part and two scratches on the stationary part



Fig. 7 MBH-1 Biological Microscope



correspond to the extreme positions of the fine focusing adjustment. The fine focusing mechanism displaces the limb together with the coarse focusing mechanism. The limb has the form of an arc. This allows large-sized objects to be placed on the microscope stage and also facilitates carrying the microscope from place to

The lower end of the limb has guides and a fitting with two heads 12, which serve

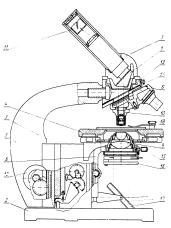



Fig. 8
Diagrammatical sectional view of the MEH-1 Microscope

The dimensions of the guides have been selected to provide a body travel of  $50\mathrm{mm}$ .

The dimensions of the guides have been selected to provide a body travel of 50mm. One full revolution of the heads 12 corresponds to a movement of 20 mm.

The heads 12 have been designed so that, rotating one head in relation to the other regulates the smoothness of the movement to suit the observer.

The mounting 13 is fastened to the upper end of the limb. It has dovetail guides for the revolving nosepiece 6 and a socket for fastening the inclined monocular tube 7.

A straight tube or a binocular attachment, the latter not included in the standard microscope set, but furnished on special order, can also be fastened in this mounting.

The inclined monocular tube can be rotated about a vertical axis and fixed in any position desired by the observer.

any position desired by the observer.

The lower end of the body comprises a spherical housing in which the prism 1 is arranged. The tube, in which the eyepiece 11 is inserted, is screwed into this housing

All the components of the inclined (or straight) tube are designed to provide a mechanical tube length of 160 mm.

The standard set contains Huyghenian eyepieces designed in a series so that a change in eyepiece power does not affect the focusing adjustments. The initial magnification is engraved on each eyepiece.

The straight tube, necessary for microphotography and other work, is included in the microscope set.

The revolving nosepiece, for holding and rapidly changing objectives, has four threaded holes for inserting objectives arranged in a spherical dish. The upper part of the revolving nosepiece is provided with dovetail guides for attachment to the mounting 13 on the limb.

The correct position of the revolving nosepiece in reference to the body axis is fixed by the screw 14. The spherical dish of this nosepiece can be rotated about its axis so that any of the four holes with its objective can be aligned with the body axis so that any of the four holes with its objective can be aligned with the body axis. A spring click device inside the revolving nosepiece centers each objective in reference to the optical axis of the microscope body. The alignment accuracy is such that on changing to higher powers the specimen set in the center of the field of view with the low power objective always remains in the field of view of the consequently replaced high power objective. When changing from one objective to another, the specimen always remains visible and only a small adjustment of the fine focusing head is necessary to obtain a sharp image.

The only a continue to the claves is the oil impression objective with a magni-

The only exception, to the above, is the oil-immersion objective with a magnification of 90°. It has a working distance somewhat higher than for dry systems,

The standard set of the instrument includes three achromatic objectives computed for a mechanical tube length of 160 mm and a cover glass thickness of 0.17 mm. Each objective is stored in a plastics case to protect it from dust. The initial magnification and the numerical aperture are engraved on the mount and on the bottom of the case of each objective.

The condenser substage bracket 8 can be adjusted up to 20 mm by a rack and pinion. The substage carries a cylindrical spring fitting into which the condenser 9, in its mount, is fastened by means of screw 15.

A washer with two holes is arranged on the right-hand side of the condenser adjustment mechanism. Rotating this washer with a special wrench, provided with the microscope, adjusts the friction of the substage movement to prevent it from me introccope, adjusts the inction of the substage movement to prevent it from running down under its own weight. This arrangement is especially important when using a heavy condenser with a phase contrast device.

The two-lens condenser, with a numerical aperture of 1.2 is provided with iris diaphragm and a swing-out holder 16 for the light filter. The condenser operates on conjunction with the plane and concave mirror 17.

The fork-shaped mirror holder is reversible and allows either mirror surface to be directed toward the source of light and be properly positioned.

The upper front lens of the condenser may be removed. This decreases the numerical aperture to 0.5 and is necessary when working with low power objectives as, for instance, with an objective 8%.

The condenser aperture is equal to 1.2 only when oil-immersion is used between the front lens and the object glass. Without oil-immersion, the condenser aperture is approximately unity.

The upward movement of the condenser substage is limited by a stop so that in the extreme upper position, a clearance of about 0.1 mm remains between the condenser front lens and the cover glass.

By special order a dark ground condenser OH-13 may be supplied with the microscope. It can be inserted in the fitting instead of the standard type.

microscope. It can be inserted in the litting instead of the standard type.

The object stage is fastened on a special bracket. The latter, in turn, is fastened to the housing 3. The upper part of the stage may be rotated by means of the knurled ferrule. Besides this, the stage may be adjusted 8 mm in the longitudinal and cross directions by means of two screws and a spring to bring any point of the specimen to the center of the field of view.

the center of the field of view.

There are seven threaded holes on the top of the object stage. The four central holes serve for fastening the spring clips 18 for holding the specimen while the three holes at the sides are for fastening a superimposed mechanical stage, not included in the standard microscope set, but furnished on special order.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on top for carrying.

There are sliding holders in the case for storing objectives and eyepieces, as well as a hox for microscope accessories.

as a box for microscope accessories.  $\,$ 

#### SPECIFICATIONS

| Range of total magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | from 56<                      | to 1350 \\  | 90 :          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|---------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |               |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 ::                          | 40≅         | 90 -          |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                          | 0.65        | 1.25          |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.2                          | 4.35        | 1.96          |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.91                          | 0.61        | 0.15          |
| field of view with 10° eyepiece, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.75                          | 0.35        | 0.15          |
| Huyghenian eyepieces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7×                            | 10×         | 15 ≤          |
| magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7×                            | 10 <        | 15            |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                            | 25          | 17            |
| linear field of view, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                            | 14          | 8             |
| Objective changer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quadruple                     | revolving   | z nosepiece   |
| Number of body tubes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | two (straight and inclined mo |             |               |
| Focusing adjustments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ocumi tu                      | .,,         |               |
| coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by rack a                     | and pinior  | 1             |
| fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | micromet                      | ric mecha:  | nism, reading |
| The second secon | to 0.002 r                    |             |               |
| Illuminating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mirror, tv                    |             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             | s diaphragm   |
| 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and intere                    | changeable  | filter        |
| Object stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |             | ng and rotat- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing adjus                     | tments      |               |
| Overall dimensions of microscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |               |
| (height × length × width), mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $285 \times 210$              | ) × 190     |               |
| Overall dimensions of case, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $365 \times 200$              | 0 	imes 245 |               |
| Weight of microscope, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6                           |             |               |
| Weight of microscope in case, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5                           |             |               |

# MICROSCOPE SET

MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb, inclined monocular body tube, coarse and fine focusing mechanisms, revolving nosepiece, circular rotary object stage and illuminating system
Achromatic objective, 8 × 2 0.20, in case
Achromatic objective, 90 × 2 0.65, in case
Achromatic objective, 90 × 1.25 (oil-immersion), in case
Huyghenian eyepiece, 74
Huyghenian eyepiece, 10 ×
Huyghenian eyepiece, 15 ×
1.2 × A. A. Aplanatic condenser
Straight tube
Opal glass
Blue filter
Clips for didding specimens (2 pieces)
Haurel napkin
Haurel napkin
Wenches (2 pieces)
Case for microscope accessories
Sliding holders for storing objectives and eyepieces
Description and instruction manual
Certificate



# BIOLOGICAL RESEARCH MICROSCOPE, MODEL MEM-2

The MBH-2 Biological Microscope (Fig. 9) is an ideal instrument for detailed and

comprehensive research work.

This microscope has found wide application in biological, bacteriological, biochemical, medical and other scientific research institutions.

The MBH-2 Microscope has an inclined eyepiece tube which allows the observer produced by the medical and other scientific research institutions.

The low position of the coarse and fine focusing mechanism is especially convenient during prolonged research work when it is necessary to focus on some layer of the specimen for a long time.

The corresponding position of the coarse

and fine focusing heads allows the arms to and the locusing heads above the arms to rest on the table during microscopy and decreases the fatigue of the observer. The main binocular tube, furnished with

the microscope, provides for observation with both eyes. This decreases eye fatigue during prolonged observation by creating more na-tural working conditions. Besides this, the that working conditions. Detacts are working tube provides for some stereoscopic relief which increases the research potentialities of the microscope.

The MBH-2 Microscope with a binocular

tube produces an upright image of the object. An inclined monocular tube or a straight tube intended for photographic purposes may be substituted for the inclined binocular tube. All these tubes are interchangeable and may be attached without preliminary fitting operations.

The microscope has a highly perfected illuminating system mounted in the base of the instrument.

The condensers are arranged in a triple revolving substage device operating in conjunction with the pancratic system. The pancratic system allows the numerical aperture of the condenser to be varied from 0.16 to 1.4.

Fig. 9 MEH-2 Biological Research Microscope

Changing condensers by means of the revolving substage device has considerable advantages over the usual method of changing condensers by inserting them into the spring fitting.

The spining MUMS.

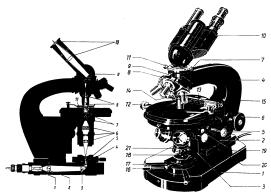
Microscopy may be carried out with transmitted light on either a bright or dark ground. The illuminating system provides sufficient light for dark ground operation or for microphotography

The object stage of the microscope is always horizontal which is convenient for

This microscope is furnished with a set of high-quality apochromatic objectives and compensating eyepieces.

The optical system of the microscope (Fig. 10) comprises the light source — an electric lamp 1, lens 2, aperture unit consisting of prism 3, lens 4 and aperture iris diaphragm 5, pancratic system 6, interchangeable condensers 7, objective 8, prism 9 and eyepiece 10.

The specimen 11 is placed between the object and cover glasses arranged between the condenser 7 and the objective 8.


The base 1 of the microscope (Fig. 11) has the form of a circle with cut-off

segments.

The bracket-housing 2 is fustened to the base. On one side it has guides for the condenser substage bracket 3 and on the other side, guides for the limb 4.

The fine focusing mechanism is mounted inside the housing. It is actuated by

rotating the heads 5 arranged on the right- and left-hand sides. On the right-hand



 $\begin{array}{c} {\rm Fig.~10} \\ {\rm Optical~System~of~the~MBH-2~Microscope} \end{array}$ 

Fig. 11
Main parts of the MEII-2 Microscope

side a graduated drum with 50 divisions is mounted on the shaft of the heads. One sake a graduated unin with 30 divisions is monited on the shart of the heads. One revolution of the drum corresponds to a body adjustment of 0.1 mm. The drum is graduated 1 div. = 0.002 mm.

The total movement of the body from the fine focusing mechanism equals

2.3—2.5 mm and is determined by two scratches on the right-hand side of the housing. A reference mark on the movable part of the housing and two scratches on the stationary part correspond to the extreme positions of the body during adjustment. The fine focusing mechanism displaces the limb together with the coarse focusing mechanism.



The limb has the form of an arc. This allows large sized objects to be placed on

the microscope stage and also facilitates carrying the microscope from place to place. The coarse focusing mechanism, actuated by revolving the heads 6, is mounted in the lower part of the limb. The design of the coarse focusing mechanism allows the smoothness of the movement to be regulated to suit the observer. This mechanism provides a vertical body movement of 50 mm (two and one half turns of the heads)

provides a vertical body movement of 50 mm (two and one half turns of the heads). The mounting 7, with dovetail guides, is fastened to the upper end of the limb. The revolving nosepiese 8 is inserted into these guides and properly positioned by screw 9. The revolving nosepiece serves for holding and rapidly changing objectives. It has four threaded holes for inserting objectives arranged in a spherical dish. The rotation of the spherical dish is indexed in the four positions by a spring device arranged inside the nosepiece. The alignment accuracy is such that on changing to higher powers the specimen set in the center of the field of view, with the low power objective always remains in the field of view of the consequently replaced high power objective. When changing from one objective to another, the specimen always remains visible and only a small adjustment of the fine focusing head is necessary to obtain a sharp image. to obtain a sharp image.

The only exception, to the above, is the oil-immersion objective with a magnification of 90°. It has a working distance somewhat higher than for dry systems.

The standard set of the instrument includes four apochromatic objectives

computed for a mechanical tube length of 160 mm and a cover glass thickness of

The oil-immersion objective,  $60^{\circ} \times 1.0$ , is furnished with an iris diaphragm for varying the objective aperture. This objective is used, chiefly, in conjunction with cardioid-condenser. The aperture of the objective is changed by rotating a knurled ring on the mount of the objective.

ring on the mount of the objective.

The initial magnification and the numerical aperture are engraved on the mount and on the bottom of the storage cases of each objective.

The mounting 7 has o socket on top for fastening the interchangeable body tubes. An annular tapered neck at the base of each tube enters the socket of the mounting 7 has one of the properties.

The inclined monocular and binocular tubes 10 can be rotated about a vertical axis and fixed in any position by means of screw 11 on the right-hand side of the limb mounting

The mechanical tube length of any of the MBH-2 Microscope body tubes equals

The length of the straight tube is variable and is adjusted by extending a draw-tube to a reading taken on the scale on the stationary section of the straight tube

(Fig. 12).

Five types of compensating eyepieces are included in the standard microscope set. The eyepieces are designed so that after interchanging them, only a small adjustment of the fine focusing heads is required to obtain a sharp image. The type and magnification of the eyepieces are ingraved on the mount of the eye lens.

By using suitable objectives and eyepieces furnished with the microscope total magnifications from 7.5× to 135% can be obtained with the binocular body (including the initial magnification of the tube equal to 1.5×) and a magnification from 50× to 1350× with the monocular body tube.

The microscope is furnished with a retorn centric which the third processor is furnished with a retorn centric which the third processor is furnished with a retorn centric which the third processor is furnished with a retorn centric which the third processor is furnished with a retorn centric which the first processor is furnished with a retorn centric which is the first processor in the first processor in the first processor is a furnished with a retorn centric processor.

The microscope is furnished with a rotary centring object stage having a mechanism for crosswise movement of the specimen. The stage is moved in a longitudinal

direction by rotating the screw 12 (Fig. 11). Cross movement is accomplished by aid of the mechanical stage 13, fastened to the movable part of the object stage. It is actuated by rotating the screw 14.

The amount of movement in either direction can be read on the scales and verniers to an accuracy of 0.1 mm. The upper part of the object stage can be rotated by releasing screw 15 on the left-hand side of the stage.

The illuminating system is mounted in a cylindrical recess inside the base 1. The lampholder and bulb are inserted and aligned in an eccentric bushing. The aperture unit is aligned by means of screws 16.

To obtain oblique illumination in any direction, the aperture diaphragm can be eccentrically positioned by means of screw17.

The opening of the diaphragm is adjusted by means of the ring 18 which, at the same time, serves as a mount for the interchangeable light filters.

The pancratic system and the revolving condenser substage are arranged on the bracket 3 and fastened by the screw 19. This bracket is raised and lowered by rotating the head 20.

The condensers are mounted in a detachable fixture fastened to the bracket.

The following condensers are held in the revolving substage device: aplanatic for a ertures from 0.16 to 1.4, condenser for low power objectives and a cardioidcondenser for dark ground operation.

The value of the aperture set on the aplanatic condenser can be read on a scale engraved on ring 21 whose rotation changes the aperture.

The microscope is stored in a wooden case having the form of a cabinet with locking door and a handle on top for carrying.

#

Fig. 12 The straight body tube and its installation in the limb mounting of the MBH-2 Microscope The

# SPECIFICATIONS

| Range of total magnification:                |             |     |      |      |      |
|----------------------------------------------|-------------|-----|------|------|------|
| with binocular body with monocular body tube |             |     |      |      |      |
| Apochromatic objectives:                     | 10×         | 20× | 6    | 0×   | 90×  |
| initial magnification                        | 10×         | 20× | 6    | 0×   | 90×  |
| numerical aperture                           |             | 0.6 | 35   | 1.0  | 1.30 |
| focal length, mm                             | 16.1        | 8.4 | 13   | 3.0  | 2.0  |
| working distance, mm                         | 5.17        | 0.9 | 94   | 0.44 | 0.32 |
| field of view with 10× eyepiece, mm          | 1.3         | 0.6 | 35   | 0.22 | 0.15 |
| Compensating eyepieces:                      | $5^{	imes}$ | 7×  | 10×  | 15×  | 20×  |
| magnification                                | 5×          | 7×  | 10×  | 15×  | 20×  |
| focal length, mm                             |             | 36  | 25.2 | 16.8 | 12.6 |
| linear field of view, mm                     |             | 18  | 13   | 12   | 9    |



| Illuminating system                                                                                                                                     | unit with irs dispiragif; pair<br>cratic system and three inter<br>changeable condensers: aplanatie<br>with variable aperture from 0.16<br>to 1.4, low power objective and<br>cardioid-condenser |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective changer                                                                                                                                       | quadruple revolving nosepiece<br>two (straight monocular and in-<br>clined binocular)                                                                                                            |
| Focusing adjustments: coarse fine                                                                                                                       | by rack and pinion<br>micrometric mechanism, reading<br>to 0.002 mm                                                                                                                              |
| Range of condenser substage adjustment, mm Object stage                                                                                                 | circular with centring and rotat-<br>ing adjustments, with crosswise<br>movement, reading to 0.1 mm                                                                                              |
| Overall dimensions of microscope (height × length × width), mm Overall dimensions of case, mm Weight of microscope, kg Weight of microscope in case, kg | $rac{400 	imes 235 	imes 280}{7.3}$                                                                                                                                                             |

### MICROSCOPE SET

Microscope stand comprising a box-shaped foot containing the illuminating equipment, limb, coarse and fine focusing mechanisms, body tube mounting and crosswise type object stage, quadruple revolving nosepiece for objectives. Binocular attachment, type Ay-12
Revolving substage with three condensers
Straight monocular body tube
Apochromatic objective, 10°× 0.30, in case
Apochromatic objective, 20°× 0.65, in case
Apochromatic objective, 20°× 1.3 (oil-immersion) with iris diaphragm, in case
Apochromatic objective, 90°× 1.3 (oil-immersion), in case
Compensating eyepieces, 5° (2 pieces)
Compensating eyepieces, 10° (2 pieces)
Compensating eyepieces, 15°
Compensating eyepiece, 20°
Opal class
Green filter
Smoke-coloured filter
Lampholder with bulb and plug
Spare bulbs (8V, 20W – 2 pieces)
Transformer 127(20)8 V with rheostat
Set of wrenches and screwdrivers (4 pieces)
Protecting caps (2 pieces)
Vial with immersion oil, in case
Flannel napkin
Squirrel-hair brush
Case for microscope
Description and instruction manual
Certificate

### TRAVELLING BIOLOGICAL MICROSCOPE, MODEL MEH-4

The MBH-4 Microscope (Fig. 13) is as up-to-date in design and is furnished with a similar set of objectives and eyepieces as the MBH-1 Microscope. It is, however, somewhat different in form and in the size of the stand.

The Travelling Microscope is designed for use in field and travelling conditions. It can be used for the examination of translucent objects with transmitted light

on a bright or dark ground. By means of a normal incident illuminator, the microscope can be used for examining opaque objects with reflected light.

The Travelling Microscope is unsurpassed for research work in expeditions for botanists, zoologists, bacteriologists and other scientific workers.

This microscope has a small height and the course and fine focusing heads are arranged on the

coarse and fine focusing heads are arranged on the

coarse and line locusing heads are arranged on the lower part of the microscope, so that the arms may be rested on the table during operation.

In the optical system (Fig. 14) of the microscope, a prism 3, changing the path of the rays to an angle of 45° to the horizontal plane is arranged between the objective 1 and the eyepiece 2. The prism 3 is designed so that the mechanical tube leavelt remains 1860 nm. length remains 160 mm.

The base 4 of the instrument is a rectangular plate with three supporting pads and the screw 5 which serves to keep the microscope stable on an uneven surface.

uneven surface.

The intermediate housing 6 is a rectangular parallelepiped screwed to the base.

Two sides of the housing 6 carry guides; on one side for the limb 7 and on the other side for the condenser substage bracket 8.

The fine focusing mechanism is mounted inside the housing 1 it is expected by retainst the head 0.

The line locusing incentariant to mount a unitariant to the housing. It is actuated by rotating the heads 9 arranged on the right- and left-hand side of the housing. A drum with a scale on the left-hand head allows the body to be adjusted with an accuracy of 0.002 mm.

Coarse focusing is provided by a rack and pinion actuated by rotating the heads 10.

The limb has an arched form and, on its upper end, carries the mounting 11

with dovetail guides for fastening the revolving nosepiece 12.

The revolving nosepiece for holding and rapidly changing objectives has three threaded holes for inserting objectives and a spring click device which assures proper centring of each of the objectives with the optical axis of the body.

The mounting 11 has a socket on top for inserting the inclined monocular

The inclined tube may be rotated to any position about a vertical axis and can be fixed in the required position by the screw 14.

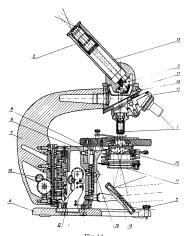

The condenser substage has a spring fitting for holding the condenser 15. This



Fig. 13 MEH-4 Travelling Biological Microscope



substage, together with the inserted condenser, may be adjusted in height by means of the rack and pinion 16. Three achromatic objectives and three Huyghenian eyepieces are furnished with the microscope. Magnifications achieved by the various combinations of objectives and eyepieces range from  $56 \times$  to  $1350 \times$ .



 $\begin{array}{c} {\rm Fig.~14} \\ {\rm Diagrammatical~sectional~view~of~the~MEH-4~Microscope} \end{array}$ 

A two-lens aplanatic condenser, with an aperture of 1.2, having an iris diaphragm and a swing-out mount for the light filter 17, is furnished with the microscope. The condenser operates in conjunction with the mirror 18.

The microscope with all the necessary accessories is stored in a convenient travelling case with a handle.

### SPECIFICATIONS

| Range of total magnification | $8\times \times 0.20$ , $40\times \times 0.65$ and                    |
|------------------------------|-----------------------------------------------------------------------|
|                              | $90^{\times} \times 1.25$ (optical data same as for Microscope MEH-1) |

| Huyghenian eyepieces             | 7×, 10× and 15× (optical data<br>same as for Microscope MBH-1) |
|----------------------------------|----------------------------------------------------------------|
| Objective changer                |                                                                |
| Focusing adjustments:            |                                                                |
| coarse                           | by rack and pinion                                             |
| fine                             | micrometric mechanism, reading                                 |
|                                  | to 0.002 mm                                                    |
| Illuminating system              | reversible mirror plane and con-                               |
|                                  | cave; 1.2 N.A. two-lens conden-                                |
|                                  | ser with iris diaphragm and inter-                             |
|                                  | changeable filter                                              |
| Object stage                     | rectangular                                                    |
| Overall dimensions of microscope |                                                                |
| (height × length × width), mm    | $\dots$ 280 $	imes$ 213 $	imes$ 92                             |
| Overall dimensions of case, mm   | $\dots 268 	imes 225 	imes 115$                                |
| Weight of microscope, kg         | 3.6                                                            |
| Weight of microscope in case, kg |                                                                |

### MICROSCOPE SET

MICROSCOPE SET

Microscope stand comprising rectangular base, limb, revolving nosepiece, object stage and illuminating system
Inclined monucular tube
Achromatic objective, 8 <> 0.20, in case
Achromatic objective, 90 << 1.25 (oil-immersion), in case
Huyghenian experiece, 13-1.25 (oil-immersion), in case
Huyghenian experiece, 15-1.2 N.A. aplanatic condenser
Opal glass
Blue filter
Clips for holding specimens (2 pieces)
Flannel napkin
Squirrel-hair brush
Wrenches (2 pieces)
Vial with immersion oil, in case
Travelling case
Description and instruction manual
Certificate



# ACCESSORIES FOR BIOLOGICAL MICROSCOPES

# BINOCULAR ATTACHMENT, MODEL AY-12

When working with a microscope having a monocular tube, only one eye is used in observation. This differs from the natural conditions of using both eyes and sustained observation leds to eye fatigue.

The AV-12 Binocular Attachment (Fig. 15) allows the observer to use both eyes, providing more natural conditions and decreasing eye fatigue. Besides this, the resolving power of the microscope is increased by use of the Binocular Attachment. The Binocular Attachment operates in the following manner:

After passing through the microscope objective, rays of light fall on the lens 1 (Fig. 16), which carries the image to the focal plane of the eyepieces.

The prism 2 diverts the passing rays and directs them, at an angle of 45° to the vertical, to the system of cemented prisms 3 comprising a rhombic and a triangular prism. The contact face of the rhombic prism is semi-chronium plated.



Fig. 15 The AV-12 Binocular Attachment

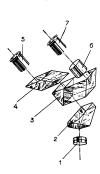



Fig. 16 Optical System of the AV-12 Binocular Attachment

26

This semi-chronium plated cementing surface passes 50% of the light rays and directs them through prism 4 to the eyepiece 5. The reflected 50% of the rays pass through the rhombical part of the prisms 3 and are deviated through an angle of 90° through the compensator 6 and further to the second eyepiece 7 of the attachment.

The optical system of the Binocular Attachment is designed to provide an upright image of the object examined.

The interchangeable eyepieces are inserted into the eyepiece tubes 1 (Fig.17) screwed into the right- and left-hand bodies 2.

The dioptric mechanism 3 on the left eye piece tube is adjusted by rotating the knurled ring 4 having a scale.

The attachment has an interocular ad-The attachment has an interocular adjustment which allows the distance between the eyepieces to be regulated to suit the distance between the pupils of the observer. The required interocular distance is set to a scale on the flange of the eyepiece tube.

Due to the spherical fitting 5, the Binocular Attachment may be rotated to any position and inclined to any angle convenient for the observer.

The Binocular Attachment is stored in a special case containing holders for the eye-



### SPECIFICATIONS

| Initial magnification of attachment       | 1.5×                       |
|-------------------------------------------|----------------------------|
| Magnification of Huyghenian eyepieces     | 7× and 10×                 |
| Dioptric adjustment of eyepiece, diopters | ± 5                        |
| Range of interocular adjustment, mm       | from 55 to 75              |
| Overall dimensions of attachment, mm      | $160 \times 120 \times 75$ |
| Overall dimensions of case, mm            | $230 \times 140 \times 90$ |
| Weight of attachment, kg                  |                            |
| Weight of attachment in case kg           | 1.15                       |

### BINOCULAR ATTACHMENT SET

Huyghenian eyepieces 7× (2 pieces) Huyghenian eyepieces 10× (2 pieces) Caps (2 pieces) Case Description and instruction manual Certificate



### UNIVERSAL PHOTOMICROGRAPHIC ATTACHMENT, MODEL MOH-1

The MΦH-I Photomicrographic Attachment (Fig. 18) serves in an universal manner for photographing objects through a microscope.

The attachment is designed to be supported by the microscope and may be

attached to any instrument having an eyepiece tube of standard external diameter

Either of two sizes of cameras may be furnished with the attachment in accordance with the Buyer's requirements. Type MΦK-1 (amera has a plate size of  $6.5\times9$  cm while type MΦK-2 has a plate size of  $9\times12$  cm.



Fig. 18 MΦH-1 Photomicrographic

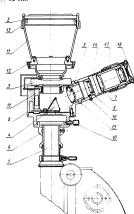



Fig. 19
Diagrammatical sectional view of the MΦH-1
Photomicrographic Attachment

The Photomicrographic Attachment operates in the following manner:

Rays of light, passing through the microscope everpiece 1 (Fig.19) either directly to the photographic plate 2, through the shutter 3, or if the prism 4 is inserted, are reflected at an angle of 70° to the microscope axis and are directed to the visual observation tube.

Objective 5, of the visual observation tube, focus the image of the object in the plane of the reticule 6, arranged in the focal plane of the eyepiece 7.

The eyepiece reticule 6 is so positioned that a sharp image of the object appears simultaneously on both the reticule and the photographic plate. The eyepiece 7 has a dioptric adjustment of  $\pm 5$  diopters which allows the eyepiece to be focused to obtain a sharp image on the reticule to suit the observer.

The eyepiece \( i \) has a dioptire adjustment of \( \pm 5 \) diopters which allows the eyepiece to be focused to obtain a sharp image on the reticule to suit the observer. The body 8, of the attachment, has an adaptor 9 for fastening it to the eyepiece tube 1. It is fixed by the screw 10.

The swing-out prism 4 is mounted in the body 8 and is interlocked by a lever with the control mechanism of the shutter 3. When the cable release button is depressed, the prism 4 is automatically swing aside out of the path of the rays. At the end of the exposure, the prism returns to its initial position.

The shutter provides for two exposures: "bub"—"K" and "snap-shot"—"M". The "snap-shot" exposure is obtained by pressing the cable button and does not depend on the length of time the button is held depressed. When arranged for "bulb" exposure, the shutter remains open as long as the button is depressed. After the shutter has operated and the button is released, the prism returns to its initial position and directs the rays of light to the visual observation tube.

The camera 11 is connected to the body 8 and may be easily removed after unscrewing the threaded ring 12.

The plate holder 13 with the photographic plate is inserted into the camera.

To make cameras, types MON-1 and MON-2, fully interchangeable and to eliminate adjustment when changing from one camera to the other, a lens is arranged in the lower flange of the MON-2 camera to compensate for the difference in length of the cameras.

of the cameras.

of the cameras.

The objective mounting 15, reticule mounting 16 and eyepiece mounting 17 are arranged inside the tubular body 14 of the visual observation tube.

The dioptric graduations are engraved on the external tube of the eyepiece mounting. A smoke-colored light filter 18 is placed on the eyepiece to protect the eye from the intense light necessary during photography.

### SPECIFICATIONS

| DIRECT                                         | ICINATONIO                             |                                                            |
|------------------------------------------------|----------------------------------------|------------------------------------------------------------|
| Plate size of camera, cm: $M\Phi K \cdot 1$    | 9 ×12<br>:: 0.5<br>0.5                 |                                                            |
| MΦK-2<br>Overall dimensions of attachment, mm: | with camera MΦK-1<br>with camera MΦK-2 | $153 \times 155 \times 129$<br>$224 \times 155 \times 149$ |
| Overall dimensions of case, mm:                | with camera MΦK-1<br>with camera MΦK-2 | $234 \times 173 \times 10$<br>$268 \times 185 \times 12$   |
| Weight of attachment, kg:                      | with camera MΦK-1<br>with camera MΦK-2 | 0.55<br>0.70                                               |
| Weight of attachment in case, kg:              | with camera MΦK-1<br>with camera MΦK-2 | 1.3<br>1.7                                                 |

### PHOTOMICROGRAPHIC ATTACHMENT SET

Camera M4K-1 or M6K-2
Plateholders 6.5 × 9 or 9 × 12 (3 pieces either)
Light filter in mounting
Cable release
Case for attachment
Description and instruction manual
Certificate



29

# MICROMETER EYEPIECE, MODEL AM-9-2

The AM-9-2 Micrometer Eyepiece (Fig. 20) is an eyepiece with a fixed and a

movable reticule in its field of view.

The Micrometer Eyepiece is designed for accurate measurement of objects being studied under the microscope.

The instrument can be used on all models of biological microscopes to replace the

standard eyepiece.

The body 1 (Fig.21) of the Micrometer Eyepiece has a fitting 2 by means of which it is fastened on the microscope tube with the aid of screw 3.





Fig. 20 AM-9-2 Micrometer Eyepiece

Fig. 21 Main parts of the AM-9-2 Micrometer Eyepiece

The compensating eyepiece 4, containing the stationary reticule, is inserted into the upper part of the body. The reticule has a millimeter scale 8 mm in length. The eyepiece has a dioptric adjustment to allow the scale images to be properly focused. The graduated drum 5, connected with the tube 6, has a circular uniform scale graduated to 100 divisions. A line engraved on the tube serves as a reference for drum readings.

drum readings.

arum readings. One revolution of the drum displaces the movable reticule 1 mm. A rotation through one division of the drum corresponds to a displacement of 0.01 mm. The Micrometer Eyepiece is stored in a polished wooden case.

### SPECIFICATIONS

| Of Internations                   |                    |
|-----------------------------------|--------------------|
| Evepiece magnification            | 15 <sup>&lt;</sup> |
| Total movement of reticule, mm    | 8                  |
| Value of drum scale divisions, mm | 0.01               |
| Overall dimensions of instrument  | 01 . 10 . 5        |
| (length × width × height), mm     | 84 > 42 > 50       |
| Overall dimensions of case, mm    | 0.01               |
| Weight of instrument, kg          | 0.21               |
| Weight of instrument in case, kg  | 0.00               |

# MICROMETER EYEPIECE SET

Description and instruction manual Certificate

### DRAWING APPARATUS, MODEL PA-4

The PA-4 Drawing Apparatus (Fig. 22) is used for tracing the outlines of objects examined under a microscope, as well as for checking the magnification provided by the optical system of a microscope.

This apparatus is applicable to all biological microscopes constructed on the basis of the M-10 microscope, as well as to the MBH-1 and MBH-2 microscopes

when using a straight monocular body.

The main part of the instrument is the prism-cube 1 (Fig. 23). It comprises two rectangular prisms cemented together

two rectangular prisms cemented together on their hypotenuse faces. The hypotenuse face of one prism is semi-silvered.

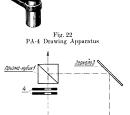
This face of the prism-cube directs rays of light from the drawing paper 2, reflected by the mirror 3, to the observer's eye. It also passes approximately 50% of the light from the object.

the light from the object.

In this way the observer simultaneously sees both the object and the paper and pencil located 250 mm from the eye.

To even the backgrounds, and consequently, to provide better visibility of both the specimen and the paper and pencil, two systems with neutral and blue light filter 4 are furnished in the inlight filter 4 are furnished in the in-

light liter 4 are lumished in the instrument.


The prism-cube is mounted in a swing-back fitting which carries the sector and the drum with light filters. Both the sector and the drum have four openings. One opening is free, two have neutral filters of different density while the fourth oversing carries a blue filter. opening carries a blue filter.

opening carries a blue filter.

The fitting has an opening on the side facing the mirror through which rays pass from the paper to the prism-cube.

The mirror mount is fastened to a bar whose other end is fixed in a hole in an upright member. The latter is rigidly fastened to the fitting by means of which the apparatus is attached to the microscope experience tube.

The Drawing Apparatus is stored in a wooden case.



Бумага 2

### SPECIFICATIONS

| Overall dimensions of the instrument (length × width × height), mm (overall dimensions of case, mm Weight of instrument, kg Weight of instrument in case, kg | $^{240} \times ^{0.23}$ | 90 × 40<br>120 × 58 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|

30

### PHASE-CONTRAST EQUIPMENT, MODEL KO-1

As a rule, microscopy is concerned with low contrast specimens which must be stained before observation under the microscope. Living specimens usually perish

The simplest method of increasing the contrast by diaphragming the aperture diaphragm of the condenser, decreases the revolving power and the illumination without increasing the contrast in any considerable degree.



Dark ground observation provides good contrast but it is reversed. Light parts of the specimen are shown dark and vice versa. This method, besides, only allows the outline of the specimen to be determined without revealing its internal structure.

The most perfected method of research is observation by means of the phase-contrast method. This method provides for observation of unstained noncontrasting specimens. A con-rasting image is obtained in which the lighter or darker portions correspond to vari-ous thickness or optical densities of the

ous thickness or optical densities of the specimen.

In this way, the phase-contrast method opens wide possibilities for research on living unstained specimens and finds extensive application in bacteriology, biology, medicine and other branches of science.

The tight Equipment (Fig. 24) comprises the following main parts:

1. Objectives for phase-contrast observation.

- Objectives for phase-contrast observation.
- Phase-contrast condenser.

Auxiliary microscope.

The objectives in the equipment differ from usual achromatic objectives only in that a phase plate has been placed in the plane of the exit lens. This phase plate changes the phase of the zero maximum by 90° and decreases its intensity.

Besides the usually engraved figures indicating the initial magnification and the aperture, these objectives have the letter " $\Phi$ " engraved on the mount and case indicating that they are of the phase type.

The condenser included in the equipment does not differ from the usual 1.2 N. A. condenser except that it has a revolving disc with annular diaphragms arranged in its focal plane

Each objective requires its annular diaphragm. Numbers appear in an opening of the revolving disc which indicate the objective that should be used in conjunction with the indexed annular diaphragm.

For observation in the usual manner, the condenser is provided with an iris diaphragm and the revolving disc with a free opening for passing light rays. The condenser is inserted into the microscope condenser holder and is fastened by a screw in the usual manner.

The auxiliary microscope included in the equipment serves for checking the centring of the annular diaphragm in reference to the phase plate of the objective. The auxiliary microscope is inserted into the microscope tube instead of the eyepiece and after centring is completed, it is replaced by the usual eyepiece. The microscope comprises a fitting in which the objective is mounted and into which the eyepiece is inserted. The latter can be adjusted in the fitting and fixed in the required position

by a screw.

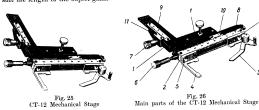
The equipment is stored in a wooden case.

### SPECIFICATIONS

| Objectives                                                                               | special with phase plate $-10^{\times}$ $\times$ 0.30; $20^{\times}$ $\times$ 0.40; $40^{\times}$ $\times$ 0.65 |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ('ondenser                                                                               | and revolving disc holding four                                                                                 |
| Magnification of auxiliary microscope  Overall dimensions of equipment, mm               | 120 	imes 130 	imes 60                                                                                          |
| Overall dimensions of case, mm  Weight of equipment, kg  Weight of equipment in case, kg | 0.51                                                                                                            |

### PHASE-CONTRAST EQUIPMENT SET

Objective  $10^{\times} \times 0.3$  Objective  $20^{\times} \times 0.4$  Objective  $40^{\times} \times 0.4$  Objective  $40^{\times} \times 0.65$  Objective  $40^{\times} \times 0.65$  Objective  $90^{\times} \times 1.25$  1.2 N.A. condensor, with revolving disc Auxiliary microscope Case
Description and instruction manual
Certificate




### MECHANICAL STAGE, MODEL CT-12

The CT-12 Mechanical Stage (Fig. 25) has been designed for smooth movement of the specimen on the object stage of the microscope in two directions at right angles to each other.

nen coner. The CT-12 Mechanical Stage is an attachment which can be fitted to any biological microscope.

microscope. The frame 1 of the stage (Fig. 26) has guides 2 along which slides, with clips 3 and 4, can be moved. The slides with clips can be fixed by the clamping screws 5 to suit the length of the object glass.



The specimen is shifted in a transverse direction by the head 6 and in the longitudinal direction by the head 7.

The scales 8 and 9 for the transverse and longitudinal movements are read by means of the verniers 10 and 11 fastened to the movable parts of the stage.

The Mechanical Stage is stored in a wooden case.

### SPECIFICATIONS

| Transverse movement scale range, mm | from 0 to 35               |
|-------------------------------------|----------------------------|
| Reading accuracy, mm                | 0.1                        |
| (longth × width × height) mm        | $150\times135\times30$     |
| Overall dimensions of case, mm      | $172 \times 130 \times 40$ |
| Weight of instrument, kg            | 0.278                      |

### MECHANICAL STAGE SET

Centring plate Stud Case Description and instruction manual Certificate

### NORMAL INCIDENT ILLUMINATOR, MODEL 0H-1

The OII-1 Normal Incident Illuminator is designed for the intensive illumination

The OH-1. Normal Incident Huminator is designed for the intensive illumination of opaque or semi-translucent objects seen under biological microscopes.

With the Normal Incident Illuminator (Fig. 27) the object is illuminated through the microscope objective. Consequently the specimen is seen on a bright background, that is, the portions of the specimen which reflect less light are seen as dark spots or bands in accordance to their form.

When using the illuminator it is necessary to use objectives in short mountings computed for a mechanical tube length of  $190~\mathrm{mm}$  and corrected for a specimen without cover-glass.



Fig. 27 OH-1 Normal Incident Illuminator

Fig. 28
Principle of operation of the OII-1 Illuminator

The Normal Incident illuminator is applicable on the M-10 Microscopes and all other models constructed on its basis.

When using the illuminator the draw tube of the M-10 Microscope should be set at the 160 mm division as the 30 mm length of the illuminator body supplements to the computed mechanical tube length of 190 mm.

Fig.28 indicates the principle of operation of the Normal Incident Illuminator. The source of light is an electric bulb 1, supplied a. c. mains through a step-down transformer.

transformer.

The rays of light pass through lens 2 and diaphragm 3 and fall on the thin glass plate 4, arranged between the objective 5 and the microscope eyepiece not shown on the diagram.

the diagram.

The glass plate is positioned at an angle of 45° to both the direction of the rays and to the optical axis of the microscope.

Part of the light passes through the plate while the other part is reflected through the objective 5 and concentrated by the latter on the observed surface of the specimen 6.

the objective 5 and concentrated by the latter of the losserved sands of the specimen 6.

On being reflected from the surface, the rays again pass through the objective and falling on the plate 4 are again diverged. A part is reflected back to the illuminator while the rest, after passing through the plate, is directed through the eyepiece to the eye of the observer.

The cylindrical body 1 of the illuminator (Fig. 29) connects the microscope objective, which is screwed into the socket 2, with the microscope body which is convenient on the threaded ring 3.

screwed on the threaded ring 3.



The socket 5 with bulb is inserted into one end of the tube 4 while an iris diaphragm is mounted inside the other end. Rotating the handle 6 changes the opening from 0.5 mm to 7.5 mm and in this way varies the brightness of illumination of the

object. Rotating the head 7 revolves the glass plate through an angle of  $45^\circ$  to the axis of the body 1. This allows the plate to be adjusted to the most advantageous position for illuminating the object.

The necessary friction to prevent accidental rotation of the plate is provided by two spring washers.

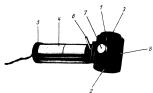



Fig. 29
Main parts of the OH-1 Normal Incident Illuminator

The illuminator body has a port 8 on the side opposite to the illuminating tube. It serves to pass the light from the lamp, that passes through the glass plate. This is necessary to eliminate a glare that interferes with observation.

The Normal Incident Illuminator is stored in a special wooden case.

### SPECIFICATIONS

| Source of illumination                            | electric bulb 3.5 V, 0.16 A |
|---------------------------------------------------|-----------------------------|
| Range of diameter variation of iris diaphragm, mm | from 0.5 to 7.5             |
| Overall dimensions of instrument, mm              | $90 \times 35 \times 33$    |
| Overall dimensions of ease, mm                    | $120 \times 90 \times 48$   |
| Weight of instrument, kg                          | 0.12                        |
| Weight of instrument in case kg                   | 0.285                       |

### ILLUMINATOR SET

Pin (wrench) Case
Description and instruction manual
Certificate

### DARK GROUND CONDENSER, MODEL 0H-13

When examining weakly contrasting objects under the microscope, conditions are often met with in which observation on a bright ground, with the usual type of condenser, is impossible as the image of the object is invisible.

To increase the contrast of the image in reference to the general background of

the microscope field of view, so-called dark ground illumination is used. This provides the possibility of revealing details of the object that were invisible before.

This type of illumination can be provided by means of the Dark Ground Condenser, Model Oll-13 (Fig. 30).

The Dark Ground Condenser is applicable

to all models of biological microscopes except MV and MHC-7.

Increasing the resolving power of the micro-scope by the aid of the Dark Ground Condenser is based on the diffraction of light and on obtaining a light contrast of an illuminated object on a dark background.

This effect is achieved by means of the illumination created by the Dark Ground Condenser much in the same way as particles of dust, invisible in the air under usual conditions, become distinctly visible in a dark room in rays of

The optical system of the condenser is shown

The optical system of the condenser is shown in Fig. 31.

A parallel pencil of light, from the microscope mirror, passes through the plane-concave lens 1, the plane-parallel plate 2 having a spherical recess internally silvered, the cardioid lens 3 and exits in an oblique direction.

In this way the object receives oblique illumination in an absolutely dark background as the direct rays, due to the spherical recess in the plate 2, do not reach the objective of the microscope.

The Dark Ground Condenser comprises the external ring 1 (Fig. 32) into which are mounted the internal ring with a cylinder 2 and the sleeve 3 containing the optical equipment 4.

Rotating the two screws 5 displaces the cylinder with the optical system in a plane perpendicular to the optical axis of the microscope. The screws are rotated with the aid of a special wrench 6.



Fig. 30 OH-13 Dark Ground Conden



Fig. 31
Optical System of the OH-13 Dark
Ground Condenser



Fig. 32 Main parts of the OH-13 Dark Ground Condenser



The Dark Ground Condenser can be used with either oil-immersion objectives or with dry system objectives. The dark ground is less satisfactory in the second

case. When working with the Dark Ground Condenser it is advisable to use a coverglass from 0.8 to 1.2 in thickness.

The condenser is furnished in a special wooden case.

| Numerical aperture                                        | 1.2                                      |
|-----------------------------------------------------------|------------------------------------------|
| (diameter × height), mm<br>Overall dimensions of case, mm | $58 \times 36 \\ 70 \times 70 \times 40$ |
| Weight of condenser, kg                                   | 0.19                                     |

### CONDENSER SET

Diaphragm for objective 90× x 1.25 Wrenches for adjustment (2 pieces) Case Description and instruction manual Certificate

### MICROSCOPY LAMP, MODEL 0H-7

The OH-7 Microscopy Lamp (Fig. 33) is designed for illuminating the specimen. The lamp comprises a two-lens condenser with an iris diaphragm and a clamping device by means of which the lamp body is fastened to the vertical stand at the required height.

The source of light is a special electric bulb, 8V, 20W, supplied from an a.c. mains through step-down transformer 127, 220, 8V.



Fig. 33 OH-7 Microscopy Lamp

### SPECIFICATIONS

| Overall dimensions of instrument |                             |
|----------------------------------|-----------------------------|
| (length × width × height), mm    |                             |
| Overall dimensions of case, mm   | $310 \times 200 \times 150$ |
| Weight of lamp, kg               | 1.37                        |
| Weight of lamp in case kg        | 4.6                         |

### MICROSCOPY LAMP SET

Lamp on stand Connecting strip Transformer Electric bulbs, 8V, 20W (2 pieces) Case for lamp Description and instruction manual Certificate



### POLARIZING MICROSCOPES

### POLARIZING MICROSCOPE, MODEL MIH-4

The MIH-4 Polarizing Microscope (Fig. 34) has wide applications in mineralogy,

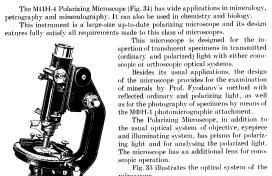



Fig. 35 illustrates the optical system of the

microscope.

From the source of light 1, the rays pass through the condenser 2 to the mirror 3 and are

through the condenser? 2 to the mirror 3 and are reflected to the polarizer 4.

After passing through the diaphragm 5, the polarizing light enters one of three interchangeable condensers 6. Further on the rays pass through the lens 7 and the specimen 8 into the objective 9 and analyzer 10. They then passeither directly to the eyepiece 11 (for orthoscopic operation).

To prevent the analyzer 10 from distorting the image, it is located between the lenses 12 creating a parallel pencil of rays.

lenses 12 creating a parallel pencil of rays.

A quartz plate 13 may be inserted between the objective and the analyser. It compensates for the variation in the travel of the rays caused when the light passes through the examined specimen.

The microscope has the following constructive features:
The base l of the stand (Fig. 36) has a horse-shoe form with a boss having two
lugs. The limb 2 is pivoted between the lugs. The limb is designed so that the object
stage can accommodate the Fyodorov stage or other attachments that can be rotated
through 360°. At the same time, the limb serves for carrying the instrument from place to place.

Coarse focusing adjustment is effected by a rack and pinion arranged in the upper part of the limb. They are operated by rotating the head 4.

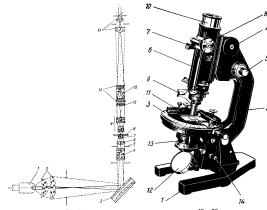



Fig. 35 Optical System of the MIIII-4 Microscope

Fig. 36
Main parts of the MIIII-4 Microscope

The head 5 for fine focusing adjustment is located somewhat lower. The head has a graduated drum on which readings can be made to an accuracy of 0.002 mm. The body 6 has a slot in the upper part for the Bertrand type lens mechanism. It has a handle 7 for controlling the variable diameter diaphragm and a head 8 for displacing the lens along the optical axis of the microscope.

The lower end of the tube has dovetail guides for the mechanism with the analyser prism mount. This mechanism provides for rotating the analyser to the required angle read on a special scale, for inserting the quartz compensating plate and for including or excluding the analyser in the optical system of the microscope. The clamping device 9 serves to hold the objectives.

A drawtube 10 is screwed into the upper end of the body to accommodate interchangeable eyepieces or for fastening the photomicrographic camera.



A large set of special objectives, computed for operation in polarized light, and eyepieces are included in the instrument set. Part of the eyepieces are furnished

eyepieces are included in the instrument set. Part of the eyepieces are furnished with reticule or cross hairs for reading purposes.

The microscope object stage is of the circular rotary type. The working part of the stage is furnished with a circular scale graduated to 360° in 1° divisions. The angle of rotation of the object stage is read on a vernier with a reading accuracy of 6 minutes. The object stage has two holes for mounting standard spring clips, three holes for attaching the Fyodorov stage and three holes for fastening the mechanical stage 11 included in the microscope est.

The illuminating system of the microscope comprises the mirror 12 fastened in a fork-shaped bracket, the interchangeable condenser 13 and the polarizer.

The condenser together with the polarizer, can be adjusted vertically by means of the head 14.

The Polarizing Microscope is stored in a wooden case.

The Polarizing Microscope is stored in a wooden case.

### SPECIFICATIONS

| SPECIFICATIONS                              |               |              |             |                 |              |
|---------------------------------------------|---------------|--------------|-------------|-----------------|--------------|
| Range of total magnification                | from          | 1.85×        | to 1350     | )×              |              |
| Achromatic objectives:                      | $3.7 \times$  | 8×           | 20×         | 60×             | 90≍          |
| initial magnification                       |               | 8×           | 20×         | 60≺             | 90×          |
| numerical aperture                          | 0.11          | 0.20         | 0.40        | 0.85            | 1.25         |
| focal length, mm                            |               | 18.2         | 8.4         | 2.99            | 1.96         |
| working distance, mm                        | 6.24          | 9.19<br>2.85 | 1.8<br>1.15 | 0.41            | 0.32<br>0.25 |
|                                             |               | reticul      |             | 0.30<br>Vith cr |              |
| Wide-angle Huyghenian eyepieces:            |               | cale Г-      |             | air F-8         |              |
| magnification                               |               | 5×           |             | 8×              |              |
| focal length, mm                            | 50            | .6           |             | 31.4            |              |
| linear field of view, mm                    | 23            |              |             | 21              |              |
| Photographic eyepiece, 10×:                 |               |              |             |                 |              |
| magnification                               |               |              |             |                 |              |
| focal length, mmlinear field of view, mm    |               |              |             |                 |              |
|                                             | 10.4          |              |             |                 |              |
| Symmetrical eyepiece, 15×:<br>magnification | 15%           |              |             |                 |              |
| focal length, mm                            |               |              |             |                 |              |
| linear field of view, mm                    |               |              |             |                 |              |
| Objective changing mechanism                | clamp         | ing de       | vice        |                 |              |
| Illuminating system                         |               |              |             |                 | ıd con-      |
|                                             |               |              |             |                 | densers      |
|                                             |               |              |             |                 | N.A.;        |
|                                             | glass         | zer; 11      | nterena     | ngeani          | e opal       |
| Focusing adjustments:                       | guiss         |              |             |                 |              |
| coarse                                      | by ra         | ck and       | pinio       | n               |              |
| fine                                        |               |              |             | nism,           | reading      |
|                                             |               | 02 mm        |             |                 |              |
| Object stage                                | circula       | ar, wit      | h rota      | ry mo           | vement       |
|                                             |               | with a       | ittache     | d mec           | hanical      |
| Range of condenser substage adjustment, mm  | stage<br>20   |              |             |                 |              |
| Angle of polarizer rotation                 |               |              |             |                 |              |
| Rotation angle reading accuracy             |               |              |             |                 |              |
| Angle of analyser rotation                  | 90°           |              |             |                 |              |
| Rotation angle reading accuracy             | $2.5^{\circ}$ |              |             |                 |              |
| Eyepiece scale reading, mm                  | 0.1           |              |             |                 |              |
|                                             |               |              |             |                 |              |

| Value of reticule squares, mm Angle of rotation of object stage Object stage scale reading | 360° |
|--------------------------------------------------------------------------------------------|------|
| Overall dimensions of microscope<br>(height × length × width), mm                          |      |
| Overall dimensions of case, mm Weight of microscope, kg                                    |      |
| Weight of microscope in case, kg                                                           | 12.8 |

### MICROSCOPE SET



# PETROLOGICAL MICROSCOPE, MODEL MUH-5

This M(IH-5 Petrological Microscope (Fig. 37) is designed for all types of petrological work, as well as for educational purposes.

This microscope has the same specifications as the M(IH-4 Microscope, except that the polarizer and analyser are manufactured of high-quality polyvinyl polaroid plastics, and the included set of objectives and eyepieces provide for magnification from 18.5× to 600×.

The microscope and its accessories are stored in a wooden case.



Fig. 37 MIIII-5 Petrological Microscope

# SPECIFICATIONS

| Range of total magnification                               | from         | 18.5× to             | 600×               |                |
|------------------------------------------------------------|--------------|----------------------|--------------------|----------------|
| Achromatic objectives:                                     | $3.7 \times$ | 8×                   | $20 \times$        | 60×            |
| initial magnification                                      | 3.7×         | 8×                   | 20×<br>0.40        | 60×<br>0.85    |
| numerical aperture focal length, mm                        | 33.1         | $0.20 \\ 18.2$       | 8.4                | 2.99           |
| working distance, mm<br>field of view with 5× eyepiece, mm | 27.7         | $9.19 \\ 2.85$       | $\frac{1.8}{1.15}$ | $0.41 \\ 0.38$ |
| Wide-angle Huyghenian eyepieces:                           | With         | reticule<br>ale Г-5× | With<br>hair Γ     |                |
| magnificationfocal length, mm                              |              | 5×<br>50.6           |                    | 8×<br>31.4     |
| linear field of view, mm                                   | :            | 23                   | 2                  | 21             |

| Photographic eyepiece, 10×: magnification focal length, mm linear field of view, mm | 25<br>13.4                                                                                                                                        |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective changing mechanism                                                        | clamping device                                                                                                                                   |
| Illuminating system                                                                 | reversible mirror plane and con-<br>cave; interchangeable condenses<br>with 1.27, 0.94 and 0.22 N.A.;<br>polarizer; interchangeable opal<br>glass |
| Focusing adjustments:                                                               |                                                                                                                                                   |
| coarse                                                                              | by rack and pinion<br>micrometric mechanism, reading<br>to 0.002 mm                                                                               |
| Object stage                                                                        | circular with rotary movement                                                                                                                     |
| Overall dimensions of microscope<br>(height × length × width), mm                   | $350\times250\times155$                                                                                                                           |
| Overall dimensions of case, mm                                                      | $400 \times 259 \times 280$                                                                                                                       |
| Weight of microscope, kg                                                            | 6.0                                                                                                                                               |
| Weight of microscope in case, kg                                                    | 12.6                                                                                                                                              |

### MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb with coarse and fine focusing mechanisms, illuminating system and rotary object stage
Achromatic objective, 8.7 x > 0.11
Achromatic objective, 8.8 × 0.20
Achromatic objective, 9.0 × 0.40
Achromatic objective, 9.0 × 0.40
Achromatic objective, 9.0 × 0.85
Wide-angle Huyghenian eyepiece, 5.8
Wide-angle Huyghenian eyepiece, 8.8
Photographic eyepiece, 10.8
Stage micrometer for transmitted light, in case
Quartz compensating wedge in mount
Interchangeable condenser, 0.27 N.A.
Interchangeable condenser, 0.28 N.A.
Opal glass in mount
Fitting for McH-1-l photomicrographic attachment
Adapter for standard eyepieces
Superimposed diaphragm for conoscopie operation
Wrench for clamping device
Combination wrench
Watchmaker's screwdriver
Squirrel-hair brush
Flannel napkin
Cover
Case for eyepieces and accessories
Description and instruction manual
Certificate



### ORE MICROSCOPE, MODEL MUH-6

The MIH-6 Ore Microscope (Fig. 38) is designed for exact examination of opaque objects in ordinary and polarized light at magnifications from 42° to 756°. Besides its usual applications, the design of the microscope provides for the examination of translucent specimens in transmitted (ordinary or polarized) light, as well as for photography by means of the MoH-1 photomicrographic attachment. This microscope is used for all types of mineralographic research. Fig. 39 illustrates the main parts of the Ore Microscope.

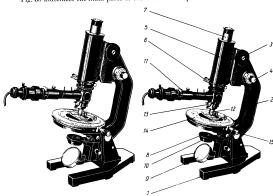



Fig. 38 MIIH-6 Ore Microscope

Fig. 39
Main Parts of the MIIII-6 Ore Microscope

The microscope stand comprises the base 1, limb 2 with head 3 for coarse focusing and drum 4 for fine micrometric focusing adjustment.

The microscope body 5 is of tubular form with a dovetail recess at its lower end. Into this recess is inserted the slide 6 with the polyvinyl polaroid plastics analyser. Transverse movement of the slide brings the analyser in or out of the microscope optical system.

Transverse movement of the since brings the analysis.

The eyepiece tube 7 is screwed into the upper end of the body. It is designed to accomodate standard eyepieces or a photomicrographic attachment, model MoH-1.

The illuminating system of the microscope comprises the polyvinyl polaroid plastics polarizer in a mount 8, which can rotate through an angle of 360°, and the reversible plane and concave mirror 9.

The polarizer mount is fastened to the swing-out bracket 10.

The polarizer mount is fastened to the swing-out bracket 10.

The instrument includes the vertical polarized light illuminator 11, designed for the intensive illumination of the field of view of the examined surface of opaque with the intensive polarization.

and semi-translucent objects.

When using the vertical illuminator, the object is illuminated through the objective 12 which is inserted into the body by means of the clamping device 13.

The microscope is furnished with a rotary object stage 14 having a braking

device 15.

The microscope is stored in a wooden case.

| Range of total magnification                                                                                                                       |                 | from 4       | 2× to                                       | 56×                                                     |                                                  |                                               |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Achromatic objectives:                                                                                                                             |                 | $4.2 \times$ | 6×                                          | 10×                                                     | $23.5 \times$                                    | 35.3×                                         | 50.4×                                             |
| initial magnification wit<br>lens, focal length — 141<br>numerical aperture<br>focal length, mm<br>working distance, mm<br>field of view with 7× e | mm              | 4.2          | 6×<br>0.17<br>23.17<br>6.2<br>3.0<br>penian | 10 <sup>4</sup><br>0.30<br>13.89<br>5.71<br>1.8<br>Symm | 23.5×<br>0.65<br>5.99<br>0.96<br>0.75<br>etrical | 35.3×<br>0.75<br>4.0<br>0.32<br>0.36<br>Compe | 50.4×<br>1.25<br>2.77<br>0.44<br>0.52<br>ensating |
| and the contract of                                                                                                                                | 7×              |              | 10×                                         |                                                         | 15×                                              |                                               | 15×                                               |
| focal length, mm<br>linear field of view, mr                                                                                                       | 36<br>n 18      |              | 25<br>14                                    |                                                         | 17<br>12                                         |                                               | 16.8<br>12                                        |
| Objective changing mechanis                                                                                                                        | m               |              |                                             | clampin                                                 | ng devic                                         | e                                             |                                                   |
| Illuminating system                                                                                                                                |                 |              |                                             | reversi                                                 | ole mirro<br>oolarizer                           | or, plane                                     | and con-                                          |
| Focusing adjustments: coarse fine                                                                                                                  |                 |              |                                             | to 0.00                                                 | 2 mm                                             | chamso                                        |                                                   |
| Object stage                                                                                                                                       |                 |              |                                             | circula                                                 | with re                                          | tary mo                                       | vement                                            |
| Range of object stage rotati                                                                                                                       | on              |              |                                             | 360°                                                    |                                                  |                                               |                                                   |
| Object stage scale reading .                                                                                                                       |                 |              |                                             | 1°                                                      |                                                  |                                               |                                                   |
| Overall dimensions of micros<br>(height > length × wid                                                                                             | cope<br>th), mm |              |                                             | 350 ×                                                   | 250 	imes 1                                      | 55                                            |                                                   |
| Overall dimensions of case,                                                                                                                        | mm              |              |                                             | 400 ×                                                   | $259 \times 2$                                   | 80                                            |                                                   |
| Weight of microscope, kg                                                                                                                           |                 |              |                                             | 5.0                                                     |                                                  |                                               |                                                   |
| Weight of microscope in case                                                                                                                       | e, kg           |              |                                             | 14.2                                                    |                                                  |                                               |                                                   |

### MICROSCOPE SET

Microscope stand comprising horse-shoe base, limb with coarse and fine focusing mechanisms, illuminating system, rotary, circular object stage and vertical illuminator

Achromatic objective 6× × 0.17
Achromatic objective 10× > 0.30
Achromatic objective 20× × 0.12
Achromatic objective 30.4× 1.25
Achromatic objective 30.4× 1.25
Achromatic objective 30.5× × 0.75
Achromatic objective 21.5× × 0.65
Achromatic objective 21.5× × 0.65
Achromatic objective 21.5× × 0.85
Huyghenian eyepiece 7× with reticule and scale
Huyghenian eyepiece 10×
Symmetrical eyepiece 15×
Compensating eyepiece 15×



Stage micrometer for transmitted light
Blue filter
Transformer 127(220)8 V
Electric bulbs 8 V, 8.5 W (3 pieces)
Hand press
Wrench for removing clamping device
Wrenches for adjusting objective holder (2 pieces)
Vial with immersion oil
Combination wrent mersion oil
Combination wrent brush
Watchmaker's serewdriver
Flannel napkin
Squirrel-hair brush
Case for microscope
Case for objectives
Case for eyepieces
Usescription and instruction manual
Certificate

# METALLOGRAPHIC MICROSCOPES

# HORIZONTAL METALLOGRAPHIC MICROSCOPE, MODEL MIM-8

The MHM-8 Horizontal Metallographic Microscope (Fig. 40) provides for comprehensive research in the microstructure of metals and has a total effective magnification up to  $1300^{\times}$  (for visual observation) and up to  $3000^{\times}$  (for photography).



Fig. 40
MIIM-8 Horizontal Metallographic Microscope

In its design features and optical characteristics, this microscope fully satisfies up-to-date requirements of metallography and provides for observing and photographing objects under the following conditions:

- a) bright field with normal and oblique illumination;
- b) dark field; c) polarized light.

Opaque objects are examined under the microscope in reflected light.

The optical system of the microscope (Fig. 41) comprises the following elements: light source — arc lamp 1 with clockwork mechanism, collector 2, heat filter 3 for



protecting the polarizer prisms from overheating, swing-out lens 4 used only for dark field observation, incandescent lamp 5 used for visual observation of objects with bright field (and sometimes for polarized light), light filters 6, polarizer 7 inserted into the system for polarized light observations, iris diaphragm 8 for adjusting the illumination of the object, illuminator lenses 9, 10 and 11, field and annular diaphragms 12 mounted in one strip, oblique illumination prism 13 for oblique illumination of the object, reflecting plate 14 for illuminating the object through the objective in bright field observation, annular mirror 15 and metallic condenser 16 for dark field illumination, objective 17, analyser 18 for observation of the object in

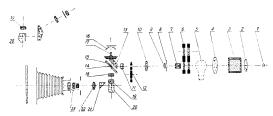



Fig. 41 Optical System of the MHM-8 Microscope

polarized light, achromatic lens 19 of the visual tube, prism 20 of the visual tube, prism 21 of the photographic tube, achromatic lens 22 of the photographic tube and Homal eyepiece 23.

With bright field observations the collector 2 forms an image of the source of

light 1 on the aperture diaphragm 8.

An image of the aperture diaphragm is formed on the exit lens of the objective 17 an image of the appearance comparison is formed on the extrems of the objective 17 by means of the system of three lenses (9, 10 and 11) and the plate 15. In this way, a pencil of light from the arc lamp 1, after passing through the aperture and field diaphragms, is thrown on plate 15. The latter reflects a portion of the light through the objective 17 to the object. The remainder of the light passes through the plate and does not take part in illuminating the object.

and does not take part in illuminating the object.

If the oblique illumination prism 13 is introduced in the optical system, all the light is reflected to the object, through the objective. For this reason, illumination by means of the prism illuminator is considerably brighter than when using the reflecting plate.

The metallic annular condenser 16 is used for dark ground observations. It has a reflecting parabolic mirror surface arranged around the objective 17. The swing-out lens 4 and the annular diaphragm are introduced when making dark field observation

The hollow cylinder of light passes through the annular diaphragm to the annular mirror 15 in whose center the plate 14 is arranged. This mirror reflects rays

of light to the surface of the dark ground condenser 16 which converges them to the plane of the object.

Diffused rays of light, reflected from the object, as with light field observations, pass through the objective, reflecting plate and achromatic lenses to the visual tube or photographic camera and produce an image of the object.

The arc lamp is too bright for visual observation and consequently, for this we are many is too origin for visual observation and consequently, for this purpose, an incandescent bulb 5 is used and located directly in front of the aperture diaphragm 8.

The microscope comprises four main parts: a) illuminating system; b) the microscope proper; c) the photographic camera arranged on a massive base and d) the special table.

The optical bench is a bar of prismatic cross-section with slots for erecting the separate parts of the instrument.

The arc lamp, mounted in a housing, is fastened to the bench with a special

screw. The earbons are held in special clamps which are fed by the clockwork mechanism. The mechanism and the carbons are enclosed in a hood which can be lifted for changing carbons. The arc lamp is supplied from a 127 or 220 V mains in series with a rheostat.

The housing of the incandescent lamp is fastened on a holder together with the opaque screen. The mechanism with the lamp can be brought out of the optical system simply by being swung downward. The screen serves to protect the observer from stray light.

On a holder, arranged directly after the arc lamp housing, the parabolic collector and the swing-out lens for dark field observation are fastened. The heat-absorbing device with distilled water is located after the collector.

The central part of the instrument comprises the microscope proper whose parts and mechanisms are mounted inside and outside of the casing fastened to the bench.

This part of the instrument comprises: the illuminating tube, central prism system, object stage, objective holder, coarse focusing mechanism, fine focusing mechanism, monocular or binocular attachments and the tube connecting the microscope with the photographic camera

The coarse focusing mechanism is connected with the object stage. Besides, the latter is provided with crosswise movement and rotates about a vertical axis. In this way, the object stage is universal in type.

The fine focusing mechanism is connected with the objective holder.

Unlike the majority of other microscopes, in the MIM-8 Microscope the objectives are not screwed into the tube but are inserted into a special bearing ring of the objective holder. This considerably simplifies changing objectives.

Another distinctive feature of the objectives of this microscope is that they are computed and corrected to an infinitely distant image.

The photographic camera, fastened to the bench, comprises the extensible bellows, front and rear boards, shutter, scale and mirror.

The photographic camera is designed for  $13 \times 18$  cm plates but may also be used for  $9 \times 12$  cm plates as well. The camera is furnished with a wooden plate

The microscope table comprises: the table top and two cabinets with drawers for holding the accessories



### SPECIFICATIONS

| SI BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                       |           |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----------|------------|--|
| Range of total magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | from 4            | 5× to 1               | 350×      |            |  |
| Image scale when photographing Achromatic objectives for light and dark field:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from 1            | .00:110               | 0×        |            |  |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 18× 4                 | 0×        |            |  |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17              | 0.30                  | 0.65      |            |  |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 13.89                 | 6.16      |            |  |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2               | 5.71                  | 0.87      |            |  |
| Apochromatic objectives for bright and dark field:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15×               | 30×                   |           |            |  |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15X               | 30×                   |           |            |  |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30              | 0.65                  | i         |            |  |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.70             | 8.37                  |           |            |  |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9               | 0.87                  | ī         |            |  |
| Objectives only for bright field:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Achro             | mat                   | Apoch:    |            |  |
| Conjectives only for surger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90>               | (                     | 60×       | 90×        |  |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                | Κ                     | 60 ^      | 90×        |  |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.                | 25                    | 0.95      | 1.30       |  |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.                | 77                    | 4.30      | 2.79       |  |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 44                    | 0.22      | 0.20       |  |
| Apochromatic objective only for dark field:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $90 \times$       |                       |           |            |  |
| initial magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90×               |                       |           |            |  |
| numerical aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00              |                       |           |            |  |
| focal length, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.77              |                       |           |            |  |
| working distance, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68              |                       |           | C 11 . C   |  |
| Compensating eyepieces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Foc               |                       | h, Linear | ment of mm |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | mm                    | viev      |            |  |
| 3×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 83                    |           | 20         |  |
| 5×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 50                    |           | 20<br>18   |  |
| 7×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 36                    |           | 13         |  |
| 10×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | $\frac{25.2}{16.8}$   |           | 12         |  |
| 15×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 12.6                  |           | 19         |  |
| 20×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                       | r field   |            |  |
| Huygneman eyepieces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm of view        |                       | w, mm     |            |  |
| 4×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 62.8                  |           | 20         |  |
| 7×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |           | 18         |  |
| 10×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 25                    |           | 14         |  |
| 15×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 17                    |           | 8          |  |
| Homal evenieces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                       |           |            |  |
| Type II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 70.36                 |           | 15         |  |
| Type IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 20.28                 |           | 8          |  |
| Type VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 37.61                 | incolidan |            |  |
| Illuminating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with i            | lluminat              | tor       |            |  |
| Object stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eircula<br>wise r | ır, with<br>novemer   |           | ind cross- |  |
| Focusing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                       |           | nt: coarse |  |
| Totaling 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - by              |                       |           | ı; fine —  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                       | c mechan  | ism, read- |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 002 mm                |           |            |  |
| Plate size, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 >              | 18 or 9               | × 12      | vallor     |  |
| Set of light filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yellow            | , greer               | i, orange | s, yenow-  |  |
| are in the historian be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | sky-blu               | ie and bl | ue         |  |
| Max. allowable load on object stage, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                |                       |           |            |  |
| Overall dimensions of microscope<br>(length × width × height) mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1860              | × 630 ×               | 490       |            |  |
| Overall dimensions of case, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2100              | $\times$ 550 $\times$ | 900       |            |  |
| Weight of microscope, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.6             |                       |           |            |  |
| Weight of microscope in case, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195.6             |                       |           |            |  |
| tioners or missioners mass, we introduce the contract of |                   |                       |           |            |  |

### MICROSCOPE SET

Table with two cabinets and optical bench.

Microscope with inclined tube for visual observation, object stage, illuminator with swing-out polarizer, coarse and fine focusing mechanisms, objective holder and adapter tube for photographic camera

Apochromatic objectives in cases:  $15 \times 0.02 \times 0.$ 

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $30 \times \times 0.65$   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $60^{\times} \times 0.95$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90× × 1.30                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90× × 1.00                |
| the state of the s |                           |
| Achromatic objectives in cases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $11^{\times} \times 0.17$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $18^{\times} \times 0.30$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40	imes 0.65              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $90 \times \times 1.25$   |
| Compensating eyepieces: 3×, 5× (2 pieces), 7× (3 pieces), 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )×, 15×, 20×              |
| Huyghenian eyepieces: 4×, 7×, 10×, 15×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| Homal eyepieces: 11, 1V, VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Magnifying glass 8×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Binocular attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Stage micrometer, opaque, in case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Lamp I with ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| Lamp II with ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Lamp III with ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| Additional ring for lamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| Inserts for object stage (glass) (2 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Inserts for object stage (metal) (3 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Crosswire for centring stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Eyepiece attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Holder for unstable objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Object stage clips (2 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
| Vial with immersion oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Protecting cap for the objective socket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| (the found to the objective socker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| ('aps for photographic tube (2 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| ('aps for the visual tube (3 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
| Marking apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Arc lamp with clockwork mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Collector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| Rheostat, 3.5 ohm, 10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| Opal electric bulb 40W, 120V (3 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Swing-out lens in mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Hollow heat absorbing device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Plate holder 13 × 18 cm (3 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| Holder with opaque screen, revolving discs with light filte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs and lamp housing       |
| Opal glass in frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Adapter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Metal plate holders, 9 × 12 cm (6 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| Metallic diaphragms (3 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| Photographic camera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Arc lamp carbons, 5 mm (100 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Arc lamp carbons, 9 mm (100 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Cord for connecting microscope illumination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Squirrel-hair brush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Flannel napkin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| Cambric or madapolam napkin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Watchmaker's screwdriver (2 pieces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Can with lubricant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| ('over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| Description and instruction manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| Certificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |



# VERTICAL METALLOGRAPHIC MICROSCOPE, MODEL MIM-6

The M11M-6 Microscope (Fig. 42) is a vertical metallographic microscope, the MIM-6 Meroscope (rig. 42) is a vertical metallogicapie the description of the examination of the microstructure of metals.

The Microscope provides for the examination of opaque objects with bright field or polarized light as well as for the photography of these objects.

The set of objectives and evepieces provides for a total magnification up to 600× for visual observation and pho-

600° for visual observation and photography.

The design features of the microscope and its optical characteristics fully satisfy up-to-date requirements of metallographic research.

The Vertical Metallographic Microscope finds wide application in industrial, educational and scientific research laboratories.

As the Vertical Metallographic Microscope is designed for the examination of paque objects, observ-mination of paque objects, observ-mination of paque objects, observ-

mination of opaque objects, observation is carried out with reflected

light.
Fig. 43 shows the optical system

Fig. 43 shows the optical system of the instrument.

Light from the lamp 1 passes through the condenser 2, aperture diaphragm 3, lens 4, field diaphragm 5, lenses 6 and 7 and falls on the plane glass plate 8 of the central illuminator. The plate is positioned at an angle of 45° to the swin of the table.

axis of the tube. Fig. 42
MIIM-6 Vertical Metallographic Microscope
this way, the objectic 9 is used not only for providing an image of the object 10. In

also as a part of the illuminating system.

Oblique illumination of the object can be effected by displacing and subsequently rotating the aperture diaphragm.

The condenser 2 forms an image of the light source 1 on the aperture diaphragm 3.

An image of the aperture diaphragm is formed on the end lens of the objective 9 by means of the lens system 6 and 7 and the plate 8.

Rays, reflected from the object, pass again through the objective 9 and plate 8 to the prism 11 from where they are directed to the eyepiece 12. The objective 9 forms an image in the focal plane of the eyepiece 12.

During photography the prism 11 is swung out of the microscope axis and the beam of rays passes through the photographic eyepiece 13 and is reflected by the

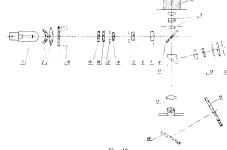



Fig. 43 Optical System of the MIIM-6 Microscope

mirror 14 on the opal glass 15 of the photographic camera. An image is formed on this glass. For work with polarized light,

For work with polarized light, the superimposed polarising filters are brought in the optical system. Filter 16, a polarizer, is inserted into the illuminating system before the illuminator lens 6 while the second filter 17, used as an analyser, is superimposed on the eyepiece 12.

To create more uniform illumination of the object, the semi-opal polate 18 is arranged before the

plate 18 is arranged before the aperture diaphragm 3.

The interchangeable light filters 19 can be brought in the optical system to provide monochromatic illumination.

Fig. 44 shows the main parts of

the Vertical Metallographic Micro-

The instrument comprises three main assemblies: a) illuminating device 1 fastened on bracket 2; b) upper housing 3 with the illuminator tube 4, visual tube 5, object

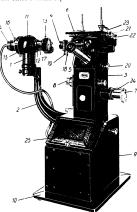



Fig. 44
Main parts of the MIIM-6 Microscope

54 -

stage 6 and the coarse and fine focusing mechanism 7 and 8; c) lower housing 9

with the photographic camera and the base 10.

The illuminating lamp is arranged inside a spherical housing 11 on which are mounted the condenser body 12 and the camera 13 with a set of light filters.

The lamp holder 14 is inserted into a sleeve of the centring ring 15. The screws 16

serve to center the lamp.

Button 17 adjusts the condenser along the optical axis to regulate the illumination of the object.

The handles 18 and 19 serve for adjusting the opening in the aperture and field diaphragms. The latter are iris diaphragms with openings that can be varied from

0.8 to 7.5 mm.

Head 20 swings the prism in the system for visual observation or swings it out for photography.

for pnotography.

The instrument has provisions for separate adjustment of the object stage 6 by rotating the coarse focusing head 7 and of the illuminator and objective by rotating the fine focusing head 8.

The object stage is arranged so that the object is placed over the objective

with the polished surface directed downward.

The stage is square and does not have a rotary movement but has cross-wise adjustment actuated by rotating the heads 21 and 22.

The object is held by the clips 23 and a special fixture for clamping unstable objects (not illustrated).

A clamping device, on the shaft of the coarse focusing head 7, is provided to prevent the object stage from running down of its own weight. This device is actuated

by the handle 24.

by the handle 24.

The visual tube 5 is arranged at an angle of 75° to the upper housing. The lower housing 9 contains the photographic camera for  $9\times 12$  cm plateholders and the opal glass covered by the lid 25.

The microscope is stored in a wooden case containing a full set of accessories.

### SPECIFICATIONS

| Range of total magnification: visual observation photography | up to               | 600<<br>600×           |                     |
|--------------------------------------------------------------|---------------------|------------------------|---------------------|
| Achromatic objectives:                                       | 9.4                 | 21                     | 40 <                |
| initial magnification focal length, mm numerical aperture    | $\frac{18.2}{0.20}$ | 21 ° 8.4 0.40          | 40 4<br>4.6<br>0.65 |
| working distance, mm                                         | 8.7<br>6.5×         | 1.9<br>10<             | 0.66                |
| magnification<br>focal length, mm                            | 6.5×<br>38.28       | 10×<br>25.0            |                     |
| Symmetrical eyepiece for photography:                        |                     | 2010                   |                     |
| magnification<br>focal length, mm                            | 17.0                |                        |                     |
| Huyghenian eyepieces:                                        | 7×                  | 10×                    | 15×                 |
| magnificationfocal length, mm                                | 7×                  | 10×<br>24.76           | 15×<br>16.9         |
| Light source                                                 | electric            | bulb, 8 V,<br>aminator | 20 W with ver-      |

| Focusing adjustments:            |                                                                  |
|----------------------------------|------------------------------------------------------------------|
| coarse                           | . by rack and pinion for object                                  |
|                                  | stage                                                            |
| fine                             |                                                                  |
|                                  | ing the illuminator and objective,                               |
|                                  | reading to 0.002 mm                                              |
| Object stage                     | . square with lateral and trans-                                 |
|                                  | verse movement and special cir-<br>cular attachment for rotating |
|                                  | specimen                                                         |
| Plate size, cm                   | 0 × 19                                                           |
|                                  | . 0 2. 12                                                        |
| Overall dimensions of microscope |                                                                  |
| (height × length × width), mm    |                                                                  |
| Overall dimensions of case, mm   | . 540 × 515 × 355                                                |
| Weight of microscope, kg         | . 17                                                             |
| Weight of microscope in case, kg | 3.4                                                              |

### MICROCSOPE SET

Microscope stand with coarse and fine focusing mechanisms, object stage, illuminating system with a set of light filters, inclined tube for visual observation and photographic camera Microscope stand with coarse and fine focusis system with as et of light filters, inclined tube for vis Achromatic objective, 24 × 0.40, in case Achromatic objective, 24 × 0.40, in case Achromatic objective, 40 × 0.65, in case Achromatic objective, 40 × 0.65, in case Achromatic explicit of the control of



### ELECTRON MICROSCOPE, MODEL 9M-3

The best modern optical microscopes provide for a magnification of the object not exceeding 1400× Magnification beyond this limit with an optical system does not reveal new details but merely make the pictures larger.

The resolving power of an optical microscope is limited to about one half of the

wave length of the light employed.

With visible light, objects, having a size not less than 0.2 microns, can be separated.

0.2 microns, can be separated.

Further penetration into the world of micro objects, inaccessible to the most highly perfected optical microscopes, became possible only with the advent of electron radiation in microscopy. Electron beams have wavelength many times shorter than light beams.

Instruments, by whose aid electron beams provide images of objects, have been called electron microscope

Modern electron microscopes provide an effective magnifi-cation up to 100000°. This allows objects, considerably more minute than in optical microscopes, to be observed and studied at ease.

The 3M-3 Electron Microscope (Fig. 45) is constructed

with full application of electromagnetic optics.

It provides for a magnification from 250° to 25000° for normal exposures of the object and when better exposures are obtained, up to 100000×.

By using one or another of the methods known for preparing the specimen, the electron microscope allows the of vation of almost all of the objects studied under optic microscopes

The Electron Microscope, Model 3M-3 can be successfully used in research on biological specimens, bacteria, viruses, colloidial solutions, dyes, silicates, thin metal films obtained by vaporization in a vacuum, rubbers, caoutchouc, plastics, struc-

tures of metals and their alloys, etc. All of the component elements of the electron microscope are analogous to the corresponding elements in the optical microscope, but are replaced by electrical devices.

The source of light is replaced by a source of electrons and the glass lenses are replaced by magnetic ones.

Fig. 45 2M-3 Electron Microscope

The image, produced by the electrons, may be either viewed on a fluorescent screen, which is luminous under the action of the electrons, or it may be revealed by the photographic layers which are darkened by electrons in the same way as ordinary

tographic plates are darkened by light rays. Fig. 46 illustrates the electron optical ray path of the ЭM-3 Electron Microscope The electron beam is produced by an "electron gun" comprising a tungsten filament 1 0.1 mm in diameter, heated by an electric current and the anode 2.

The electrons, leaving the filament, are accelerated by the electric field applied

between the filament and the anode.

The electrons, which are further to be used in forming the image, pass through

an aperture in the center of the anode.

Electrons, from the "electron gun" puss further on by inertia until they reach the field of the first magnetic condenser lens 3. The latter changes their direction so that they are focused on the specimen 4.

The origin of the contrasts in the image, as obtained in the Electron Microscope,

is caused by the fact that various portions of the specimen diffuse the electrons in

of the section of the through the specimen, are focused on the first screen 5 located before the magnetic projection lens 6. The corresponding portions of the screen will be lighted.

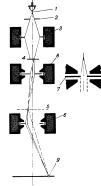
If the electrons, when passing through the specimen, are deviated through large angles, they are, for the most part, cut off by the aperture diaphragm 7 inside the objective 8. The corresponding elements of the image on the screen will be durk. The screen for the intermediate image has an opening in the center through which the electrons, corresponding to the part of the image in the zone

corresponding to the part of the image in the zone of the opening, pass to the second magnifying electromagnetic lens.

The electrons are again focused in the magnetic

field of the projector lens and a magnified image of the object is produced on the final image screen 9 located in the lower part of the microscope.

As the electrons are stopped by air molecules all air must be evacuated from their path in the instrument. In this way, the Electron Microscope is a vacuum instrument with continuous air evacuation.


The Electron Microscope has been designed

as a column erected on a special desk fastened to
a cabinet behind the column.

The following main parts of the microscope are arranged in the column:

 a) illuminating system of the microscope comprising the electron source ("electron gun") and the magnetic condenser lens focusing the electrons on the object b) specimen chamber with object stage: the design of the stage

b) specimen chamber with object stage: the design of the stage allows the object to be moved in two perpendicular directions, as well as to be titled through an angle of 4° to either side for producing pairs of stereomicrographs;
c) electromagnetic objective lens which provides the first magnification of 130 ° of the observed object on the first screen;
d) electromagnetic projector lens which allows the image to be remagnified in a range from 2° to 192 °. In this way, the total magnification of the microscope can be varied, by means of these lens from 250 ° to 25000 °.
e) photographic camera of the microscope with a fluorescent screen for obtaining the final image and the plate holder device located under the screen.





The photographic camera has three viewing ports for observation of the final image. They are arranged so as to provide convenient observation through any port

During photography exposition is accomplished by means of the screen which,

at the same time, fulfills the functions of a camera shutter.

Small viewing ports are arranged on the front of the column for watching the electron beam path in the microscope and for viewing the image on the first screen of the projector lens.

of the projector lens.

The objective lens and the photographic camera are furnished with special doors through which the specimen may be mounted on the object stage or the plate holders may be charged and removed from the microscope.

The vacuum equipment of the microscope consists of the microscope column, the preliminary vacuum pump, the oil-diffusion vacuum pump, the vacuum pipelines and a special distributing mechanism which provides the required vacuum arrangements during microscope operation. ments during microscope operation.

The distributing mechanism is connected by vacuum pipelines to the microscope column and to both vacuum pumps. By means of the distributor, air entering the microscope first passes through a chemical dryer located under the desk.

The controls of the distributing mechanism is furnished with a special indicator

which shows the vacuum conditions in the microscope.

All the elements of the electrical supply system of the microscope, except the resonant voltage stabilizer, are mounted in the microscope cabinet.

The resonant voltage stabilizer, whose operation is accompanied by strong stray

magnetic fields, should be sufficiently distant from the microscope (it is usually

magnetic fields, should be sufficiently distant from the microscope (it is usually erected in a neighbouring room).

The design and wiring of the electric supply system is arranged in five independent units; distribution switchboard, control desk, low voltage unit, high voltage unit and the high frequency transformer. The power supplies are divided into two main lines; low voltage and high voltage supplies.

The main part of the supply circuit is connected to a 220V three-phase line through the resonant voltage stabilizer.

The low voltage supplies feed the "electron gan" blament, the magnetic lens coils as well as the vacuum pump electric motor, the oil-diffusion pump heater, the thermo-couple vacuum gauge and all the electric bulbs for illuminating the scales of the instrument.

of the instrument.

The high voltage supplies provide the Electron Microscope with a voltage of V in steps of 30, 40 and  $50\,\mathrm{kV}$ .

50 kV in steps of 30, 40 and 50 kV.

The microscope cabinet is furnished with a special discharging device brought into action when any of the cabinet doors or the "electron gun" cowling is opened. This device serves to protect the observer in accidental cases or erroneous operation.

### SPECIFICATIONS

### Optical characteristics of the instrument

| Electronic-optical magnification:   |                         |
|-------------------------------------|-------------------------|
| without projector lens pole pieces  | from 250× to 1100×      |
| with low magnification pole pieces  | from 2000× to 10000×    |
| with high magnification pole pieces | from 5000× to 25000×    |
| Resolving power of the microscope   | up to 20 Angstrom units |
| Useful photographic enlargement     | up to 100000×           |

### Power supply characteristics

| Accelerating voltage of Electron |                                     |
|----------------------------------|-------------------------------------|
| Microscope, kV                   | First step — 30<br>second step — 40 |
| t                                | third step — 50                     |
| High tension current, mA         |                                     |

### Research Facilities

Visual observation and photography of the image of the object, observed in transmitted

execution nearm.
Stereoscopic photography at a stereoscopic angle of 8°. Electron diffraction patterns of the specimen area can be made with an electron diffraction unit.

### Photographic Arrangement

| Vacuum (haracteristics                        |                |                          |
|-----------------------------------------------|----------------|--------------------------|
| Operating vacuum                              | $1.10^{-4}$ to | 5.10 <sup>-4</sup> mm Hg |
| (air — preliminary vacuum — operating vacuum) | . 3-4 m        | inutes after replacing   |

specimen; 10-12 min. after replacing pho-tographic plates

### Overall Dimensions and Weight of Instrument

| mm Width of microscope with pump, mm Length of microscope (cabinet and desk), mm Length of microscope with pump, mm | Height of microscope, mm<br>Width of microscope (without preliminary vacuum pump), |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Length of microscope (cabinet and desk), mm                                                                         |                                                                                    |
|                                                                                                                     | width of microscope with pump, mm                                                  |
|                                                                                                                     |                                                                                    |
|                                                                                                                     | Weight of complete microscope set, kg                                              |

### ELECTRON MICROSCOPE SET

ELECTRON MICROSCOPE SET
Microscope column
Microscope desk with vacuum distributing mechanism
Microscope cabinet
Control panel
Low-voltage unit
High-brequency transformer
Distribution switchboard
Oil-diffusion vacuum pump
Electron diffraction unit
Preliminary vacuum pump
Resonant voltage stabilizer
Vibration insulators (7 pieces)
Plate holders (2 pieces)
Magnifiers in mounts (3 pieces)
Magnifiers in mounts (3 pieces)
Low magnification pole pieces for projector lens
High magnification pole pieces for projector lens
High magnification pole pieces for projector lens
Brass needle in mount
Stage for drying specimens



60

Fixture for assembling "electron gun" housing Box with caps for the specimens (9 pieces) Anpules with dil for oil-diffusion pump (3 pieces) Fixture for welding filaments
Tank with dil for preliminary vacuum pump Set of tools (wrenches) (15 pieces)
Diaphragms (10 pieces)
Holders for specimens with caps (5 pieces)
Filament assemblies (25 pieces)
Bushing with diaphragm
Large valve
Small valve
Resistors (2 pieces)
Spare bellows (8 pieces)
Spare bellows (8 pieces)
Spare bellows (8 pieces)
Spare bellows (8 pieces)
Rubber gaskets and rings (30 pieces)
Prases for 10A, 5A, 2A and 0.5A (10 pieces)
Stream of calmping rings (10 pieces)
Stream of calmping rings (10 pieces)
Specimen grids (500 pieces)
Specimen grids (500 pieces)
Electric heater coils for oli-diffusion pump (2 pieces)
Diaphragms for high magnification pole shoc (2 pieces)
Diaphragms for high magnification pole shoc (2 pieces)
Streams for singer (10 pieces)
Streams (10 pieces)
Streams (10 pieces)
Streams (10 pieces)
Electronic tubes, type 61.7 (4 pieces)
Electronic tubes, type 61.8 (10 pieces)
Stabilivolts (2 pieces)
Kenotrons, type B 40/100 (3 pieces)
Neon tube, type MII-7
Electric bubs for illuminating scales (3 pieces)
Thermoelectric lamp, type .17-2
Automobile bubs, type A-16 (3 pieces)
Electronic cases (4 pieces)
Electronic cases (4 pieces)
Electronic tubes, type BI-7
Electric bubs, type A-16 (3 pieces)
Neon tube, type BII-7
Electric bubs, type A-16 (3 pieces)
Electronic tubes, type BII-7
Electric bubs, type A-16 (3 pieces)
Electronic tubes, type BII-7
Electric bubs, type A-16 (3 pieces)
Electronic tubes, type BII-7
Electronic tubes, type BII-7
Electronic tubes, type BII-7
Electronic tubes, type BII-7
Electric bubs, type A-16 (3 pieces)
Electronic tubes, type BII-7
Elect

VSESOJUSNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

### "STANKOIMPORT"

# EXPORTS AND IMPORTS

Machine Tools

Woodworking Machinery

Metal Working Machinery (presses, hammers, shears, cold forming machines, punching machines)

Rolling Mills (imports)

Measuring Instruments and Apparatus (for metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanic's Tools and Chucks Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types Motion-Picture Equipment

Photographic Cameras

Binoculars

Magnifiers Lenses

Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to: Vsesojusnoje Exportno-Importnoje Objedinenije "Stankoimport"

32/34, Smolenskaja-Sennaja pl., Moscow, USSR.

For cables: Stankoimport Moscow

Design and specifications of microscopes illustrated herein are subject to change without notice

Vneshtorgizdat, Order No. 3227

# PORTABLE ELECTRIC TOOLS

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

PORTABLE ELECTRIC TOOLS



Sanifized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

# CONTENTS

|                                               | Page |
|-----------------------------------------------|------|
| PORTABLE ELECTRIC TOOLS                       |      |
| Electric Metal-Working Drills                 | . 5  |
| Electric Metal-Working Shears                 | . 7  |
| Flexible Shaft Electric Grinder               | . 8  |
| Electric Bench Grinder                        | . 9  |
| Electric Screw and Nut Driver                 | . 10 |
| Electric Hammer                               | . 11 |
| Electric Wood-Working Drill                   | . 12 |
| Electric Circular Saws                        |      |
| Electric Chain Mortiser                       | . 14 |
| Electric Planers                              | . 15 |
| Three-Phase Plug                              | . 17 |
| Popmana                                       |      |
| PORTABLE HIGH FREQUENCY ELECTRIC TOOLS        |      |
| High Frequency Electric Drills                | . 19 |
| High Frequency Electric Shears                | . 21 |
| High Frequency Electric Grinders              | . 23 |
| High Frequency Electric Hammer                | . 24 |
| High Frequency Electric Screw and Nut Drivers | . 25 |
| High Frequency Electric Screw Driver          | . 27 |
| High Frequency Electric Stud Setter           | . 28 |
| Engage and Change                             |      |

### Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

### PORTABLE ELECTRIC TOOLS

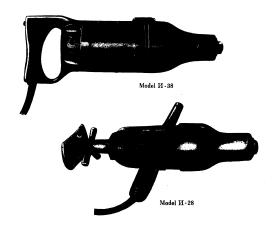
Portable Electric Tools produced in the U. S. S. R. are outstanding for their high efficiency, convenience and safety in handling and long service.

The tool housings are made of light aluminium alloys, due to which the tools are light in weight and remarkably strong.

The tool handles with trigger switches placed on them, as well as the control devices, ensure easy handling and do not distract the operator's attention from the main object of his job.

The electric motors, both the universal and three-phase ones, are manufactured with great accuracy of first-class materials, have proper cooling facilities and are noted for their long life.

The reduction gears, spindles, ball and roller bearings and other parts are of high workmanship and ensure noiseless operation and long trouble-free service of the tool.


### ELECTRIC METAL-WORKING DRILLS, MODELS M - 38, M - 28, M - 29

The M-38, M-28 and M-29 Electric Drills are designed for drilling holes up to 15, 20 and 23 mm in diameter respectively in steel with a tensile strength up to 45  $kg/mm^2$  as well as in other metals.

The Electric Drills are widely used in boiler smith's works, for shipbuilding, carbuilding, locomotive engineering, for the production and installation of metal structures, sanitary engineering work, etc. The Electric Drills may be also used for cleaning surfaces with a metal brush, for grinding, polishing and similar work. In such cases a different tool, suitable for the work in view, is fitted into the tapered spindle hole in place of the drill.

Models M-38 and M-28 Electric Drills are powered by universal singleplace motors operating on A. C. or D. C. supply of normal frequency. Model M-29 Electric Drill is furnished with a three-phase motor having a stator winding which provides star-delta connection.

The rotor shaft of the motor is mounted on ball bearings. The motor is cooled by a fan fitted to the motor shaft. The cooling air is drawn in and driven out through special vents in the Drill housing. A gear either cut on the end of the rotor shaft (Models M-38 and M-28) or keyed to it (Model M-29) transmits power to the gear fixed on the spindle through an intermediate gear train which serves as a reducer in the transmission system from motor shaft to spindle.





The M-38 and M-28 Electric Drills have their spindles mounted on two radial thrust ball bearings. The spindle of the M-29 Electric Drill is mounted on a bronze sleeve and a thrust ball bearing. The intermediate gear train runs in ball bearings.

The motor is started and stopped by means of a switch fitted to the drill handle.



Model II · 2

### SPECIFICATIONS

| Item                                               | Electric Drill Models     |                           |                       |  |  |  |  |  |
|----------------------------------------------------|---------------------------|---------------------------|-----------------------|--|--|--|--|--|
|                                                    | II - 38                   | И - 28                    | II - 29               |  |  |  |  |  |
| Drilling capacity in steel, mm                     | 15                        | 20                        | 23                    |  |  |  |  |  |
| Spindle speed, r. p. m.                            | 600                       | 350                       | 200                   |  |  |  |  |  |
| Morse taper in spindle                             | No. 1                     | No. 2                     | No. 2                 |  |  |  |  |  |
| Distance from center of spindle to outer of casing | 60                        | 58                        | 87                    |  |  |  |  |  |
| Electric motor:                                    |                           |                           |                       |  |  |  |  |  |
| type                                               | universal<br>single-phase | universal<br>single-phase | induction.<br>3-phase |  |  |  |  |  |
| horsepower, watts                                  | 275                       | 360                       | 600                   |  |  |  |  |  |
| speed, r. p. m.                                    | 12000                     | 12000                     | 3 000                 |  |  |  |  |  |
| electric current                                   | D. C. or A. C.            | D. C. or A. C.            | A. C., 3-phase        |  |  |  |  |  |
| voltage, v                                         | 220 or 120                | 220 or 120                | 220 or 127            |  |  |  |  |  |
| Overall dimensions, mm                             | 120 × 365                 | 395 × 510                 | 350 × 650             |  |  |  |  |  |
| Net weight, kg                                     | 3.8                       | 8.0                       | 11.0                  |  |  |  |  |  |



### ELECTRIC METAL-WORKING SHEARS, MODELS И - 30, И - 31

The M-30 and M-31 Electric Shears are designed for cutting and trimming sheat steel up to 1.5 and 2.7 mm thick respectively (for steel with a tensile strength of 45 kg/mm<sup>3</sup>) as well as other sheet metals. The Electric Shears are widely used for roofing, sanitary engineering and other purposes.

The Electric Shears are powered by universal single-phase motors operating on A. C. or D. C. supply, 50 cycles.

The rotor shaft of the motor is mounted on two ball bearings. The cooling of the motor is accomplished by a fan pressed on the rotor shaft. The cooling air is drawn in and driven out through special vents in the cast aluminium housing of the shear.

Power is transmitted through a reducer from the motor shaft to an eccentric shaft.

The M-31 Shear have a worm wheel serving as a reducer and the M-30 Shear — two pairs of gears, the driving gear being cut on the end of the rotor shaft and the driven one keyed to the eccentric shaft. The latter is mounted on ball bearings and serves for transforming the rotating motion of the rotor into the reciprocating motion of the tool-holder carrying the moving blade. The fixed blade is clamped to an anvil.

The spacing of the cutting blades is adjusted by means of set-screws. The motor is started by a switch fitted to the handle.



### SPECIFICATIONS

| l tem                                                       | Electric St               | ear Models                |
|-------------------------------------------------------------|---------------------------|---------------------------|
| 110 m                                                       | И-30                      | И-31                      |
| Maximum thickness of steel sheets, mm<br>Strokes per minute | 1.5                       | 2.7<br>1.650              |
| Electric motor:                                             | 1400                      | 1000                      |
| type                                                        | universal<br>single-phase | universal<br>single-phase |
| horsepower, watts                                           | 250                       | 370                       |
| speed, r.p.m.                                               | 12 000                    |                           |
| electric current                                            | D. C. or A. C.            | D. C. or A. C.            |
| voltage, v                                                  | 220                       | 220                       |
| Overall dimensions, mm                                      | 160 × 370                 | $245 \times 390$          |
| Net weight, kg                                              | 5.3                       | 10                        |

### FLEXIBLE SHAFT ELECTRIC GRINDER, MODEL И - 54

The M-54 Electric Grinder is designed for smoothing welds, chamfering, removing rust from metal structures as well as for carrying out various grinding operations on metal, cement, concrete and wood articles. These operations are accomplished by means of grinding, leather or felt wheels, rubber wheels with emery cloth or by steel brushes.

The Electric Grinder consists of an electric motor mounted on a stand, a flexible shaft and two changeable grinding heads.





The electric motor is an induction one, operating on three-phase current supply, with a squirrel-cage rotor. The motor is mounted on the stand in a way to allow free swivelling in the horizontal plane. The motor is cooled by a fan mounted on the rotor shaft.

Power is transmitted from the motor to the shaft of the grinding head through a flexible shaft having a right-hand rotation.

The Grinder may be furnished either with a straight or with a right-angle grinding head. The straigth grinding head is designed for performing grinding operations with the periphery of the wheel and consists of a housing, a handle, two flanges, a guard and a wheel spindle. The right-angle grinding head is designed for grinding with the face of a cup wheel and consists of a housing, a handle, a reducer and a wheel spindle.

### SPECIFICATIONS

| Grinding wheel diameter, mm<br>Grinding wheel speed, r. p. m.: |  | - |  |     |      |     |    | 200   |
|----------------------------------------------------------------|--|---|--|-----|------|-----|----|-------|
| straight grinding head .                                       |  |   |  |     |      |     |    | 2850  |
| right-angle grinding head                                      |  |   |  |     |      |     |    | 4000  |
| Electric motor:                                                |  |   |  |     |      |     |    |       |
| horsepower, watts                                              |  |   |  |     |      |     |    | 1000  |
| speed, r. p. m                                                 |  |   |  |     |      |     |    | 3000  |
| electric current                                               |  |   |  | . A | A. ( | Z., | 3- | phase |
| voltage, v                                                     |  |   |  |     |      |     |    | 220   |
| frequency, cycles                                              |  |   |  |     |      |     |    | 50    |
| Overall dimensions, mm                                         |  |   |  | 265 | X    | 3   | 15 | × 360 |
| Length of flexible shaft, mm .                                 |  |   |  |     |      |     |    |       |
| Not weight kg                                                  |  |   |  |     |      |     |    | 32    |

### ELECTRIC BENCH GRINDER, MODEL И - 26

The M-26 Bench Grinder is designed for sharpening cutting chains of saws and mortisers, blades of electric planers, drills and other small tools for wood

The Grinder is mounted on a table or on a bench. The sharpening operation is accomplished by means of a grinding wheel fitted directly to the motor shaft.

The Grinder is furnished with a set of accessories for various tool-sharpening

### SPECIFICATIONS

| Grinding wheel diameter, mm     |     |    |     |    |    |     |       |      | 100          |
|---------------------------------|-----|----|-----|----|----|-----|-------|------|--------------|
| Grinding wheel speed, r. p. m.  |     |    |     |    |    |     |       |      | 2800         |
| Electric motor:                 |     |    |     |    |    |     |       |      |              |
| horsepower, watts               |     |    |     |    |    |     |       |      | 450          |
| electric current                |     |    |     |    |    | . 4 | 4. C  | , 3- | phase        |
| voltage, v                      |     |    |     |    |    |     |       | . 13 | 27/220       |
| frequency, cycles               |     |    |     |    |    |     |       |      | 50           |
| Overall dimensions, mm          |     |    |     |    |    | 225 | 5 X : | 250  | $\times$ 320 |
| Net weight (without cable and t | ool | re | st) | kg | ٠. |     |       |      | 12.4         |



### ELECTRIC SCREW AND NUT DRIVER, MODEL И - 32

The M-32 Electric Screw and Nut Driver is designed for driving bolts and screws and for tightening nuts with a thread diameter up to 16 mm.

The Electric Screw and Nut Driver consists of a universal single-phase motor, a gear reducer, a spindle and a tool-holder placed in a cast aluminium housing. A handle with a cable and a switch is fitted to the housing.

The motor is cooled by a fan mounted on the rotor shaft.

The reducer consists of two pairs of gears, the driving wheel being cut on the end of the rotor shaft and the driven one keyed to the spindle end. The hollow steel spindle runs in ball bearings. When pressure is applied to the nut (bolt or screw), the spindle and the tool-holder contact each other through cams on the flange faces which transmit power from the spindle to the Driver.

 $\boldsymbol{A}$  spring is placed within the spindle, serving to release the Screw Driver head when running idle.

The Screw Driver is furnished with a set of Screw Driver bits (4 pcs.).



### SPECIFICATIONS

| Maximum screw and nu    | t t | hre | ead | d | ian | net | er, | m | m |  |    |      | 16    |
|-------------------------|-----|-----|-----|---|-----|-----|-----|---|---|--|----|------|-------|
| Spindle speed, r. p. m. |     |     |     |   |     |     |     |   |   |  |    |      | 756   |
| Electric motor:         |     |     |     |   |     |     |     |   |   |  |    |      |       |
| horsepower, watts       |     |     |     |   |     |     |     |   |   |  |    |      | 275   |
| electric current .      |     |     |     |   |     |     |     |   |   |  |    |      |       |
| voltage, v              |     |     |     |   |     |     |     |   |   |  | 1  | 10 o | r 220 |
| frequency, cycles .     |     |     |     |   |     |     |     |   |   |  |    |      | 50    |
| Overall dimensions, mm  |     |     |     |   |     |     |     |   |   |  | 1: | 20 > | < 445 |
| Not woight by           |     |     |     |   |     |     |     |   |   |  |    |      | 4     |



### ELECTRIC HAMMER, MODEL II - 33

The  $\it M$ -33 Electric Hammer is designed for punching holes up to 30 mm in diameter in brick and concrete when carrying out building, sanitary engineering and electric installation work.

The Electric Hammer consists of a universal single-phase motor, a reducer, a device for transforming the rotating motion of the motor shaft into the reciprocating motion of the piston and a set of tools. The motor and all mechanisms of the Hammer are placed in cast aluminium housings fastened to each other by screws. A handle with a cable and a switch is fitted to the upper part of the motor housing. The motor is cooled by a fan mounted on the rotor shaft. The reducer consists of a pair of bevel gears transmitting power from the motor shaft to the shaft of the motion transforming device. The latter consists of a crank with a driving roller. The crank communicates motion to the plunger, placed in a guide sleeve and striking blows on the hammer die. The changeable working tool is clamped in a thrust sleeve by means of set-screws.

All rotating parts are mounted on ball bearings. The switch is of the double-pole, trigger type.



### SPECIFICATIONS

| Maximum hole diameter   | , iı | ı t | ric | k | or | in | co | ner | ete | e, 1 | nm |    |    | 30           |
|-------------------------|------|-----|-----|---|----|----|----|-----|-----|------|----|----|----|--------------|
| Number of blows per I   | nin  | ut  | e   |   |    |    |    |     |     |      |    |    |    | 2400         |
| Energy of one blow, kg. | m    |     |     |   |    |    |    |     |     |      |    |    |    | 0.3          |
| Electric motor:         |      |     |     |   |    |    |    |     |     |      |    |    |    |              |
| horsepower, watts       |      |     |     |   |    |    |    |     |     |      |    |    |    | 360          |
| electric current .      |      |     |     |   |    |    |    |     |     |      | D. | C. | or | A. C.        |
| voltage, v              |      |     |     |   |    |    |    |     |     |      |    |    |    | 220          |
| frequency, cycles .     |      |     |     |   |    |    |    |     |     |      |    |    |    | 50           |
| Overall dimensions, mn  | ١.   |     |     |   |    |    |    |     |     |      |    | 13 | 50 | $\times$ 390 |
| Net weight, kg          |      |     |     |   |    |    |    |     |     |      |    |    |    | 8.2          |

The hammer is furnished with a set of tools: chisels (3 pcs. of 20, 30 and 50 mm width) and a bull point tool.




•

### ELECTRIC WOOD-WORKING DRILL, MODEL И - 27

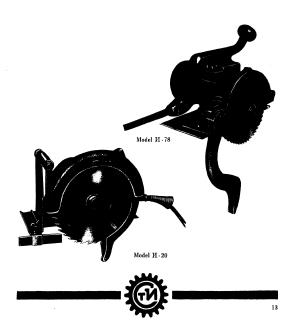
The M-27 Electric Drill is designed for drilling holes up to 26 mm in diameter and a depth up to 1000 mm in logs, beams, boards and wooden constructions when fastening together various parts and joints by means of pins or screws.

The spindle of the Drill is powered by a three-phase induction motor with a squirrel-cage rotor through a reducer consisting of two pairs of gears. Drilling is accomplished by the Drill when the drill housing is lowered along the guiding rods.

Drilling may also be performed without the guiding rods.



### SPECIFICATIONS


| Drilling capacity in wood, mm                                 | 26   |
|---------------------------------------------------------------|------|
| Maximum depth of drilling, mm:                                |      |
| with guiding rods                                             | 350  |
| without guiding rods                                          | 000  |
| Spindle speed, r. p. m                                        | 430  |
| Electric motor:                                               |      |
| horsepower, watts                                             | 430  |
| speed, r. p. m                                                | 000  |
| electric current A.C., 3-ph                                   | ase  |
| voltage, v                                                    | 220  |
| frequency, cycles                                             |      |
| Overall dimensions (with stand), mm $210 \times 280 \times 1$ | 300  |
| Net weight, kg:                                               |      |
| with stand                                                    |      |
| without stand                                                 | 11.0 |



### ELECTRIC CIRCULAR SAWS, MODELS И - 78, И - 20

The M-78 and M-20 Electric Saws are designed for cutting wooden boards and beams up to 60 mm thick. The cutting may be done both along and across the grain. The Electric Saws may be also used for undercutting wood to a depth of 60 mm. For this purpose the saws are fitted with a special device for adjusting the depth of cut and for setting the saw blade at an angle of  $45^\circ.$ 

The motor is a three-phase induction one, with a squirrel-cage rotor. The motor is cooled by a fan mounted at the rear end of the rotor shaft. A handle with a double-pole switch is fitted to the motor housing.



The saw blade is fastened on the end of the rotor shaft running in two ball bearings. By means of a guide, the blade may be lowered to the required depth of cut. The setting and clamping of the saw blade at an angle of up to 45° is accomplished by a side guide. A side guiding bar with a ruler allows the cutting to be performed in accordance with the layout The saw blade is protected by two guards — an upper and lower one. The lower guard automatically covers up the saw blade by means of a spring which eliminates any possibility of touching the blade during operation.

### SPECIFICATIONS

| ltem                          | Electric S    | aw Models     |
|-------------------------------|---------------|---------------|
|                               | И -78         | II - 20       |
| Maximum depth of cut, mm      | 60            | 60            |
| Diameter of saw blade, mm     | 180           | 250           |
| Angle adjustment of saw blade | 0 to 450      | 0 to 45°      |
| Saw blade speed, r.p.m.       | 2820          | 2750          |
| Electric motor:               |               |               |
| horsepower, watts             | 600           | 800           |
| speed, r.p.m.                 | 3000          | 3000          |
| electric current              | A.C., 3-phase | A.C., 3-phase |
| voltage, v                    | 220           | 220           |
| frequency, cycles             | 50            | 50            |
| Overall dimensions, mm        | 265×285×355   | 270×280×440   |
| Net weight, kg                | 10.9          | 14            |

### ELECTRIC CHAIN MORTISER, MODEL M-1

The M-1 Electric Chain Mortiser is designed for mortising rectangular holes, slots and grooves of various sizes in wood, for cutting rabbets and similar work.

Mortising of wood is accomplished by means of a highspeed cutting chain, consisting of a number of properly shaped links (cutters). The chain is driven by a sprocket keyed to the shaft of a three-phase induction motor with a squirreleage rotor. The chain is put on a ruler which serves for guiding and tightening it. By changing the cutting chain it is possible to obtain grooves of various sizes. The cutting chain is fed into the wood and automatically lifted up along guiding rods fastened in the base of the mortiser. The lifting device consists of a lever mechanism and two springs. The depth of mortising is adjusted by means of an adjusting ring fitted to one of the rods. A guiding bar, fastened in the base, serves to adjust the mortiser in accordance with the layout and ensures its stability in the course of operation.



### SPECIFICATIONS

| Size of mortise at one operation (corresponding to the size of chains), mm: $8 \times 40$ $12 \times 50$ |
|----------------------------------------------------------------------------------------------------------|
| $16 \times 60$ $20 \times 60$                                                                            |
| Maximum depth of mortise, mm                                                                             |
| Electric motor:                                                                                          |
| horsepower, watts 800                                                                                    |
| speed, r. p. m                                                                                           |
| electric current A.C., 3-phase                                                                           |
| voltage, v                                                                                               |
| frequency, cycles 50                                                                                     |
| Overall dimensions, mm                                                                                   |
| Net weight, kg                                                                                           |



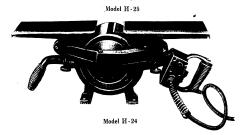
### ELECTRIC PLANERS, MODELS И - 25, И - 24

The  $\it M\text{-}25$  and  $\it M\text{-}24$  Electric Planers are designed for planing various kinds of wood along the grain. Maximum width of chip is 60 and 100 mm respectively.

The planing is accomplished by means of four straight blades fastened in a special shoe which serves at the same time as the rotor of the electric motor.

The depth of cut is adjusted by setting the panels in a proper position with regard to the cutting blades.

The electric motor is started and stopped by means of a trigger switch fitted to the rear handle.




.,

### SPECIFICATIONS

| Item                                     | Electric Pl   | aner Models   |
|------------------------------------------|---------------|---------------|
|                                          | И - 25        | H - 24        |
| Maximum width of cut, mm                 | 60            | 100           |
| Maximum depth of cut, mm                 | 1.5           | 2             |
| Peripheral speed of cutter block, m/sec. | 20            | 22            |
| Electric motor:                          |               |               |
| horsepower, watts                        | 130           | 340           |
| speed, r.p.m.                            | 3000          | 3000          |
| electric current                         | A.C., 3-phase | A.C., 3-phase |
| voltage, v                               | 127/220       | 127/220       |
| frequency, cycles                        | 50            | 50            |
| Overall dimensions, mm                   | 145×180×355   | 215×230×550   |
| Net weight, kg                           | 7.5           | 15.0          |







### THREE-PHASE PLUG, MODEL И - 73 A

The M-73 A Three-Phase Plug is used for connecting portable electric tools which operate on 36 or 220 volts. The plug consists of a cap and a socket placed in metal housings and fastened together by means of a round nut. The cap is connected to the tool by a cable and the socket — to the electric current circuit.



### SPECIFICATIONS

| Voltage, v             | <br>. 36 or 220      |
|------------------------|----------------------|
| Ampere rating, a.      |                      |
| at 36 v                |                      |
| at 220 v               |                      |
| Overall dimensions, mm | <br>$.80 \times 300$ |
| Net weight, kg         | <br>0.91             |



# PORTABLE HIGH FREQUENCY ELECTRIC TOOLS

The Portable High Frequency Electric Tools represent the latest technical achievements in the field of manual electric tools.

They are noted for their small overall dimensions, light weight, high efficiency and complete safety in handling.

The high motor speed of these tools (12 000 r. p. m.) provides for a sufficiently high cutting speed, thus considerably increasing their efficiency, creating favourable conditions for the work of the cutting tool, ensuring smooth finish of the work surfaces and minimizing the operator's efforts.

The small overall dimensions and light weight of the tools make them extremely convenient and easy to handle.

The low voltage of the electric motor (36 volts) eliminates the possibility of a traumatic injury to the operator by the electric current and ensures complete safety during operation.

The tools are distinguished for their sturdy design, which, in combination with the high quality of the materials used for manufacturing the parts and excellent workmanship, ensure long and trouble-free service.

# HIGH FREQUENCY ELECTRIC DRILLS, MODELS И - 74, И - 53, И - 59

The N-74, N-53, N-58 and N-59 Electric Drills are designed for drilling holes of small diameters, i. e. 5, 8, 12 and 20 mm respectively, in steel with a tensile strength up to 50 kg/mm² as well as in soft metals and wood.

Each of the above Drills consists of an electric motor, a reducer and one or two (Model N-59) handles with a switch and a cable connected to it. The motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles and 36 or 220 volts. The rotor of the electric motor runs in two ball bearings.

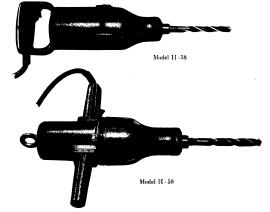
The front end of the rotor shaft is made in the shape of a pinion, with seven corrected teeth which engage a gear with 37 teeth, the latter being keyed directly to the spindle (Model M-74) or incorporated in the intermediate reducer cluster gear (all other models).

Thus the reducer of the N-74 Drill consists of one pair of gears of which the driving gear is cut on the end of the rotor shaft and the driven gear keyed to the spindle.

The M-53 and M-58 Drills have a reducer consisting of two pairs of gears and he M-59 Drill of three pairs of which the driving gears are also cut on the rotor shaft and the driven gears keyed to the spindle.

The intermediate reducer cluster gear runs in ball bearings.

The motor is cooled by a fan pressed on the front part of the rotor shaft. The Drill housing consists of two aluminium castings, fastened together by screws. The motor is placed in the upper part of the housing having vents for the passage of cooling air. The lower part of the housing contains the spindle and the reducer. A handle with a switch and a cable is fitted to the upper part of the housing. The handle accomodates a built-in double-pole sliding momentary switch. The trigger mechanism of the switch has an additional locking button for continuous running. The handle also contains a 1.5 m cable serving to connect






the Drill to the current circuit. A removable breast-plate may be fastened to the upper part of the  $\mathit{M}\text{-}59$  Drill housing. When the breast-plate is removed, the feed may be accomplished by a feed screw with a handwheel. For suspending the Drill beside a conveyor, the breast-plate is replaced by the upper cover with a ring.

When ordering the M-59 Drill it is necessary to indicate the modification required







### SPECIFICATIONS

| Item                                     | Electric Drill Models      |                            |               |               |  |  |  |  |  |
|------------------------------------------|----------------------------|----------------------------|---------------|---------------|--|--|--|--|--|
| 11011                                    | И - 74 И - 53              |                            | H - 58        | H - 59        |  |  |  |  |  |
| Drilling capacity in steel, mm           | 5                          | 8                          | 12            | 20            |  |  |  |  |  |
| Spindle speed, r.p.m.                    | 2200                       | 1300                       | 750           | 350           |  |  |  |  |  |
| Morse taper in spindle                   | external,<br>short, No. 1a | external,<br>short, No. 1b | No. 1         | No. 2         |  |  |  |  |  |
| Electric motor:                          |                            |                            |               |               |  |  |  |  |  |
| horsepower, watts                        | 200                        | 200                        | 400           | 800           |  |  |  |  |  |
| speed, r.p.m.                            | 12000                      | 12000                      | 12000         | 12000         |  |  |  |  |  |
| electric current                         | A.C., 3-phase              | A.C., 3-phase              | A.C., 3-phase | A.C., 3-phase |  |  |  |  |  |
| voltage, v                               | 36 or 220                  | 36 or 220                  | 36 or 220     | 36 or 220     |  |  |  |  |  |
| frequency, cycles                        | 200                        | 200                        | 200           | 200           |  |  |  |  |  |
| Overall dimensions (without chuck), mm   | 70×140×120                 | 70×140×250                 | 95×115×350    | 110×350×455   |  |  |  |  |  |
| Net weight (without chuck and cable), kg | 1.6                        | 1.8                        | 3.6           | 7             |  |  |  |  |  |

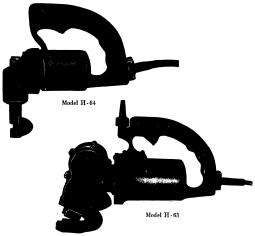
### HIGH FREQUENCY ELECTRIC SHEARS, MODELS И - 64, И - 65

The M-64 and M-65 Electric Shears are designed for cutting sheet steel to a thickness of 1.5 and 2.7 mm respectively, with a tensile strength of 45 kg/mm², as well as other metals.

The Electric Shears comprise an electric motor, a reducer transforming the rotating motion into the reciprocating motion, and a handle with a switch and cable.

The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles and 36 or 220 volts. The rotor of the electric motor runs in two ball bearings. The motor is placed in a cast aluminium housing with vents for the passage of cooling air.

The cooling is accomplished by a fan pressed on the front end of the rotor shaft.


The motor housing is fastened by means of screws to the reducer housing, the latter containing an eccentric shaft and a crank mechanism.

In Model M-64 Shear power is transmitted to the eccentric shaft through a pair of gears, of which the driving gear (with 7 teeth) is cut on the rotor shaft and the driven gear (with 37 teeth) is keyed to the eccentric shaft.

In Model N-65 Shear, the front end of the rotor shaft carries a quadruplethreaded worm engaging the worm wheel with 29 teeth of the reducer. The eccentric shaft communicates a reciprocating motion to the upper moving blade. A tool-holder carrying a fixed blade is fastened to the lower flange of the reducer housing. The spacing of the blades is adjusted by means of set-screws.



A handle with a cable for connecting the Shear to the electric current and with a double-pole sliding switch is fastened to the motor housing by means of screws. The trigger mechanism of the switch has an additional locking button for continuous operation.



SPECIFICATIONS

| Item                                  | Electric S    | Electric Shear Models |  |  |  |  |  |
|---------------------------------------|---------------|-----------------------|--|--|--|--|--|
|                                       | И - 64        | И - 65                |  |  |  |  |  |
| Maximum thickness of steel sheets. mm | 1.5           | 2.7                   |  |  |  |  |  |
| Strokes per minute                    | 2200          | 1650                  |  |  |  |  |  |
| Electric motor:                       |               |                       |  |  |  |  |  |
| horsepower, watts                     | 200           | 800                   |  |  |  |  |  |
| speed, r.p.m.                         | 12000         | 12000                 |  |  |  |  |  |
| electric current                      | A.C., 3-phase | A.C., 3-phase         |  |  |  |  |  |
| voltage, v                            | 36 or 220     | 36 or 220             |  |  |  |  |  |
| frequency, cycles                     | 200           | 200                   |  |  |  |  |  |
| Overall dimensions, mm                | 85×240×250    | 160×280×350           |  |  |  |  |  |
| Net weight, kg                        | 2.5           | 9                     |  |  |  |  |  |

### HIGH FREQUENCY ELECTRIC GRINDERS, MODELS U - 82, U - 66

The M-82 and M-66 Electric Grinders are designed for smoothing welds, sanding down castings, removing burrs and for other grinding and smoothing operations on large and heavy workpieces.

The Grinder consists of an electric motor and a spindle with a grinding

The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles, 36 or 220 volts. The motor is placed in a cast aluminium housing with vents for the passage of cooling air. The cooling is accomplished by a fan pressed on the front part of the rotor shaft. The rotor shaft runs in two ball bearings. The motor housing carries a handle with a cable and a switch on one side and the spindle housing with a

second handle and a wheel guard on the other.

A pinion with seven teeth is cut in the front end of the rotor shaft. The pinion of the N-82 Grinder engages the slotted sleeve of the spindle and the pinion of the M-66 Grinder engages a gear with 24 teeth keyed to the spindle. The spindle runs in ball bearings.

The switch, mounted in the handle, is a double-pole trigger-type momentary and the spindle.

ary switch.



| Item                                | Electric Gri  | Electric Grinder Models |  |  |  |  |  |
|-------------------------------------|---------------|-------------------------|--|--|--|--|--|
| 11000                               | И - 82        | И - 66                  |  |  |  |  |  |
| Maximum grinding wheel diameter, mm | 50            | 175                     |  |  |  |  |  |
| Spindle speed, r.p.m.               | 12000         | 3 500                   |  |  |  |  |  |
| Electric motor:                     |               |                         |  |  |  |  |  |
| horsepower, watts                   | 200           | 800                     |  |  |  |  |  |
| speed, r.p.m.                       | 12000         | 12000                   |  |  |  |  |  |
| electric current                    | A.C., 3-phase | A.C., 3-phase           |  |  |  |  |  |
| voltage, v                          | 36 or 220     | 36 or 220               |  |  |  |  |  |
| frequency, cycles                   | 200           | 200                     |  |  |  |  |  |
| Overall dimensions, mm              | 70×420        | 190×550                 |  |  |  |  |  |
| Net weight, kg                      | 1.8           | 6.2                     |  |  |  |  |  |





### HIGH FREQUENCY ELECTRIC HAMMER, MODEL II - 67

The *M*-67 Electric Hammer is designed for drilling, chiseling and bush hammering in concrete, brick or stone, for chipping and scaling castings and for various work requiring hammer action.

The main parts of the Hammer are the electric motor and the striking mechanism placed in a common housing.

The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles, 36 or 220 volts.

The rotor shaft is made solid with the sleeve of the striking mechanism and runs in two ball bearings. The rear bearing is mounted in the housing and the front bearing in a flanged bushing fitted to the face of the housing. The square hole of the bushing serves as a guide for the working tool. A spring keeping the tool from falling down is fitted to the outer flank of the bushing. The rear part of the housing carries a handle with a cable and a switch.

The cooling of the motor is accomplished by a centrifugal fan fastened on the sleeve of the striking mechanism. The cooling air is drawn in and driven out through special vents in the housing.

The front part of the hammer die has a square hole for fixing the tool.

When the motor is started the sleeve and bushing impart a rotating motion to balls which push forward the plunger and hammer die with the tool; in this position, however, the plunger and hammer die are disconnected and the hammer runs idle.

When the tool is pressed against the work, the hammer die comes into contact with the plunger that produces the first blow, plunger losing its rotation speed; due to recoil, the plunger returns backwards. Upon the plunger regaining its rotation speed the operation cycle is again repeated.

When using a tool with two squares, one of which fits into the flanged bushing and the other into the hammer die hole, the hammer die stops rotating and only a reciprocating motion is imparted to the tool.

When using a tool with one square, which fits into the hammer die hole, the rotating motion is imparted to the tool.

The number and energy of blows depend on the elastic limits of the material to be machined, on the tool weight and pressure of the tool against the work.





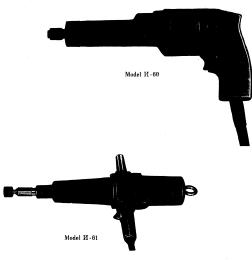
### SPECIFICATIONS

| Number of blows per minute   | е.  |      |     |    |  |  |   | 100   | 0 to 600      |
|------------------------------|-----|------|-----|----|--|--|---|-------|---------------|
| Energy of one blow, kg. m .  |     |      |     |    |  |  |   |       | up to         |
| Electric motor:              |     |      |     |    |  |  |   |       |               |
| horsepower, watts            |     |      |     |    |  |  |   |       | . 140         |
| speed, r. p. m               |     |      |     |    |  |  |   |       | . 1200        |
| electric current             |     |      |     |    |  |  | Α | . C., | 3-phas        |
| voltage, v                   |     |      |     |    |  |  |   | . :   | 36 or 22      |
| frequency, cycles            |     |      |     |    |  |  |   |       | . 20          |
| Overall dimensions (without  | to  | ol), | m   | m  |  |  |   | 11    | $0 \times 52$ |
| Net weight (without tool and | i c | able | e). | kg |  |  |   |       | . 8           |

### HIGH FREQUENCY ELECTRIC SCREW AND NUT DRIVERS, MODELS II - 60, II - 61

The M-60 and M-61 Electric Screw and Nut Drivers are designed for driving bolts and tightening nuts with a thread diameter up to 6 mm and 12 mm respectively.

Each Screw and Nut Driver consists of an electric motor, a reducer and one or two cam clutches providing a forced starting of the tool and its automatic stopping when a definite tightening effort has been achieved.


The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles, 36 or 220 volts. The rotor of the electric motor runs in two ball bearings.

The front end of the rotor shaft is made in the shape of a pinion with seven corrected teeth which engages a gear with 37 teeth incorporated in the intermediate reducer gear cluster. The electric motor is placed in a cast aluminium housing having vents for the passage of cooling air. The cooling is accomplished by a fan pressed on the front end of the rotor shaft. The U-60 Model has one handle and the U-61 two handles with a cable and a double-pole switch. The switch trigger mechanism has an additional locking button for continuous running. The U-61 model also has a ring for suspending it when the work is performed on a conveyor.

In the M-60 Model, the motion is transmitted from the rotor shaft through a reducer cluster gear to an intermediate shaft having face cams which engage the spindle key. The spindle key is pressed to the cams by means of a spring, the tension of which is adjusted by a nut. When the given torsional moment is attained, the key and the intermediate shaft become disengaged, thus ensuring a certain degree of tightening of the screw or nut. The M-61 Model has two cam clutches, one of which serves for setting the Screw and Nut Driver in motion and the other for automatically stopping it when a certain moment of torsion has been attained.

The spindle is furnished with a ball-shaped lock providing for quick and easy changing of tools.





### SPECIFICATIONS

| Item                                   | Screw Driver Models |               |  |  |  |  |
|----------------------------------------|---------------------|---------------|--|--|--|--|
|                                        | И - 60              | И-61          |  |  |  |  |
| Maximum screw and nut thread diameter, | 6                   | 12            |  |  |  |  |
| Spindle speed, r.p.m.                  | 980                 | 630           |  |  |  |  |
| Number of strokes per minute           | 1960                | 2520          |  |  |  |  |
| Electric motor:                        |                     |               |  |  |  |  |
| horsepower, watts                      | 200                 | 800 .         |  |  |  |  |
| speed, r.p.m.                          | 12000               | 12000         |  |  |  |  |
| electric current                       | A.C., 3-phase       | A.C., 3-phase |  |  |  |  |
| voltage, v                             | 36 or 220           | 36 or 220     |  |  |  |  |
| frequency, cycles                      | 200                 | 200           |  |  |  |  |
| Overall dimensions, mm                 | 70×140×300          | 115×470×600   |  |  |  |  |
| Net weight, kg                         | 2.2                 | 8.7           |  |  |  |  |

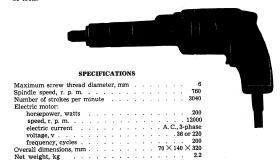


### HIGH FREQUENCY ELECTRIC SCREW DRIVER, MODEL И - 62

The M-62 Electric Screw Driver is designed for driving screws with a thread diameter up to 6 mm.

The Screw Driver consists of an electric motor, a reducer and a gauged releasing cam clutch which serves for starting the tool and automatically stops driving the screw or nut when a certain torsional moment has been attained.

The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles, 36 or 220 volts. The rotor of the electric motor runs in two ball bearings.


The front end of the rotor shaft is made in the shape of a pinion with seven corrected teeth engaging a gear with 37 teeth incorporated in the intermediate reducer cluster gear.

The electric motor is placed in a cast aluminium housing having vents for the passage of cooling air. The cooling is accomplished by a fan pressed on the front end of the rotor shaft.

A handle with a cable and a double-pole switch is attached to the motor housing by means of screws. The switch trigger mechanism has an additional locking button for continuous running.

The reducer is placed in a cast aluminium housing, fastened to the motor housing. The motion is transmitted from the rotor shaft through a reducer cluster gear to an intermediate shaft with face cams engaging the spindle key. The spindle key is pressed to the cams by a spring, the tension of which is adjusted by a nut. When the given torsional moment is attained, the key and the intermediate shaft become disengaged, thus ensuring a certain degree of tightening of the screw.

The spindle has a ball-shaped lock, providing for a quick and easy change of tools.





#### HIGH FREQUENCY ELECTRIC STUD SETTER, MODEL M - 63

The M-63 Electric Stud Setter is designed for driving studs with a thread diameter up to  $12\ mm$ .

The Stud Setter consists of the following principal parts: electric motor and reversing reducer.

The electric motor is an induction one, with a squirrel-cage rotor, operating on a special A. C. three-phase circuit, 200 cycles, 36 or 220 volts. The rotor of the electric motor runs in two ball bearings. The front end of the rotor shaft is made in the shape of a pinion with seven teeth, engaging a gear with 41 teeth, incorporated in the intermediate reducer cluster gear which runs in two needle bearings. The 12-tooth gear of the cluster gear simultaneously engages a 28-tooth reversing gear (external gearing), and a 52-tooth working motion gear (internal gearing).

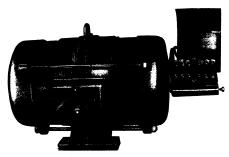


When pressure is applied to the Stud Setter, the spindle moves backwards, engages by its front key the face cams of the working motion gear and rotates in the same direction in which the stud is driven. When the tool is being with-drawn, the spindle moves forward, engages by its rear key the face cams of the reversing gear and rotates in the same direction in which the stud is unscrewed.

The electric motor and the reducer are placed in a cast aluminium housing with vents for the passage of cooling air.

Cooling is accomplished by a fan, pressed on the front end of the rotor shaft. A cover with a ring for suspending the Stud Setter when work is performed on a conveyor is attached to the upper part of the housing. The cable ends are led out into one of the handles, which accomodates a double-pole sliding switch.




When switching over the motor phases, the Stud Setter may be used for driving studs with left-hand thread. The Stud Setter, with a tap fixed in the spindle, may also be used for tapping both right-hand and left-hand threads up to 10 mm in diameter.

#### SPECIFICATIONS

| Maximum st   | ud t | hr  | eac | l d | iar | ne | ter | . n | nm |   |  |   |      |      | 1:    |
|--------------|------|-----|-----|-----|-----|----|-----|-----|----|---|--|---|------|------|-------|
| Spindle spee |      |     |     |     |     |    |     |     |    |   |  |   |      |      |       |
| forward      |      |     |     |     |     |    |     |     |    |   |  |   |      |      | 47    |
| reverse      |      |     |     |     |     |    |     |     |    | , |  |   |      |      | 87    |
| Electric mot | or:  |     |     |     |     |    |     |     |    |   |  |   |      |      |       |
| horsepov     | ver, | w   | att | s   | ,   |    |     |     |    |   |  |   |      |      | 80    |
| speed, r.    |      |     |     |     |     |    |     |     |    |   |  |   |      |      |       |
| electric     | curr | en  | t   |     |     |    |     |     |    |   |  | A | . C. | , 3- | phas  |
| voltage,     | ν.   |     |     |     |     |    |     |     |    |   |  |   |      | 36   | or 22 |
| frequenc     | y, c | vel | es  |     |     |    |     |     |    |   |  |   |      |      | 20    |
| Overall dime |      |     |     |     |     |    |     |     |    |   |  |   |      |      |       |
| Net weight.  |      |     |     |     |     |    |     |     |    |   |  |   |      |      |       |

#### FREQUENCY CHANGER, MODEL И - 75

The  $\it M$ -75 Frequency Changer is designed for supplying electric current to the high frequency portable electric tools. It consists of a double-pole induction electric motor with a squirrel-cage rotor and a six-pole induction generator. The rotors of the motor-generator set have a common shaft and the stators are united by a common housing. The rotor shaft runs in two ball bearings.



The current is supplied to the stator windings of the motor and generator from a normal A. C. three-phase, 50 cycle circuit through a panel in which the terminals of the stator windings are installed. By rearranging the contact plates



on the panel it is possible to switch the changer to a 380 volt or 220 volt circuit. The transformed current of 200 cycles and 38 volts is fed from the rotor of the generator through terminals led out of the shaft holes to the contact rings fitted to the shaft end. The current is collected from the contact rings by brushes, the cables of which are connected with the 12-terminal panel board serving for direct switching of the distributing circuit or the current collectors.

The end of the shaft with contact rings, the brushes and the panel are protected by a folding cover.

#### SPECIFICATIONS

| Electric current   |   |     |     |      |    |     |   |  |  | . 4 | ٩. ( | J., : | 3-r | has  |
|--------------------|---|-----|-----|------|----|-----|---|--|--|-----|------|-------|-----|------|
| Voltage, v:        |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| primary            |   |     |     |      |    |     |   |  |  |     |      |       | 38  | 0/22 |
| secondary          |   |     | ,   |      | ,  |     |   |  |  |     |      | 36    | +   | 10 0 |
| Frequency (synchi  | o | າດເ | ıs) | ), ( | yc | les | : |  |  |     |      |       |     |      |
| primary            |   |     | . ' |      |    |     |   |  |  |     |      |       |     | 5    |
| secondary          |   |     |     |      |    |     |   |  |  |     |      |       |     | 20   |
| Shaft speed, r. p. |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| synchronous .      |   |     |     |      |    |     |   |  |  |     |      |       |     | 300  |
| on full load .     |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| Input power, kw.   |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| Power factor of th |   |     |     |      |    |     |   |  |  |     |      |       |     | 0    |
| Power factor of th |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| Output power, kva  |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| Overall dimension  |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| Net weight, kg .   |   |     |     |      |    |     |   |  |  |     |      |       |     |      |
| met weight, ng .   | • |     |     | •    | •  | *   |   |  |  |     |      |       | •   | 0    |

The Vsesojuznoje Exportno-Importnoje Objedinenije

#### "STANKOIMPORT"

exports and imports:

Machine Tools

Wood-Working Machinery

Metal-Working Machinery (Presses, Hammers, Shears, Cold Roll Forming Machines, Punching Machines)

Rolling Mills

Measuring Instruments and Tools (for Metal Industry)

Testing Machines and Apparatus (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanic's Tools

Lathe and Drill Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types

Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photographic cameras, Binoculars, Magnifiers, Lenses

Crude Optical Glass and Blanks

All inquiries and correspondence to be forwarded to:

 ${\tt VSESOJUZNOJE} \ {\tt EXPORTNO-IMPORTNOJE} \ {\tt OBJEDINENIJE} \\ {\tt ,STANKOIMPORT"}$ 

Moscow 200, Smolenskaja-Senneja pl., 32/34

For cables: Stankoimport Moscow

Design and specifications of the tools illustrated herein are subject to change without notice.

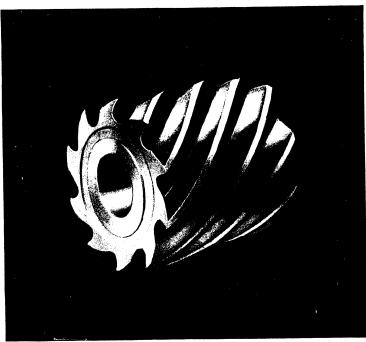




Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

#### ERRATA

| Page | Line          | Printed                                         | To be read          |  |  |  |
|------|---------------|-------------------------------------------------|---------------------|--|--|--|
| 19   | 7 from top    | (Model N-59)the N-82 GrinderSmolenskaja-Senneja | (Model И-59)        |  |  |  |
| 23   | 15 " "        |                                                 | the И-82 Grinder    |  |  |  |
| 31   | 4 from bottom |                                                 | Smolenskaja-Sennaja |  |  |  |


Catalogue "Portable Electric Tools"

Vneshtozgizdat

Order No. 440

54.2





# ФРЕЗЫ



ВСЕСОЮЗНОЕ ЭКСПОРТНО-ИМПОРТНОЕ ОБЪЕДИНЕНИЕ

СТАНКОИМПОРТ

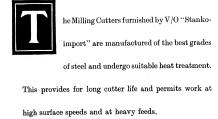
CCCP

MOCKBA

Sanitized Conv Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

# фРЕЗЫ — MILLING CUTTERS

СТАНКОИМПОРТ


50X1-HU



оставляемые В/О "Станкоимпорт" фрезы изготовлены из лучших сортов стали с соответствующей термической обработкой,

что обеспечивает им отличную стойкость и позволяет работать на высоких скоростях резания и больших подачах.

Фрезы отвечают всем современным требованиям как в отношении геометрии режущих элементов, так и вотношении качества отделки режущихграней инструмента.



Geometry of cutting elements and the finish on the cutting edges of the cutters meet all up-to-date requirements.

#### содержание

#### CONTENTS

| Стј<br>Рад                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Фрезы дилиндрические с мелким зубом<br>Plain milling cutters, light duty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7          |
| Фрезы дилиндрические со встаниями пожами (одинарные) Inserted blade plain milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9          |
| Фрезы цилиндрические со истаниями ножами (составные)  Inserted blade milling cutter gangs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3          |
| Френы торцевые насадные с мелам зубом — Light duty shell end mills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8          |
| Фрезы торцевые вазадные с крупным зубом           Heavy duty shell end mills         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:         |
| Фрезы торценые насадные со вставными новами           Inserted blade face milling cutters         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          |
| Фрезы торцевые насадные со вставными поаками, оснощенные твердым                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Carbide tipped inserted blade face milling cutters, shell type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4          |
| chianom  Carbide tipped inserted blade face milling cutters, shell type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7          |
| Фрезы торцевые васадные со вставными повами, оснащенные твердым — свлавом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| cannot explore meeting and an explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80         |
| The second secon | 34         |
| Фремы дисковые трехсторовине с раскошенным зубом Staggered tooth side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36         |
| Фрезы дисковые трехсторовине с вирессованными полами Inserted blade side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ß          |
| Френы дисковые трехсторонние со встанными поязими Inserted blade side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b> 1 |
| Фреды дисковые тремсторонние со вставными позами, оснощениие твердым силиюм Carbide tipped inserted blade side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16         |
| Фремы дистопые друхеторонние со истаниями поломи Inserted blade half side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| фрема дисковые двухсторонине со встаняюми возками, оснащениме твердым сильном Carbide tipped inserted blade half side milling cutters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52         |

#### Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

|                                                                                                                                    | ~ , , |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| Фрезы дисковые назовые                                                                                                             | Page  |
| Slotting milling cutters                                                                                                           | 57    |
| Фрема дисковые назовые затылованные Relieved teeth slotting milling cutters                                                        | 59    |
| Фрезы одноугловые Single angle milling cutters                                                                                     | 61    |
| Фремы двухугловые несимметричные Double angle milling cutters with unsymmetrical tooth face                                        | 63    |
| Фрезы полукруганае выпуканае Radial tooth face convex milling cutters                                                              | 65    |
| Фремы полукруглые вогнутые Radial tooth face concave milling cutters                                                               | 67    |
| Френа проредные Serew-slotting cutters                                                                                             | 69    |
| Френы огреаные Metal slitting saws                                                                                                 | 71    |
| Фреды концевые с налиндрическим хаостом<br>Straight shank end mills                                                                | 73    |
| Фремы концовые с конциским хвостом  Taper shank end mills                                                                          | 75    |
| Фремя концевые с концисским хвостом, без горцевых зубьег.  Тарет shank end mills without face teeth                                | 77    |
| Фремы конциста с обдирознаве с концерскам хаостом, с затта ованизм дубом.<br>Taper shank end mills with relieved teeth             | 79    |
| Френя поинение торневие со денавиля новами<br>Inserted blade end mills                                                             | 82    |
| Фрезы концевые торповае с концесским хеостом осношенные такрыем<br>силаном                                                         |       |
| Carbide tipped taper shank end mills                                                                                               | 86    |
| Фрезы концевые с короликми из перцего силана<br>End mills with earbide crown                                                       | 88    |
| depends intersection variation in the form area low.  Two-lipped slotting end mills with straight shank.                           | 90    |
| Френа панонолные с полических хоо том Two-lipped slotting end mills with taper shank.                                              |       |
| <ul> <li>Фречи пионечные с циллинарическим хасстем, се нашенные тверлым сила-<br/>вом</li> </ul>                                   |       |
| Two-lipped carbide tipped slotting end mills with straight shank                                                                   | 94    |
| Фремя инпененняе с коническим хаостом, оснащенняе теориям спланом.  Two-lipped carbide tipped slotting end mills with tayer shank. | 06    |

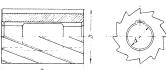
СТАНКОИМПОРТ

|                                                                                                          |         | Стр  |
|----------------------------------------------------------------------------------------------------------|---------|------|
| Фрезы Т-образные для станочных назов                                                                     |         | Page |
| T-slot cutters                                                                                           |         | 98   |
| Фрезы с пилипдрическим хвостом для пазов сегментных ин<br>Straight shank Woodruff keyseat cutters        |         | 100  |
| Chemiaльные фрезы<br>Special milling cutters                                                             |         | 107  |
| Inametria in uniquirectary othercrift is uncrepymente. Dimensions of bores and keyways for cutting tools |         | 108  |
| Наруаннае вонусы для инструментов «без данки.  Morse taper tool shanks without tongue.                   | <b></b> | 110  |

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

#### ФРЕЗЫ ЦИЛИНДРИЧЕСКИЕ С МЕЛКИМ ЗУБОМ

(no POCT 3752-47)


## PLAIN MILLING CUTTERS, LIGHT DUTY

(acc. to GOST 3752-47)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D  | d  | В  | Число<br>зубьев<br>Number<br>of teeth | D  | d  | В   | Число<br>зубьев<br>Number<br>of teeth |
|----|----|----|---------------------------------------|----|----|-----|---------------------------------------|
| 40 | 16 | 25 | 12                                    | 60 | 27 | 75  | 16                                    |
| 40 | 16 | 30 | 12                                    | 60 | 27 | 100 | 16                                    |
| 40 | 16 | 40 | 12                                    | 75 | 32 | 50  | 18                                    |
| 40 | 16 | 50 | 12                                    | 75 | 32 | 60  | 18<br>18                              |
| 40 | 16 | 60 | 12                                    | 75 | 32 | 75  | 18                                    |
| 50 | 22 | 30 | 14                                    | 75 | 32 | 100 | 18                                    |
| 50 | 22 | 40 | 14                                    | 75 | 32 | 125 | 18                                    |
| 50 | 22 | 50 | 14                                    | 90 | 40 | 60  | 20                                    |
| 50 | 22 | 60 | 14                                    | 90 | 40 | 75  | 20                                    |
| 50 | 22 | 75 | 14                                    | 90 | 40 | 100 | 20                                    |
| 60 | 27 | 40 | 16                                    | 90 | 40 | 125 | 20                                    |
| 60 | 27 | 50 | 16                                    | 90 | 40 | 150 | 20                                    |
| 80 | 97 | 60 | 16                                    | l  |    | i e | 1                                     |

- 1. Допуск на днаметр посадочного отверстии d и размеры шпоночной канавки по ГОСТ 4020-48.
- Стандартные фрезы изготовляют с правой винтовой кананкой; фрезы с левой винтовой кананкой изготовляют только по специальному заказу.
- 3. Обозначение фрезы цилиндрической диаметром  $D \simeq 40$  мм и инприной  $B \simeq 60$  мм:

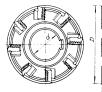
 $40 \times 60$  FOCT 3752-47.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Standard cutters have right-hand helix; cutters with left-hand helix are special.
- 3. Designation of a plain milling cutter, light duty, diameter  $D=40\,\mathrm{mm},$  face width  $B=60\,\mathrm{mm}:$

40×60 GOST 3752-47.

#### ФРЕЗЫ ЦИЛИНДРИЧЕСКИЕ СО ВСТАВНЫМИ НОЖАМИ (ОДИНАРНЫЕ)

(по ГОСТ 1979-52)


#### INSERTED BLADE PLAIN MILLING CUTTERS

(acc, to GOST 1979-52)

Материал ножей: быстрорежущая сталь.

Material of blades: high speed steel.







Размеры в мм Dimensions in mm

| D                    | L                    | d                    | Число<br>ножей<br>Number<br>of blades | D                       | L                      | d                    | Число<br>ножей<br>Number<br>of blades |
|----------------------|----------------------|----------------------|---------------------------------------|-------------------------|------------------------|----------------------|---------------------------------------|
| 75<br>75<br>90<br>90 | 60<br>75<br>60<br>75 | 27<br>27<br>32<br>32 | 8<br>8<br>8                           | 90<br>110<br>110<br>110 | 100<br>60<br>75<br>100 | 32<br>40<br>40<br>40 | 8<br>10<br>10<br>10                   |

СТАНКОИМПОРТ

| D                               | L                             | d                                | Число<br>ножей<br>Number<br>of blades | D                               | L                             | d                          | Число<br>ножей<br>Number<br>of blades |
|---------------------------------|-------------------------------|----------------------------------|---------------------------------------|---------------------------------|-------------------------------|----------------------------|---------------------------------------|
| 110<br>130<br>130<br>130<br>130 | 125<br>60<br>75<br>100<br>125 | 40<br>50<br>50<br>50<br>50<br>50 | 8<br>10<br>10<br>10<br>8<br>8         | 150<br>150<br>150<br>150<br>150 | 60<br>75<br>100<br>125<br>150 | 60<br>60<br>60<br>60<br>60 | 12<br>12<br>12<br>10<br>10            |

- 1. Допуск на диаметр посадочного отверстия d и размеры шпопочной канавки по ГОСТ 4020-48.
- Стандартные фрезы изготовляют с правой винтовой канавкой; фрезы с левой винтовой канавкой изготовляют по специальному заказу. Фрезы выпускают с углом винтовой канавки 20°.
- Конструкции фрез позволяет перемещать ножи в назу корпуса на требуемое количество рифлений; крепление пожей осуществляется клином.
- 4. Обозначение одинарной цилиндрической фрезы со вставными пожами диаметром  $D=75~{
  m mm}$  и шириной  $L=60~{
  m mm}$ :

Фреза A75  $\times$  60 ГОСТ 1979-52.

Но специальному заказу, отдельно от фрез, могут быть поставлены запасные пожи и клиньи, размеры которых приведены ниже.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Standard cutters have right-hand helix; cutters with left-hand helix are special. Helix angle is  $20^\circ.$
- 3. The serrated blade design of cutters permits a set-out of the blades in any desired number of serrations and makes blade adjustment more positive. Blades are held in the cutter body by wedges.
- 4. Designation of an inserted blade plain milling cutter, diameter  $D=75\,\mathrm{mm},$  face width  $L=60\,\mathrm{mm}:$

Cutter A75×60 GOST 1979-52.

On special order spare blades and wedges can be furnished separately. Dimensions of blades and wedges are given below.

#### СТАНКОИМПОРТ

#### запасные ножи

(по ГОСТ 1979-52)

#### SPARE BLADES

(acc. to GOST 1979-52)



Размеры в мм Dimensions in mm

| Днаметр и<br>длина фрезы<br>Diameter<br>and face<br>width of<br>cutter                                 | $L_1$                                                        | В                                                              | Диаметр и<br>длина фрезы<br>Diameter<br>and face<br>width of<br>cutter                                                     | $L_1$                                                                | В                                                          |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|
| 75 × 60<br>75 × 75<br>90 × 60<br>90 × 75<br>90 × 100<br>110 × 60<br>110 × 75<br>110 × 100<br>110 × 125 | 66,5<br>82,5<br>66,5<br>82,5<br>109<br>66,5<br>82,5<br>109,5 | 17<br>17,5<br>18,6<br>19<br>23,5<br>23,0<br>23,0<br>23,5<br>26 | 130 × 60<br>130 × 75<br>130 × 100<br>130 × 125<br>130 × 150<br>150 × 60<br>150 × 75<br>150 × 100<br>150 × 125<br>150 × 150 | 67<br>83<br>109,5<br>136,5<br>163<br>67<br>83<br>110<br>136,5<br>163 | 26<br>26,5<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>32 |

. Обозначение пояза для одинарной цилиндрической фрезы — диаметром D=75 мм и инприной L=60 мм:

Нож А75 ≥ 60 ГОСТ 1979-52.

Designation of a blade for a plain milling cutter, diameter  $D=75~\mathrm{mm},$  face width  $L=60~\mathrm{mm}$  :

Blade A75 $\times$ 60 GOST 1979-52.

#### запасные клинья

(по ГОСТ 1979-52)

#### SPARE WEDGES

(acc. to GOST 1979-52)



Размеры в мм

| Диаметр и<br>длина фрезы<br>Diameter<br>and face<br>width of<br>cutter                                                                                                                | Н                                                  | $L_1$                                               | Диаметр и<br>длина фрезы<br>Diameter<br>and face<br>width of<br>cutter                                                                                                                       | Н                                            | $L_1$                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| $\begin{array}{c} 75 \times 60 \\ 75 \times 75 \\ 90 \times 60 \\ 90 \times 75 \\ 90 \times 100 \\ 110 \times 60 \\ 110 \times 75 \\ 110 \times 100 \\ 110 \times 125 \\ \end{array}$ | 10<br>10<br>12<br>12<br>12<br>12<br>14<br>14<br>13 | 50<br>63<br>50<br>63<br>90<br>50<br>63<br>90<br>115 | $\begin{array}{c} 130 \times 60 \\ 130 \times 75 \\ 130 \times 100 \\ 130 \times 125 \\ 130 \times 150 \\ 150 \times 60 \\ 150 \times 75 \\ 150 \times 125 \\ 150 \times 150 \\ \end{array}$ | 18<br>16<br>16<br>14<br>12<br>18<br>18<br>18 | 50<br>63<br>90<br>115<br>140<br>50<br>63<br>115<br>140 |

Обозначение клина для одинарной цилиндрической фрезы — диаметром  $D \sim 75$  мм и ингриной L = 60 мм;

Rann A75  $\times$  60 FOCT 1979-52.

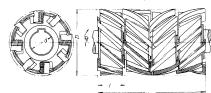
Designation of a wedge for a plain milling cutter, diameter  $D=75\,\mathrm{mm},$  face width  $L=60~\mathrm{mm}$  :

Wedge A75 $\times$ 60 GOST 1979-52.

#### СТАНКОИМПОРТ

#### ФРЕЗЫ ЦИЛИНДРИЧЕСКИЕ СО ВСТАВНЫМИ НОЖАМИ (СОСТАВНЫЕ)

(по ГОСТ 1979-52)


#### INSERTED BLADE MILLING CUTTER GANGS

(acc. to GOST 1979-52)

Материал ножей: быстрорежущая сталь.

 ${\bf Material\ of\ blades:} \quad {\rm high\ speed\ steel}.$ 





Размеры в мм Dimensions in mm

| D                                |                           | L        | ı                                                    | d                                      | Число<br>ножей<br>Number of<br>blades | в ком<br>Number                 | тво фрез<br>плекте<br>of cutters<br>gang<br>левых<br>left-hand |
|----------------------------------|---------------------------|----------|------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------|----------------------------------------------------------------|
| 75<br>75<br>75<br>90<br>90<br>90 | 11<br>15<br>7<br>11<br>15 | 5<br>2,5 | 37,5<br>37,5<br>37,5<br>37,5<br>37,5<br>37,5<br>37,5 | 27<br>27<br>27<br>32<br>32<br>32<br>32 | 6<br>6<br>8<br>8<br>8                 | 1<br>2<br>2<br>1<br>2<br>2<br>2 | 1<br>1<br>2<br>1<br>1<br>2<br>2                                |

Продолькение Continued

| D   | L   | ı  | d  | Число<br>ножей<br>Number of | в ком<br>Number o<br>in ga | ıng                |
|-----|-----|----|----|-----------------------------|----------------------------|--------------------|
|     |     |    |    | blades                      | правых<br>right-hand       | левых<br>left-hand |
| 110 | 100 | 50 | 40 | 8                           | 1                          | 1                  |
| 110 | 150 | 50 | 40 | 8                           | 2                          | 1                  |
| 110 | 200 | 50 | 40 | 8                           | 2<br>2<br>3                | 2                  |
| 110 | 250 | 50 | 40 | 8                           | 3                          | 2                  |
| 130 | 100 | 50 | 50 | 8                           | 1                          | 1                  |
| 130 | 150 | 50 | 50 | 8 8 8 8 8 8 8 8             | 223322333223332333         | 1                  |
| 130 | 200 | 50 | 50 | 8                           | 2                          | 2<br>2<br>3        |
| 130 | 250 | 50 | 50 | 8                           | 3                          | 2                  |
| 130 | 300 | 50 | 50 |                             | 3                          | 3                  |
| 150 | 150 | 50 | 60 | 10                          | 2                          | 1                  |
| 150 | 200 | 50 | 60 | 10                          | 2                          | 2<br>2<br>3        |
| 150 | 250 | 50 | 60 | 10                          | 3                          | 2                  |
| 150 | 300 | 50 | 60 | 10                          | 3                          | 3                  |
| 175 | 150 | 50 | 60 | 10                          | 2                          | 1                  |
| 175 | 200 | 50 | 60 | 10                          | 2                          | 2                  |
| 175 | 250 | 50 | 60 | 10                          | 3                          | 2<br>2<br>3        |
| 175 | 300 | 50 | 60 | 10                          | 3                          | 3                  |
| 200 | 200 | 50 | 60 | 12                          | 2                          | 2<br>2<br>3        |
| 200 | 250 | 50 | 60 | 12                          | 3                          | 2                  |
| 200 | 300 | 50 | 60 | 12                          | 3                          | 3                  |

- 1. Донуск на диаметр посадочного отверстия d и размеры шионочной канавки по ГОСТ 4020-48.
- Фрезы работают в комилекте и изготовлиются с правыми и девыми винтовыми капавками. Фрезы выпускают с углом винтовой капавки 45°. Конструкции фрез позволяет перемещать пожи в иззу корпуса на требуемое количество рифлений. Крепление пожей осуцествлиется клипом.
- 3. Обозначение одинарной правой фрезы днаметром  $D^{*}=90$  мм и шириной l=37,5 мм, входищей в комплект составной цилиндрической фрезы:

Фреза правал B90 × 37,5 ГОСТ 1979-52;

то же, левой:  $\Phi {\rm peaa \ neba n \ B90 \times 37.5 \ FOCT \ 1979-52};$ 

то же, состанной цилиндрической фрезы — диаметром D=90 мм, длиной L=450 мм и шириной l=37.5 мм:

Фреза составная Б90 × 150 × 37,5 ГОСТ 1979-52.

По специальному заказу, отдельно от фрез, могут быть поставлены запасные пожи и клинья, размеры которых приведены инже.

## СТАНКОИМПОРТ

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to  $\operatorname{GOST}$  4020-48.
- 2. Sections of cutter gang have either right- or left-hand helix, the angle of helix being  $45^{\circ}$ .
- The serrated blade design of cutters permits setting out the blades in any desired number of serrations and makes blade adjustment more positive.

Blades are held in the cutter body by wedges.

3. Designation of a serrated blade right-hand cutter, diameter  $D=90~\rm mm$  , face width  $l=37.5~\rm mm$  for a cutter gang:

RH cutter E 90 × 37.5 GOST 1979-52;

ditto for a left-hand cutter: LH cutter B  $90 \times 37.5$  GOST 1979-52;

Designation of an inserted blade cutter gang, diameter D=90 mm, gang width L=150 mm and cutter face width l=37.5 mm:
Cutter gang B  $90\times150\times37.5$  GOST 1979-52.

On special order spare blades and wedges can be furnished separately, Dimensions of blades and wedges are given below.

#### запасные ножи

(no POCT 1979-52)

#### SPARE BLADES

(acc. to GOST 1979-52)



Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter   | $L_1$                                | В                                            |
|---------------------------------------------|--------------------------------------|----------------------------------------------|
| 75<br>90<br>110<br>130<br>150<br>175<br>200 | 56<br>52,5<br>69<br>73,5<br>71<br>79 | 19<br>23<br>23<br>26<br>28,4<br>33,5<br>33,5 |

Обозначение правого пожа для одинарной цилиндрической фрезы диаметром D=75 мм и инприной I=37,5 мм; Нож правый  ${\rm B75}\times37,5$  ГОСТ 1979-52;

Нож левый B75  $\times$  37,5 ГОСТ 1979-52.

Designation of a right-hand blade for a sectional cutter diameter  $D=75~\mathrm{mm},$  face width  $l=37.5~\mathrm{mm}$  :

RH blade 5 75×37.5 GOST 1979-52;

ditto for left-hand blade:

LH blade E 75×37.5 GOST 1979-52.

#### запасные клинья

(по ГОСТ 1979-52)

#### SPARE WEDGES

(acc. to GOST 1979-52)



Размеры в мм

Dimensions in mm

| Днамстр<br>фрезы<br>Diameter<br>of cutter | $L_1$                                            | Н                               |
|-------------------------------------------|--------------------------------------------------|---------------------------------|
| 75<br>90<br>110<br>130<br>150<br>175      | 38<br>38<br>53,5<br>53,5<br>53,5<br>53,5<br>53,5 | 8,5<br>9<br>9<br>12<br>14<br>19 |

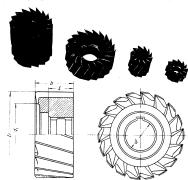
Обозначение клина одинарной цилиндрической фрезы диаметром $D=% \mathbb{R} ^{2}$ 75 мм, шириной l = 37,5 мм:

Кин Б75  $\times$  37,5 ГОСТ 1979-52.

Designation of a wedge for a sectional milling cutter, diameter D=75 mm, face width l=37.5 mm:

Wedge B  $75 \times 37.5$  GOST 1979-52.

#### ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ С МЕЛКИМ ЗУБОМ


(no FOCT 3753-47)

#### LIGHT DUTY SHELL END MILLS

(acc. to GOST 3753-47)

Материал: быстрорежущая сталь.

Material: high speed steel.



Размеры в мм

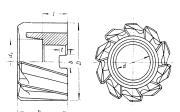
#### Dimensions in mm

| D                                                  | В                                                        | d                                                              | ı                                                        | $d_1$                                              | Число<br>зубьев<br>Number<br>of teeth                    |
|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| 40<br>40<br>50<br>50<br>60<br>60<br>75<br>75<br>90 | 20<br>40<br>25<br>50<br>30<br>60<br>35<br>75<br>35<br>35 | 16<br>16<br>22<br>22<br>27<br>27<br>27<br>27<br>27<br>32<br>32 | 12<br>30<br>15<br>38<br>18<br>48<br>22<br>62<br>20<br>20 | 24<br>24<br>32<br>32<br>40<br>40<br>40<br>40<br>50 | 12<br>12<br>14<br>14<br>16<br>16<br>18<br>18<br>20<br>22 |

## СТАНКОИМПОРТ

- 1. Допуск на днаметр посадочного отверстии d и размеры шионочной канавки по ГОСТ 4020-48.
- 2. Стандартные фрезы изготовляют праворежущими с правой винтовой канавкой. Фрезы леворежущие или с левой винтовой канавкой изготованиот по специальному заказу.
- 3. Обозначение фрезы торцевой насадной с мелким зубом днаметром D = 75 мм и пириной B = 35 мм:
  - $75 \times 35$  FOCT 3753-47.
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Standard cutters are furnished in right-hand cut, right-hand helix. Cutters with left-hand cut or left-hand helix are special.
- 3. Designation of a light duty shell end mill, diameter  $D=75\,\mathrm{mm}$ , 3. Designation of a  $\sim_{\circ}$  face width  $B=35\,\mathrm{mm}$  :  $75\times35~\mathrm{GOST}~3753\text{-}47.$

### ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ С КРУПНЫМ ЗУБОМ


(по ГОСТ 3754-47)

#### HEAVY DUTY SHELL END MILLS

(acc, to GOST 3754-47)

Материал: быстрорсжущая или легированиая сталь.

Material: high speed steel or alloy steel.



Размеры в мм

|   |          |          |          |          |          |          | Dime       | nsions in mm                       |
|---|----------|----------|----------|----------|----------|----------|------------|------------------------------------|
| ĺ | D        | В        | d        | ı        | $d_1$    | b        | t          | Число зубьев<br>Number of<br>teeth |
|   | 60<br>75 | 40<br>45 | 27<br>32 | 20<br>20 | 35<br>42 | 10<br>12 | 6,5<br>7,5 | 10<br>10                           |

- 4. Допуск на диаметр посадочного отверстия  $d \mapsto$  по ГОСТ 4920-48, 2. Стандартные фрезы изготовляют праворежущими с правой вин-товой канавкой. Фрезы леворежущие или с левой винтовой кананкой изготовляют по специальному заказу.
- 3. Обозначение фрезы торцевой насадной с крупным зубом днаметром D=60 мм и ликриной B=40 мм:

 $60 \times 40$  FOCT 3754-47.

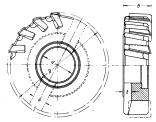
- 1. Tolerances on diameter of bore d are according to GOST 4020-48.
- 2. Standard cutters are furnished in right-hand cut, right-hand helix.
- Cutters with left-hand cut or left-hand helix are special.

  3. Designation of a heavy duty shell end mill, diameter D=60 mm, face width B = 40 mm:

60×40 GOST 3754-47.

#### ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ СО ВСТАВНЫМИ НОЖАМИ

(по ГОСТ 1092-52)


#### INSERTED BLADE FACE MILLING CUTTERS

(acc. to GOST 1092-52)

Материал ножей: быстрорежущая сталь.

Material of blades: high speed steel.





Размеры в мм Dimensions in mm

| D  | В  | d  | ı   | ь  | Число<br>ножей<br>Number<br>of blades |
|----|----|----|-----|----|---------------------------------------|
| 75 | 36 | 27 | 6,5 | 10 | 10                                    |
| 90 | 39 | 32 | 7,5 | 12 | 10                                    |

#### Продолжение Continued

| D                                      | В                                | d                                | t                                | b                                      | Число<br>ножей<br>Number<br>of blades |
|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|---------------------------------------|
| 110<br>130<br>150<br>175<br>200<br>225 | 41<br>41<br>45<br>45<br>45<br>45 | 40<br>40<br>50<br>50<br>50<br>50 | 10<br>10<br>12<br>12<br>12<br>12 | 16<br>16<br>20<br>20<br>20<br>20<br>20 | 12<br>14<br>16<br>18<br>20<br>22      |

- 1. Допуск на диаметр посадочного отверстия d по ГОСТ 4020-48.
- 2. Стандартные фрезы изготовляют праворежущими. Фрезы деворежущие изготовляют по специальному заказу.
- 3. Конструкция фрез позволяет перемещать ножи в назу корпуса на требуемое количество рифлений. Крепление пожей осуществляется запрессовкой клиновидных пожей с рифлениями в назы корпуса фрезы.

По специальному заказу, отдельно от фрез могут быть поставлены запасные пожи, размеры которых приведены ниже.

- 1. Tolerances on diameter of bore d are according to GOST 4020-48.
- 2. Standard cutters are furnished in right-hand cut. Cutters with lefthand cut are special.
- 3. The serrated blade design of cutters permits setting out the blades in any desired number of serrations and makes blade adjustment more positive. Blades are locked by pressing them into the slots of cutter body.

On special order spare blades can be furnished separately. Dimensions of blades are given below.

СТАНКОИМПОРТ

#### НОЖИ КЛИНОВИДНЫЕ РИФЛЕННЫЕ (запасные) (no FOCT 6244-52)

#### WEDGE TYPE SERRATED BLADES (spare)

(acc. to GOST 6214-52)

Материал: быстрорежущая сталь. Material: high speed steel.



Right hand

Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter          | L                                                            | В                                                                  | Обозначение<br>ножа<br>Designation<br>of blade                             |
|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| 75<br>90<br>110<br>130<br>150<br>175<br>200<br>225 | 28,3<br>28,3<br>28,3<br>28,3<br>33,8<br>33,8<br>33,8<br>33,8 | 15<br>18,5<br>22,5<br>22,5<br>25,5<br>25,5<br>25,5<br>25,5<br>25,5 | 3-15<br>3-18,5<br>3-22,5<br>3-22,5<br>4-25,5<br>4-25,5<br>4-25,5<br>4-25,5 |

- 1. Для корпусов праворежущих фрез применяют левые ножи, для корпусов леворежущих фрез — правые ножи.
- 2. Обозначение правого пожа с размерами L=28.3 мм и B=15 мм: Нож 3-45 ГОСТ 6244-52;

то же, девого:

Нож Л 3-45 ГОСТ 6214-52.

- 1. Left-hand blades are used for right-hand cutters and right-hand blades - for left-hand cutters.
- 2. Designation of a right-hand blade, L=28.3 mm, B=15 mm: Blade 3-15 GOST 6214-52;

ditto for a left-hand blade:

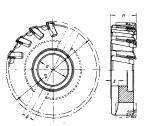
LH Blade 3-15 GOST 6214-52.

## **ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ СО ВСТАВНЫМИ** НОЖАМИ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по нормали завода-изготовителя)

## CARBIDE TIPPED INSERTED BLADE FACE MILLING CUTTERS, SHELL TYPE

(acc. to Maker's Standard)


Материал пластинок: вольфрамо-титано-кобальтовые силавы марок

ТК дли обработки стали и вольфрамокобальтовые сплавы марок ВК дли обработки чугуна.

Material of tips:

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining





СТАНКОИМПОРТ

Размеры в мм Dimensions in mm

| D                                                  | В                                      | d                                      | ь                                            | t                                              | Число<br>ножей<br>Number<br>of blades  |
|----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------|
| 75<br>90<br>110<br>130<br>150<br>175<br>200<br>225 | 34<br>37<br>39<br>39<br>41<br>41<br>41 | 27<br>32<br>40<br>40<br>50<br>50<br>50 | 10<br>12<br>16<br>16<br>20<br>20<br>20<br>20 | 6,5<br>7,5<br>10<br>10<br>12<br>12<br>12<br>12 | 10<br>10<br>12<br>12<br>14<br>16<br>16 |

- 1. Допуск на диаметр посадочного отверстия d по ГОСТ 4020-48.
- Стандартные фрезы изготовляют праворежущими. Фрезы леворежущие изготовляют по специальному заказу.
- Для полного использования пластинок твердого сплава конструкция фрез позволяет перемещать пожи в назу корпуса на требуемое количество рифлений.

Крепление пожей осуществляется запрессовкой клиновидных пожей с рифлениями в корпус фрезы.

4. Обозначение торцевой насадной праворежущей фрезы со вставными ножами, оснащенными твердым силавом ВК8 днаметром  $D = 450 \ \mathrm{mm}$ :

Фреза торцевая насадная 150 ВК8 нормаль завода.

По специальному заказу, отдельно от фрез могут быть поставлены запасные пожи, размеры которых приведены шике.

- 1. Tolerances on diameter of bore d are according to GOST 4020-48.
- 2. Standard cutters are furnished in right-hand cut. Cutters with left-hand cut are special.
- 3. The serrated blade design of cutters permits setting out the blades in any desired number of serrations, thus giving maximum life of carbide tips. Blades are locked by pressing them into the slots of cutter body.
- 4. Designation of a right-hand cut inserted blade shell type facing cutter tipped with BK 8 carbide, diameter  $D=150\,\mathrm{mm}$ :

Facing cutter 150 BK 8 Maker's Standard.

On special order spare blades can be furnished separately. Dimensions of spare blades are given below.

#### запасные ножи

(по пормали завода-изготовителя)

#### SPARE BLADES

(acc. to Maker's Standard)







Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter     | Н                                                    | В                                                    | Обозначение<br>пожа<br>Designation<br>of blade |
|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| 75<br>90<br>110<br>130<br>150<br>- 175<br>200 | 28,8<br>28,8<br>28,8<br>28,8<br>33,8<br>33,8<br>33,8 | 14,5<br>18,5<br>22,5<br>22,5<br>24,5<br>24,5<br>24,5 | T1<br>T2<br>T3<br>T3<br>T4<br>T4               |

Обозначение ножа правого, оснащенного твердым сплавом ВК8 с размерами H=28.8 мм и B=22.5 мм:

Нож ТЗ ВК8 нормаль завода;

то же, девого:

Нож ЛТЗ ВК8 пормаль завода.

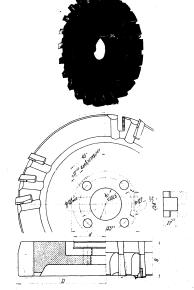
Designation of a right-hand blade tipped with BK 8 carbide,  $H = 28.8 \,\mathrm{mm}, \, B = 22.5 \,\mathrm{mm}$ :

Blade T3 BK8 Maker's Standard;

ditto for a left-hand blade:

LH Blade T3 BK8 Maker's Standard.

#### СТАНКОИМПОРТ


# ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ СО ВСТАВНЫМИ НОЖАМИ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по пормали завода-изготовителя)

## CARBIDE TIPPED INSERTED BLADE FACE MILLING CUTTERS, SHELL TYPE

(acc. to Maker's Standard)

 Material of tips:
 TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.



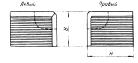
#### **НКОИМПОРТ**

Размеры в мм Dimensions in mm

| D                                                                  | В                                                  | d                                                                                                | $d_1$                                              | Число<br>ножей<br>Number<br>of blades                          |
|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| 250<br>275<br>300<br>325<br>350<br>375<br>400<br>450<br>550<br>600 | 59<br>59<br>64<br>64<br>64<br>64<br>64<br>69<br>69 | 128,57<br>128,57<br>128,57<br>128,57<br>128,57<br>128,57<br>128,57<br>128,57<br>128,57<br>128,57 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 20<br>20<br>22<br>24<br>24<br>26<br>28<br>30<br>32<br>34<br>36 |

- 1. Стандартные фрезы изготовляют праворежущими. Фрезы леворежущие изготовляют по специальному заказу.
- 2. Для полного использования пластинок твердого сплава копструкция фрез позволяет перемещать ножи в назу корпуса на требуемое количество рифлений. Крепление ножей осуществляется запрессовкой клиновидных ножей с рифлениями в корпус фрезы.
- 3. Обозначение торцевой насадной праворежущей фрезы со вставными ножами, оснащенными пластинками твердого сплава ВК8 диаметром D = 300 мм:
  - Фреза торцевая насадная 300 ВК8 нормаль завода.
- По специальному заказу, отдельно от фрез могут быть поставлены запасные ножи, размеры которых приведены ниже.
- 1. Standard cutters are furnished in right-hand cut. Cutters with lefthand cut are special.
- 2. The serrated blade design permits setting out the blades in any desired number of serrations, thus giving maximum life of carbide tips. Blades are locked by pressing them into the slots of cutter body.
- 3. Designation of a right-hand cut inserted blade facing cutter tipped with BK8 carbide, diameter  $D=300\,\mathrm{mm}$ : Facing cutter 300 BK8 Maker's Standard.

On special order spare blades can be furnished separately. Dimensions of spare blades are given below.


#### СТАНКОИМПОРТ

#### запасные ножи

(по нормали завода-изготовителя)

#### SPARE BLADES

(acc. to Maker's Standard)







Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter                                 | Н                                                                    | В                                                                          | Обозначение<br>ножа<br>Designation<br>of blade                       |
|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|
| 250<br>275<br>300<br>325<br>350<br>375<br>400<br>450<br>500<br>550<br>600 | 40,8<br>40,8<br>45,8<br>45,8<br>45,8<br>45,8<br>45,8<br>50,8<br>50,8 | 27,3<br>27,3<br>31,3<br>31,3<br>31,3<br>31,3<br>31,3<br>31,3<br>39,3<br>39 | T3 Д<br>T3 Д<br>T4 Д<br>T4 Д<br>T4 Д<br>T4 Д<br>T4 Д<br>T5 Д<br>T5 Д |

. Обозначение пожа правого, оснащенного твердым сплавом [ВК8 с размерами  $H \sim 45.8$  мм и B = 31.3 мм:

Пож Т4Д ВК8 нормаль завода;

то же, левого:

Нож ЛТ4Д ВК8 пормаль завода.

Designation of a right-hand blade tipped with BK8 carbide, H = 45.8 mm, B = 31.3 mm:

Blade T4D BK8 Maker's Standard;

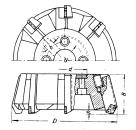
ditto for a left-hand blade:

LH Blade T4D BK8 Maker's Standard.

#### ФРЕЗЫ ТОРЦЕВЫЕ НАСАДНЫЕ СО ВСТАВНЫМИ НОЖАМИ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по ГОСТ 3879-52)

## CARBIDE TIPPED INSERTED BLADE FACE MILLING CUTTERS, SHELL TYPE


(acc. to GOST 3879-52)

**Материал пластинок:** вольфрамо-титано-кобальтовый сплав марки ТК.

Material of tips:

 ${
m TK}$  tungsten-titanium carbide.





#### СТАНКОИМПОРТ

Размеры в мм Dimensions in mm

| D                               | В                                | h                      | d                                             | $d_1$                                 | b                                              | Число<br>ножей<br>Number of<br>blades |
|---------------------------------|----------------------------------|------------------------|-----------------------------------------------|---------------------------------------|------------------------------------------------|---------------------------------------|
| 150<br>200<br>250<br>320<br>400 | 56<br>72<br>72<br>72<br>72<br>97 | 6<br>7<br>7<br>7<br>17 | 69,832<br>88,88<br>128,57<br>128,57<br>128,57 | 54<br>66,7<br>101,6<br>101,6<br>101,6 | 15,888<br>15,888<br>25,415<br>25,415<br>25,415 | 6<br>8<br>8<br>10<br>12               |

- Фрезы предназначены для обработки стальных деталей на высоких режимах резания.
- 2. Для полного использования пластинок твердого сплава конструкции фрез позволяет перемещать пожи в назу корпуса фрезы. Крепление пожей в корпусе осуществляется клиньями, а точная установка их по высоте установочными винтами.
- 3. Обозначение торцевой насадной фрезы диаметром  $D=200\,\mathrm{mm}$ : Фреза 200 ГОСТ 3879-52.

Но специальному заказу, отдельно от фрез могут быть поставлены запасные ножи и клиныя, размеры которых приведены инже.

- 1. Cutters are designed for cutting steel at high surface speeds.
- 2. The cutter design permits moving the blades in the slots of cutter body, thus giving maximum life of carbide tips. The blades are held in the slots by wedges and adjusted in height by setting screws.
- 3. Designation of a shell type face milling cutter, diameter  $D=200\,\mathrm{mm}$  : Cutter 200 GOST 3879-52.

On special order spare blades and wedges can be furnished separately, Dimensions of spare blades and wedges are given below.

#### запасные ножи

(по ГОСТ 3879-52)

#### SPARE BLADES

(acc. to GOST 3879-52)





Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter | Обозначение<br>размера ножа<br>Designation<br>of blade size | В                          | Н                                | L                          |
|-------------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------------|----------------------------|
| 150<br>200<br>250<br>320<br>400           | 1<br>2<br>2<br>2<br>3                                       | 13<br>16<br>16<br>16<br>16 | 20<br>22<br>22<br>22<br>22<br>32 | 54<br>70<br>70<br>70<br>95 |

Обозначение ножа для фрез диаметром 200 — 320 мм: Нож 2 ГОСТ 3879-52.

Designation of a blade for cutters 200 — 320 mm diameter: Blade 2 GOST 3879-52.

#### вапасные клинья

(no FOCT 3879-52)

#### SPARE WEDGES

(acc. to GOST 3879-52)





Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter | Обозначение<br>размера клина<br>Designation of<br>wedge size | Н                          | L                          | В                                    |
|-------------------------------------------|--------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------|
| 150<br>200<br>250<br>320<br>400           | 1<br>2<br>2<br>2<br>2<br>3                                   | 19<br>21<br>21<br>21<br>31 | 42<br>54<br>54<br>54<br>68 | 10,6<br>13<br>13<br>13<br>13<br>15,6 |

Обозначение клина дли фрез днаметром 200 --- 320 мм: Клин 2 ГОСТ 3879-52.

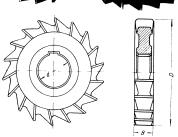
Designation of a wedge for cutters  $200-300\,\mathrm{mm}$  diameter: Wedge 2 GOST 3879-52.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

#### ФРЕЗЫ ДИСКОВЫЕ ТРЕХСТОРОННИЕ С МЕЛКИМ ВУБОМ

(по ГОСТ 3755-47)


#### SIDE MILLING CUTTERS, LIGHT DUTY

(acc. to GOST 3755-47)

Материал: быстрорежущая сталь.

Material: high speed steel.





 $\begin{array}{c} {\rm Pa_{3Mep_{B-B-MM}}} \\ {\rm Dimensions~in~mm} \end{array}$ 

|                                              |                                           |                                                          | ,                                      |                                     |                                  |                                              | III IIIIII                                         |
|----------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------------|
| D                                            | В                                         | d                                                        | Число<br>зубьев<br>Number<br>of teeth  | D                                   | В                                | d .                                          | Число<br>зубьев<br>Number<br>of teeth              |
| 60<br>60<br>60<br>60<br>75<br>75<br>75<br>75 | 6<br>8<br>10<br>12<br>8<br>10<br>12<br>14 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 16<br>16<br>16<br>16<br>18<br>18<br>18 | 90<br>90<br>90<br>110<br>110<br>110 | 10<br>12<br>14<br>16<br>12<br>14 | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 20<br>20<br>20<br>20<br>20<br>22<br>22<br>22<br>22 |

## СТАНКОИМПОРТ

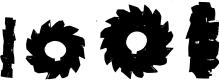
- 1. Донуск на днаметр посадочного отверстни d и размеры инопочной канавки по ГОСТ 4020-48.
- 2. Обозначение фрезы дисковой трехсторонией, диаметром  $D=60~{\rm MM}$ и виприной  $B=8~{\rm MM}$  :

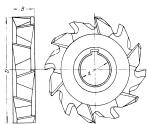
60 / 8 FOCT 3755-47.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Designation of a side milling cutter, diameter  $D=60\,\mathrm{mm},$  face width  $B=8\,\mathrm{mm}:$

60×8 GOST 3755-47.

СТАНКОИМПОРТ


#### ФРЕЗЫ ДИСКОВЫЕ ТРЕХСТОРОННИЕ С РАСКОШЕННЫМ ЗУБОМ


(по ведомственной пормали ВН 333-47)

### STAGGERED TOOTH SIDE MILLING CUTTERS

(acc, to Maker's Standard BH 333-47)

Maтериал: быстрорежущая стань. Material: high speed steel.





Размеры в мм Dimensions in mm

| D  | В  | d  | Число<br>зубьев<br>(минимальное)<br>Minimum<br>number of<br>teeth | D  | В  | d  | Число<br>зубьев<br>(минимальное)<br>Minimum<br>number of<br>teeth |
|----|----|----|-------------------------------------------------------------------|----|----|----|-------------------------------------------------------------------|
| 60 | .8 | 22 | 10                                                                | 60 | 10 | 22 | 10                                                                |
| 60 |    | 22 | 10                                                                | 60 | 12 | 22 | 10                                                                |

СТАНКОИМПОРТ

Продолжение Continued

|                                              |                                     |                                                    |                                                                   |                                  |                                  |                                        | Continued                                                         |
|----------------------------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|-------------------------------------------------------------------|
| D                                            | В                                   | d                                                  | Число<br>зубьев<br>(минимальное)<br>Minimum<br>number<br>of teeth | D                                | В                                | d                                      | Число<br>зубьев<br>(минимальное)<br>Minimum<br>number<br>of teeth |
| 75<br>75<br>75<br>75<br>75<br>75<br>75<br>90 | 6<br>8<br>10<br>12<br>14<br>16<br>8 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>27 | 12<br>12<br>12<br>12<br>12<br>12                                  | 90<br>90<br>90<br>90<br>90<br>90 | 10<br>12<br>14<br>16<br>18<br>20 | 27<br>27<br>27<br>27<br>27<br>27<br>27 | 12<br>12<br>12<br>12<br>12<br>12<br>12                            |

- Для обеспечения легкой и спокойной работы фрезы имеют поочередно-скошенные в разные стороны по отношению к оси фрезы зубья.
- 2. Допуск на днаметр посадочного отверстия d и размеры линоночной канавки но ГОСТ 4020-48.
- 3. Обозначение дисковой трехсторонией фрезы c раскошенным зубом диаметром  $D \sim 60$  мм и инприной B = 10 мм:

 $90\times40$  BH 333-47.

- 1. For free and smooth cutting these cutters have teeth at alternate right- and left-hand helix angles.
- 2. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 3. Designation of a staggered tooth side milling cutter diameter  $D=60\,\mathrm{mm},$  face width  $B=10\,\mathrm{mm}$  :

90×10 BH 333-47.

#### ФРЕЗЫ ДИСКОВЫЕ ТРЕХСТОРОННИЕ с впрессованными ножами

(по нормали завода-изготовителя)


### INSERTED BLADE SIDE MILLING CUTTERS

(acc. to Maker's Standard)

Материал ножей: быстрорежущая сталь. Material of blades: high speed steel.







Размеры в мм

|          |          |          |                                       |          |          | Difficu  | TOILS III IIIIII                      |
|----------|----------|----------|---------------------------------------|----------|----------|----------|---------------------------------------|
| D        | В        | d        | Число<br>ножей<br>Number of<br>blades | D        | В        | d        | Число<br>ножей<br>Number of<br>blades |
| 90<br>90 | 12<br>14 | 27<br>27 | 10<br>10                              | 90<br>90 | 16<br>18 | 27<br>27 | 10<br>10                              |

### СТАНКОИМПОРТ

Продолжение Continued

| D                                                                      | В                                                                                                                                                                                                                                                                                                                                               | d                                                                               | Число<br>ножей<br>Number of<br>blades                                | D                                                                                              | В                                                                                                                                                                                                                                                                                                                 | d                                                                                                                                | Число<br>ножей<br>Number of<br>blades         |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 90<br>90<br>90<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110 | 20<br>22<br>24<br>112<br>116<br>118<br>20<br>22<br>24<br>26<br>28<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>12<br>21<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>12<br>22<br>24<br>26<br>28<br>22<br>24<br>26<br>26<br>27<br>28<br>28<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2 | 10 10 10 10 14 14 14 14 14 14 14 16 16 16 16 16 16 18 18 18 18 18 18 | 150<br>150<br>150<br>150<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175 | 30<br>32<br>32<br>34<br>112<br>114<br>116<br>118<br>20<br>22<br>24<br>26<br>30<br>32<br>31<br>114<br>116<br>118<br>20<br>22<br>24<br>28<br>30<br>32<br>31<br>12<br>114<br>118<br>20<br>32<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 18 18 22 22 22 22 22 22 22 24 4 24 24 24 24 2 |

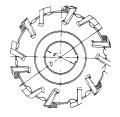
- 1. Фрезы предназначены для фрезерования пазов и новерхностей и могут быть использованы как отдельно, так и комплектами, а также в сочетании с цилиндрическими и угловыми фрезами в самых различных
- 2. Для обеспечения легкой и спокойной работы фрезы имеют поочередно-скошенные в разные стороны по отношению к оси фрезы зубья, работающие каждый с одной стороны.
- 3. Допуск на диаметр посадочного отверетия d и размеры шпоночной канавки по ГОСТ 4020-48.
- 4. Обозначение дисковой трехсторонней фрезы с впрессованными пожами диаметром D=90 мм и иприной B=20 мм: Трехсторониян фреза с впрессованными ножами

90 × 20 нормаль завода.

#### **НКОИМПОРТ**

- 1. These cutters are designed for slotting work and general surface milling and can be used as a single cutter, in sets, or combined with plain cylindrical or angle milling cutters.
- 2. For free and smooth cutting these cutters have teeth at alternate right- and left-hand helix angles.
- 2. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 4. Designation of an inserted blade side milling cutter, diameter  $P=90\,\mathrm{mm}$ , face width  $B=20\,\mathrm{mm}$ : Inserted blade side cutter  $90\times20$  Maker's Standard,

СТАНКОИМПОРТ


# ФРЕЗЫ ДИСКОВЫЕ ТРЕХСТОРОННИЕ СО ВСТАВНЫМИ НОЖАМИ (по ГОСТ 1669-52)

## INSERTED BLADE SIDE MILLING CUTTERS

(acc. to GOST 1669-52)

Материал ножей: быстрорежущая сталь. Material of blades: high speed steel.





Размеры в мм Dimensions in mm

| D                    | В                    | d                          | Число<br>ножей<br>Number of<br>blades | D                    | В                    | d                    | Число<br>ножей<br>Number of<br>blades |
|----------------------|----------------------|----------------------------|---------------------------------------|----------------------|----------------------|----------------------|---------------------------------------|
| 75<br>75<br>75<br>75 | 12<br>14<br>16<br>18 | 22<br>22<br>22<br>22<br>22 | 10<br>10<br>10<br>10                  | 75<br>75<br>75<br>90 | 20<br>22<br>24<br>12 | 22<br>22<br>22<br>27 | 10<br>10<br>10<br>12                  |

Продолжение Continued

| _ |     |          |                                              |                                       |            |     |    |                                       |   |
|---|-----|----------|----------------------------------------------|---------------------------------------|------------|-----|----|---------------------------------------|---|
|   | D   | В        | d                                            | Число<br>ножей<br>Number of<br>blades | D          | В   | d  | Число<br>ножей<br>Number of<br>blades |   |
| 1 | 90  | 14       | a-                                           | 12                                    | 175        | 28  |    |                                       | 1 |
|   | 90  | 16       | 27<br>27                                     | 12                                    | 175        | 30  | 40 | 16                                    | ı |
|   | 90  | 18       | 27                                           | 12                                    | 175        |     | 40 | 16                                    | 1 |
|   | 90  | 20       | 27                                           | 12                                    | 175        | 32  | 40 | 16                                    | 1 |
|   | 90) | 20       | 1 24                                         | 12                                    |            | 3.4 | 40 | 16                                    | 1 |
| 1 | 90  | 24       | 37                                           | 12                                    | 200<br>200 | 12  | 50 | 22<br>22                              | П |
| 1 | 110 | 12       | 27<br>27<br>27                               | 14                                    | 200        |     | 50 | 22                                    | 1 |
|   | 110 | 14       | 3-                                           | 14                                    | 200        | 16  | 50 | 20                                    | 1 |
|   | 110 | 16       | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 14                                    | 200        | 18  | 50 | 20                                    | 1 |
| 1 | 110 | 18       | 5-                                           | 14                                    |            | 20  | 50 | 20                                    | ı |
| 1 | 110 | 20       | 3-                                           |                                       | 200        | 22  | 50 | 20                                    | 1 |
|   | 110 | 22       | 3-                                           | 12<br>12                              | 200        | 24  | 50 | 20                                    | 1 |
|   | 110 | 24       | 34                                           | 12                                    | 200        | 26  | 50 | 20                                    | 1 |
|   | 110 | 26       | 21                                           | 12<br>12                              | 200        | 28  | 50 | 18                                    | ı |
| 1 | 110 | 28       | 27                                           | 12                                    | 200        | 30  | 50 | 18                                    | 1 |
|   | 130 | 12       | 32                                           |                                       | 200        | 32  | 50 | 18                                    | ı |
| 1 | 130 | 14       | 32                                           | 16                                    | 200        | 34  | 50 | 18                                    | ı |
|   | 130 | 16       | 32                                           | 16                                    | 200        | 36  | 50 | 16                                    | 1 |
|   | 130 | 18       | 32                                           | 16                                    | 200        | 40  | 50 | 16                                    | 1 |
| 1 | 130 | 20       |                                              | 16                                    | 225        | 12  | 50 | 24                                    | ı |
| 1 | 130 |          | 32                                           | 12                                    | 225        | 14  | 50 | 24                                    | 1 |
| 1 | 130 | 22<br>24 | 32                                           | 12                                    | 225        | 16  | 50 | 22                                    | ı |
|   | 130 | 26       | 32                                           | 12                                    | 225        | 18  | 50 | 22                                    | ı |
|   | 130 | 26       | 32                                           | 12                                    | 225        | 20  | 50 | 22                                    | L |
| 1 | 150 |          | 32                                           | 12                                    | 225        | 22  | 50 | 22                                    | 1 |
| 1 | 150 | 12       | 40                                           | 18                                    | 225        | 24  | 50 | 22                                    | ı |
| 1 | 150 | 14<br>16 | 40                                           | 18                                    | 225        | 26  | 50 | 22                                    | ı |
| 1 | 150 | 18       |                                              | 16                                    | 225        | 28  | 50 | 20                                    | L |
| 1 | 150 | 20       | 40                                           | 16                                    | 225        | 30  | 50 | 20                                    | ı |
|   | 150 | 22       | 40                                           | 16                                    | 225        | 32  | 50 | 20                                    | 1 |
| 1 | 150 | 24       | 40                                           | 16                                    | 225        | 34  | 50 | 20                                    | ı |
| 1 | 150 | 26       | 40                                           | 16                                    | 225        | 36  | 50 | 18                                    | ı |
| 1 | 150 | 28       | 40                                           | 16                                    | 225        | 40  | 50 | 18                                    | ı |
|   | 150 | 30       | 40                                           | 14                                    | 250        | 16  | 50 | 24                                    | ı |
|   | 150 | 32       | 40                                           | 14                                    | 250        | 18  | 50 | 24                                    | ı |
|   | 150 | 34       | 40                                           | 14<br>14                              | 250        | 20  | 50 | 24                                    | ı |
| 1 | 175 | 12       | 40                                           | 14<br>20                              | 250        | 22  | 50 | . 24                                  | 1 |
| 1 | 175 | 14       | 40                                           | 20<br>20                              | 250        | 24  | 50 | 24                                    |   |
| 1 | 175 | 16       | 40                                           |                                       | 250        | 26  | 50 | 24                                    | ı |
| 1 | 175 | 18       | 40                                           | 18                                    | 250        | 28  | 50 | 22                                    |   |
| 1 | 175 | 20       | 40                                           | 18<br>18                              | 250        | 30  | 50 | 22                                    | ı |
| l | 175 | 20       | 40                                           |                                       | 250        | 32  | 50 | 22                                    | 1 |
| ı | 175 | 24       | 40                                           | 18<br>18                              | 250        | 34  | 50 | 22                                    |   |
|   | 175 | 26       | 40                                           | 18                                    | 250        | 36  | 50 | 20                                    |   |
|   |     | -"       | 40                                           | 16                                    | 250        | 40  | 50 | 20                                    |   |
| _ |     |          |                                              |                                       |            |     |    |                                       |   |

1. Допуск на диаметр посадочного отверетня d и размеры шпоночной канамки — по ГОСТ 4020-48.

саниван — по 1 год чазоча.
2. Конструкции фрез позволяет перемещать ножи в назу корпуса на требуемое количество рифолений. Крепление ножей осуществляется запрессовкой клиновидиых ножей с рифлениями в корпус фрезы.

## СТАНКОИМПОРТ

Для обеспечения легкой и спокойной работы фрезы имеют поочередноскопенные в разные стороны по отношению к оси фрезы зубыя, работающие каждый с одной стороны.

3. Обозначение трехсторонией фрезы со вставными ножами диаметром D=90 мм и инприной  $B=20\,\mathrm{mm}$ :

Фреза 90 × 20 ГОСТ 1669-52.

Но епециальному заказу, отдельно от фрез могут быть поставлены запасные пожи, размеры которых приведены ниже.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to  $\operatorname{GOST}$  4020-48.
- 2. The cutter design permits moving the blades in any desired number of serrations.

Blades are locked by pressing them into the slots of cutter body.

For free and smooth cutting these cutters have teeth at alternate rightand left-hand helix angles. Each tooth cuts from one side only.

3. Designation of an inserted blade side milling cutter, diameter  $D=90\,\mathrm{mm}$  , face width  $B=20\,\mathrm{mm}$  :

Cutter 90×20 GOST 1669-52.

On special order spare blades can be furnished separately. Dimensions of spare blades are given below,  $\,$ 

#### СТАНКОИМПОРТ

#### НОЖИ КЛИНОВИДНЫЕ РИФЛЕНЫЕ (запасные)

(по ГОСТ 6214-52)

## WEDGE TYPE SERRATED BLADES (spare)

(acc, to GOST 6214-52)

Материал: быстрорежущая сталь.

Material: high speed steel.





Biothern

Left hand

Размеры в мм Dimensions in mm

| Пирине в примето прим | ıs                                                           | В                                                                                                             | Обозна-<br>чение ножа<br>Designation<br>of blade                                                                         | Passepsi dpensions of cutter HIII distributions of cutter HIII distributio |                                                                                        | . L                                                          | В                                                                                                                | Обозна-<br>чение пожа<br>Designation<br>of blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75 12<br>75 14<br>75 18<br>75 18<br>75 20<br>75 22<br>75 24<br>90 14<br>90 18<br>90 22<br>90 24<br>110 14<br>110 16<br>110 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8 | 11<br>13<br>15<br>15<br>18,5<br>18,5<br>122,5<br>11<br>13<br>15<br>18,5<br>22,5<br>11<br>13<br>15<br>11<br>13 | 1-11<br>1-13<br>1-15<br>1-18,5<br>1-18,5<br>1-22,5<br>1-21<br>1-13<br>1-15<br>1-18,5<br>1-18,5<br>1-22,5<br>2-13<br>2-15 | 110<br>110<br>110<br>110<br>110<br>130<br>130<br>130<br>130<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>22<br>24<br>26<br>28<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>28<br>12 | 28,3<br>28,3<br>28,3<br>28,3<br>28,3<br>23,8<br>23,8<br>23,8 | 18,5<br>18,5<br>22,5<br>22,5<br>26,5<br>11<br>13<br>15<br>18,5<br>18,5<br>22,5<br>22,5<br>22,5<br>11<br>13<br>15 | 3-18,5<br>3-18,5<br>3-22,5<br>3-26,5<br>2-11<br>2-13<br>2-15<br>3-18,5<br>3-22,5<br>3-22,5<br>3-26,5<br>2-11<br>2-13<br>3-15,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21,5<br>3-21, |

#### СТАНКОИМПОВТ

Продолжение Continued

|                                          |                                                                    |                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                      |                                                              |                                                                                                                                                           | Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Di                                       | фро<br>imer<br>of cu                                               | nsions<br>1tter                                                                                                                                                                                                                                                                  | L                                                            | В                                                                                                                                                                                                                                                                                        | Обозна-<br>чение пожа<br>Designation<br>of blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | фр<br>Dime<br>of c                                                 | плеры<br>esы nsions<br>atter nsions                                                                                                                                                                                  | L                                                            | В                                                                                                                                                         | Обозна-<br>чение пожа<br>Designation<br>of blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 20<br>22<br>24<br>26<br>30<br>32<br>31<br>11<br>16<br>18<br>20<br>22<br>24<br>62<br>83<br>30<br>11<br>14<br>16<br>18<br>18<br>20<br>22<br>24<br>16<br>22<br>24<br>16<br>22<br>24<br>25<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 28,3<br>28,3<br>28,3<br>28,3<br>28,3<br>28,3<br>28,3<br>28,3 | 18,5<br>22,5<br>22,5<br>26,5<br>26,5<br>28,5<br>11<br>15<br>15<br>18,5<br>22,5<br>26,5<br>28,5<br>11<br>13<br>15<br>18,5<br>26,5<br>28,5<br>11<br>13<br>15<br>18,5<br>22,5<br>28,5<br>11<br>13<br>13<br>15<br>22,5<br>26,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28 | 3-18,5<br>3-18,5<br>3-22,5<br>3-22,5<br>3-26,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-18,5<br>3-18,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3- | 200<br>200<br>200<br>200<br>225<br>225<br>225<br>225<br>225<br>225 | 32<br>34<br>36<br>40<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>26<br>33<br>34<br>40<br>61<br>18<br>20<br>22<br>24<br>42<br>64<br>40<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64 | 28,3<br>33,8<br>33,8<br>23,8<br>23,8<br>28,3<br>28,3<br>28,3 | 28,5<br>32,5<br>32,5<br>32,5<br>11<br>13<br>15<br>18,5<br>22,5<br>22,5<br>32,5<br>11<br>18,5<br>22,5<br>22,5<br>22,5<br>22,5<br>22,5<br>22,5<br>22,5<br>2 | 3-28,5<br>3-28,5<br>4-32,5<br>4-32,5<br>2-11<br>2-13<br>3-18,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3-28,5<br>3- |
| 20<br>20                                 |                                                                    | 28<br>30                                                                                                                                                                                                                                                                         | $28,3 \\ 28,3$                                               | 26,5<br>26,5                                                                                                                                                                                                                                                                             | 3-26,5<br>3-26,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250<br>250                                                         | 36<br>40                                                                                                                                                                                                             | 33,8<br>33,8                                                 | 32,5<br>32,5                                                                                                                                              | 4-32,5<br>4-32,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

то же, левого:

Пож Л1-11 ГОСТ 6214-52.

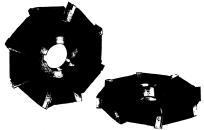
Designation of a right-hand blade,  $L=16.8\,\mathrm{mm},\;B=11\,\mathrm{mm}\colon$  Blade 1-11 GOST 6214-52,

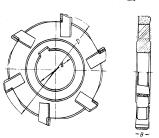
Same for left-hand blade:

L 1-11 GOST 6214-52.

#### ФРЕЗЫ ДИСКОВЫЕ ТРЕХСТОРОННИЕ СО ВСТАВНЫМИ ножами, оснащенные твердым сплавом

(no FOCT 5348-50)


#### CARBIDE TIPPED INSERTED BLADE SIDE MILLING CUTTERS


(acc. to GOST 5348-50)

Материал пластинок: вольфрамо-титано-кобальтовые сплавы марок ТК для обработки стали и вольфрамо-кобальтовые силавы марок ВК для обработки чугуна.

Material of tips:

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.





**НКОИМПОРТ** 

Размеры в мм

|                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                            |                                                             |                                                                                                                                                                                                                                                    | Dimen                                    | sions in mm                                                                |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|
| D                                                    | В                                                                                                                                                                                                                                                                                                                                                        | d                                                                                               | Количество<br>ножей (ми-<br>нимальное)<br>Number of<br>blades<br>(minimum) | D                                                           | В                                                                                                                                                                                                                                                  | d                                        | Количество<br>ножей (ми-<br>нимальное)<br>Number of<br>blades<br>(minimum) |
| 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900 | 10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>25<br>10<br>10<br>22<br>21<br>14<br>26<br>20<br>22<br>21<br>14<br>26<br>18<br>20<br>22<br>24<br>24<br>26<br>18<br>20<br>22<br>24<br>16<br>18<br>20<br>21<br>16<br>18<br>20<br>21<br>24<br>24<br>24<br>24<br>25<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 32 32 32 32 32 32 32 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50 | 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8                                    | 175 175 175 175 175 200 200 200 200 200 200 200 202 225 225 | 22 24 26 18 20 22 24 26 18 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 20 22 24 26 26 20 22 24 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27 | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                   |
| 175<br>175                                           | 18<br>20                                                                                                                                                                                                                                                                                                                                                 | 50<br>50                                                                                        | 10<br>10                                                                   | 350<br>350                                                  | 26<br>30                                                                                                                                                                                                                                           | 60<br>60                                 | 20<br>20                                                                   |

<sup>1.</sup> Допуск на диаметр посадочного отверстия d и размеры шионочной канавки --- по ГОСТ 4020-48.

<sup>2.</sup> Для полного использования пластинок твердого сплава конструкции фрез позволяет перемещать ножи в назу корпуса на требуе-

мое количество рифлений; крепление пожей осуществлиется при помощи клиньев.

- Для обеспечения легкой и спокойной работы фрезы имеют поочередно-скошенные в разные стороны по отношению к оси фрезы зубы, работающие каждый с одной стороны.
  - 4. Фрезы могут работать отдельно или в комилекте.
- 5. Обозначение трехсторонней фрезы, диаметром  $D=110~{\rm mm}$  и шириной  $B=44~{\rm mm}$  со вставными пожами, оснащенной твердым сплавом T15K6:

Фреза  $110 \times 14$  Т15К6 ГОСТ 5348-50.

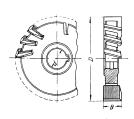
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- The serrated blade design permits moving the blades in the slots of cutter body in any desired number of serrations, thus giving maximum life of carbide tips. The blades are locked by means of wedges.
- For free and smooth cutting the cutters have teeth at alternate rightand left-hand helix angles. Each tooth cuts from one side only.
- $4.\ {\rm Cutters}\ {\rm can}\ {\rm work}\ {\rm either}\ {\rm single}\ {\rm or}\ {\rm in}\ {\rm sets}.$
- 5. Designation of an inserted blade side milling cutter tipped with T15K6 carbide, diameter  $D=110~\rm mm$ , face width  $B=14~\rm mm$ :

Cutter  $110 \times 14$  T15K6 GOST 5348-50.

#### ФРЕЗЫ ДИСКОВЫЕ ДВУХСТОРОННИЕ СО ВСТАВНЫМИ НОЖАМИ

(по пормали завода-изготовители)

### INSERTED BLADE HALF SIDE MILLING CUTTERS


(acc. to Maker's Standard)

Материал ножей: быстрорежущая сталь.

Material of blades: high speed steel.



Размеры в мм Dimensions in mm



| D                                                         | В                                                        | đ                                            | Число<br>ножей<br>Number of<br>blades              |  |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|
| 75<br>90<br>110<br>130<br>150<br>175<br>200<br>225<br>250 | 22<br>22<br>25<br>26<br>26<br>26<br>26<br>26<br>32<br>32 | 22<br>27<br>27<br>32<br>40<br>40<br>50<br>50 | 12<br>14<br>12<br>16<br>16<br>18<br>20<br>20<br>20 |  |  |  |  |  |  |

#### СТАНКОИМПОРТ

СТАНКОИМПОРТ

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

- 1. Допуск на днаметр посадочного отверетия d и размеры шпопочной канавки по ГОСТ 4020-48.
- 2. Фрезы изготовляют праворежущими и леворежущими.
- Конструкция фрез позволиет перемещать пожи в назу корпуса на требуемое количество рифлений. Крепление пожей осуществлиется запрессовкой клиновидных пожей с рифлениями в корпус фрезы.
- 4. Обозначение дисковой двухсторонней праворежущей фрезы совставными ножами диаметром  $D=90~\mathrm{mm}$  :

Фреза двухсторонняя 90 нормаль завода; то же, леворежущей:

Фреза двухсторонняя Л 90 нормаль завода.

Но специальному заказу, отдельно от фрез, могут быть поставлены вапасные ножи, размеры которых приведены ниже.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Cutters are furnished right- or left-hand cut.
- 3. The cutter design permits moving the blades in any desired number of serrations. Blades are locked by pressing them into the slots of cutter body.
- 4. Designation of an inserted blade right-hand cut half side milling utter, diameter  $D=90\,\mathrm{mm}$  :

Half side cutter 90 Maker's Standard;

ditto for a left-hand cutter:

LH half side cutter 90 Maker's Standard.

On special order spare blades can be furnished separately. Dimensions of blades are given below.

#### НОЖИ КЛИНОВИДНЫЕ РИФЛЕНЫЕ (запасные) WEDGE TYPE SERRATED BLADES (spars)



Passepsi в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter | L    | В    | Обозначение<br>ножа<br>Designation<br>of blade |
|-------------------------------------------|------|------|------------------------------------------------|
| 75—90                                     | 16,8 | 22,5 | 1-22,5                                         |
| 110—130                                   | 23,8 | 26,5 | A-28                                           |
| 150—200                                   | 28,3 | 26,5 | 3-26,5                                         |
| 225—250                                   | 33,8 | 32,5 | 4-32,5                                         |

Designation of a right-hand blade  $L=16.8\,\mathrm{mm},\ B=22.5\,\mathrm{mm}$  : Blade for half side cutter 1-22.5 Maker's Standard.

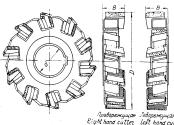
#### ФРЕЗЫ ДИСКОВЫЕ ДВУХСТОРОННИЕ СО ВСТАВНЫМИ НОЖАМИ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по ГОСТ 6469-53)

#### CARBIDE TIPPED INSERTED BLADE HALF SIDE MILLING CUTTERS

(acc. to GOST 6469-53)

Материал пластинок: вольфрамо-титано-кобальтовые сплавы марок


ТК для обработки стали и вольфрамо-кобальтовые сплавы марок ВК для обработки чугуна.

Material of tips:

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining

cast iron.





СТАНКОИМПОРТ

#### Размеры в мм Dimensions in mm

| D                                                                 | В                                                        | d                                                  | Число<br>ножей<br>Number<br>of blades                  |
|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| 90<br>110<br>130<br>150<br>175<br>200<br>225<br>250<br>300<br>350 | 16<br>18<br>22<br>26<br>26<br>30<br>30<br>30<br>30<br>30 | 32<br>40<br>40<br>50<br>50<br>60<br>60<br>60<br>60 | 8<br>8<br>10<br>10<br>12<br>12<br>14<br>16<br>18<br>20 |

- 1. Допуск на днаметр посадочного отверстии d и размеры шионочной канавки по ГОСТ 4020-48.
- 2. Фрезы изготовляют праворежущими и леворежущими.
- 3. По специальному заказу фрезы могут быть изготовлены с диаметром посадочного отверстия d:

| для | фрез | диаметром | D = | 90  | 11 | 110 | мм |  | d    | 27 | MM  |
|-----|------|-----------|-----|-----|----|-----|----|--|------|----|-----|
| для | фрез | диаметром | D - | 130 | MM | 1   |    |  | d =  | 32 | MM  |
| для | фрез | диаметром | D . | 150 | п  | 175 | мм |  | d -  | 40 | мм  |
| для | фрез | диаметром | D - | 200 |    | 300 | мм |  | d -: | 50 | MAI |

- Для полного использования пластинок твердого сплава конструкция этих фрез позволяет перемещать ножи в пазу корпуса на требуемое количество рифлений.
  - Ножи крепятся при помощи клиньев.
- 5. Обозначение праворежущей дисковой двухсторонней фрезы с размерами  $D=90\,\mathrm{mm}$  и  $d=32\,\mathrm{mm}$  со вставными ножами, оснащенными твердым сплавом Т15К6:

Фреза 90 Т15К6 ГОСТ 6469-53;

то же, леворежущей

Фреза Л 90 Т15К6 ГОСТ 6469-53.

По специальному заказу могут быть поставлены отдельно от фрез запасные ножи и клипья, размеры которых приведены ниже.

#### СТАНКОИМПОРТ

- 1, Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Cutters are furnished right- or left-hand cut.
- 3. On special order cutters can be furnished with the following diameter of bore  $d\colon$

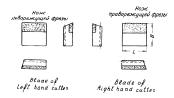
- 4. The cutter design permits moving the blades in the slots of cutter body in any desired number of serrations, thus giving maximum life of carbide tips. The blades are locked by means of wedges.
- 5. Designation of an inserted blade right-hand cut half side milling cutter tipped with T15K6 carbide, diameter  $D=90~\rm mm$ , bore diameter  $d=32~\rm mm$ :

Cutter 90 T15K6 GOST 6469-53;

ditto for a left-hand cutter:

LH cutter 90 T15K6 GOST 6469-53.

On special order spare blades and wedges can be furnished separately. Dimensions of blades and wedges are given below.


#### СТАНКОИМПОРТ

#### вапасные ножи

(no FOCT 6469-53)

#### SPARE BLADES

(acc. to GOST 6469-53)



Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter | L                          | , B                              |
|-------------------------------------------|----------------------------|----------------------------------|
| 90<br>110<br>130<br>150—175<br>200—350    | 16<br>16<br>20<br>24<br>26 | 18<br>22<br>27<br>27<br>27<br>29 |

Обозначение ножа с размерами L=16 мм и B=18 мм для праворежущей фрезы диаметром D=90 мм, оснащенной твердым сплавом Т15 ${\rm K}6$ :

- Нож  $16 \times 18$  Т15К6 ГОСТ 6469-53;

то же, леворежущей:

Hore JI  $16 \times 48$  T45K6 FOCT 6469-53.

Designation of a blade  $L=16\,\mathrm{mm},\ B=18\,\mathrm{mm}$  for a right-hand cutter diameter  $D=90\,\mathrm{mm}$  tipped with T15K6 carbide:

Blade  $16 \times 18$  T15K6 GOST 6469-53; ditto for a left-hand cutter:

LH Blade  $16 \times 18$  T15K6 GOST 6469-53.

## вапасные клинья

(по ГОСТ 6469-53)

#### SPARE WEDGES

(acc. to GOST 6469-53)



Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter<br>of cutter | L  | Н  |
|-------------------------------------------|----|----|
| 90                                        | 10 | 10 |
| 110                                       | 14 | 13 |
| 130                                       | 16 | 17 |
| 150—175                                   | 20 | 17 |
| 200—350                                   | 24 | 17 |

Обозначение влина е размерами  $L=10~{\rm mm}$  и  $H=10~{\rm mm}$  для фрезы диаметром  $D=90~{\rm mm}$  :

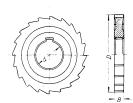
Rmm 10 × 10 ГОСТ 6469-53.

Designation of a wedge  $L=10\,\mathrm{mm},\,H=10\,\mathrm{mm}$  for a cutter of diameter D = 90 mm:

Wedge  $10 \times 10$  GOST 6469-53.

#### СТАНКОИМПОРТ

#### ФРЕЗЫ ДИСКОВЫЕ ПАЗОВЫЕ


(по ГОСТ 3964-47)

#### SLOTTING MILLING CUTTERS

(acc. to GOST 3964-47)

Материал: быстрорежущая сталь. Material: high speed steel.





Размеры в мм Dimensions in mm

|                                  |                            |                                              |                                        |                                  |                                  | Dimen                            | sions in ini                           |
|----------------------------------|----------------------------|----------------------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------|
| D                                | В                          | d                                            | Число<br>зубьев<br>Number of<br>teeth  | D                                | В                                | d                                | Число<br>зубьев<br>Number of<br>teeth  |
| 60<br>60<br>60<br>60<br>75<br>75 | 5<br>6<br>7<br>8<br>7<br>8 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 20<br>20<br>20<br>20<br>20<br>22<br>22 | 75<br>75<br>90<br>90<br>90<br>90 | 10<br>12<br>10<br>12<br>14<br>16 | 22<br>22<br>27<br>27<br>27<br>27 | 22<br>22<br>24<br>24<br>24<br>24<br>24 |

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-

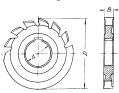
- 1. Допуск на диаметр посадочного отверстил d и размеры шпоночной канавки по ГОСТ 4020-48.
- 2. Обозначение фрезы назовой диаметром  $D=75\,\mathrm{mm}$  и шириной  $B=7\,\mathrm{mm}$ :
  - = 7 mm:  $60 \times 7$  FOCT 3964-47.
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Designation of a slotting milling cutter, diameter D=75, face width  $B=7\,\mathrm{mm}$  :

 $60\times7$  GOST 3964-47.

СТАНКОИМПОРТ

#### ФРЕЗЫ ДИСКОВЫЕ ПАЗОВЫЕ ЗАТЫЛОВАННЫЕ

(no OCT 20194-40)


#### RELIEVED TEETH SLOTTING MILLING CUTTERS

(acc. to OST 20194-40)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D                                            | В                               | d                                                  | Число<br>зубьев<br>Number of<br>teeth  | D                                | В                                     | đ                                            | Число<br>зубьев<br>Number of<br>teeth |
|----------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|
| 50<br>50<br>50<br>60<br>60<br>60<br>60<br>75 | 4<br>5<br>6<br>5<br>6<br>7<br>8 | 16<br>16<br>16<br>22<br>22<br>22<br>22<br>22<br>22 | 14<br>14<br>14<br>14<br>14<br>14<br>14 | 75<br>75<br>75<br>90<br>90<br>90 | 8<br>10<br>12<br>10<br>12<br>14<br>16 | 22<br>22<br>22<br>27<br>27<br>27<br>27<br>27 | 14<br>14<br>14<br>16<br>16<br>16      |

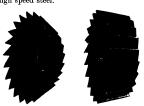
## СТАНКОИМПОРТ

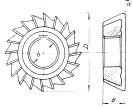
- 1. Допуск на диаметр посадочного отверсти<br/>иdи размеры шпопочной канавки по ГОСТ 4020-48.
- 2. Обозначение фрезы пазовой затылованной диаметром  $D=60\,\mathrm{mm}$  и инириной  $B=40\,\mathrm{mm}$ :  $60\times 40\,$  OCT 20194-40.
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Designation of a relieved teeth slotting milling cutter, diameter  $D=60\,\mathrm{mm},$  face width  $B=60\,\mathrm{mm}$  :

 $60\!\times\!10$  OST 20194-40.

СТАНКОИМПОРТ

#### ФРЕЗЫ ОДНОУГЛОВЫЕ


(по ГОСТ 3960-47)


#### SINGLE ANGLE MILLING CUTTERS

(acc. to GOST 3960-47)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D  | В  | d  | α   | Число<br>зубьев<br>Number of<br>teeth | D  | В  | d  | α   | Число<br>зубьев<br>Number of<br>teeth |
|----|----|----|-----|---------------------------------------|----|----|----|-----|---------------------------------------|
| 35 | 8  | 13 | 60° | 18                                    | 35 | 10 | 13 | 75° | 18                                    |
| 35 | 10 | 13 | 65° | 18                                    | 35 | 10 | 13 | 80° | 18                                    |
| 35 | 10 | 13 | 70° | 18                                    | 35 | 10 | 13 | 85° | 18                                    |

## СТАНКОИМПОРТ

#### Продолжение Continued

| D                                                              | В                                                  | d                                            | α                                                           | Число<br>зубьев<br>Number of<br>teeth                          | D                                      | В                                            | d                                                        | α                                                    | Число<br>зубьев<br>Number of<br>teeth              |
|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| 35<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45 | 10<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | 13<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 90°<br>55°<br>60°<br>65°<br>70°<br>75°<br>80°<br>85°<br>90° | 18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 60<br>60<br>60<br>60<br>60<br>60<br>60 | 16<br>16<br>16<br>16<br>20<br>20<br>20<br>20 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 55°<br>60°<br>65°<br>70°<br>75°<br>80°<br>85°<br>90° | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |

- 1. Допуск на диаметр посадочного отверстия d и размеры ингоночой канавки — по ГОСТ 4020-48.
- 2. Стандартные фрезы изготовляют праворежущими. Леворежущие фрезы изготовляют по специальному заказу.
- 3. Обозначение фрезы одноугловой праворежущей диаметром D60 мм е углом  $\alpha = 80^{\circ}$ :

 $60\times80^{\circ}$  FOCT 3960-47;

то же, леворежущей:

 $.160 \times 80^{\rm o}$  FOCT 3960-47.

- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. Standard cutters are furnished in right-hand cut, Cutters with lefthand cut are special.
- 3. Designation of a right-hand single angle milling cutter, diameter D=60 mm and angle  $\alpha=80^{\circ}$ :

60×80° GOST 3960-47;

ditto for a left-hand cutter:

LH  $60 \times 80^{\circ}$  GOST 3960-47.

#### СТАНКОИМПОРТ

#### ФРЕЗЫ ДВУХУГЛОВЫЕ НЕСИММЕТРИЧНЫЕ

(по ГОСТ 3961-47)

# $\begin{array}{cccc} \textbf{DOUBLE} & \textbf{ANGLE} & \textbf{MILLING} & \textbf{CUTTERS} & \textbf{WITH} & \textbf{UNSYMMETRICAL} \\ & \textbf{TOOTH} & \textbf{FACE} \end{array}$


(acc. to GOST 3961-47)

Материал: быстрорскущая сталь.

Material: high speed steel.







Размеры в мм Dimensions in mm

| D                                                        | В                                        | d                                                              | α                                                                   | δ                               | Число<br>зубьев<br>Number of<br>teeth                    |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|
| 35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>45 | 6<br>6<br>8<br>8<br>10<br>10<br>10<br>13 | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | 55°<br>60°<br>65°<br>70°<br>75°<br>80°<br>85°<br>90°<br>100°<br>55° | 15° 15° 15° 15° 15° 20° 25° 15° | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>20 |

Продолжение Continued

| В                                | d                                                                                    | α                                                                                          | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Число<br>зубьев<br>Number of<br>teeth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8<br>8<br>10                     | 16<br>16<br>16                                                                       | 60°<br>65°<br>70°<br>75°                                                                   | 15°<br>15°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>13<br>16                   | 16<br>16<br>16                                                                       | 80°<br>85°<br>90°                                                                          | 15°<br>15°<br>20°<br>25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10<br>10<br>10                   | 22<br>22<br>22<br>22<br>22                                                           | 55°<br>60°<br>65°<br>70°                                                                   | 15°<br>15°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>16<br>16<br>16             | 22<br>22<br>22<br>22<br>22                                                           | 80°<br>85°<br>90°                                                                          | 15°<br>15°<br>20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13<br>13<br>16                   | 22<br>22<br>22                                                                       | 50°<br>55°<br>60°                                                                          | 15°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20<br>20<br>20                   | 22<br>22<br>22                                                                       | 70°<br>75°<br>80°                                                                          | 15°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24<br>20<br>20                   | 22<br>27<br>27                                                                       | 90°<br>50°<br>55°                                                                          | 20°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>22<br>24<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24<br>24<br>30<br>30<br>30<br>30 | 27<br>27<br>27<br>27<br>27                                                           | 65°<br>70°<br>75°<br>80°                                                                   | 15°<br>15°<br>15°<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24<br>24<br>24<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | 8 8 8 10 110 113 113 116 110 110 110 113 113 116 116 116 116 116 117 117 117 117 117 | 8 16 8 16 10 16 11 13 11 16 11 16 11 16 11 16 11 16 11 17 17 17 17 17 17 17 17 17 17 17 17 | 8 16 65° 8 16 75° 10 16 77° 10 16 75° 13 16 85° 16 16 16 90° 16 16 16 100° 10 22 65° 10 22 65° 11 22 70° 11 3 22 75° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 16 22 85° 17 3 22 75° 18 3 22 85° 19 90° 10 22 85° 10 22 85° 10 22 85° 10 22 85° 10 22 75° 10 22 85° 10 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 22 75° 20 27 75° 20 27 75° | 8 16 60° 15° 8 16 65° 15° 10 16 70° 15° 10 16 70° 15° 13 16 85° 15° 16 16 16 80° 15° 16 16 16 80° 15° 16 16 16 80° 15° 10 22 60° 15° 10 22 60° 15° 11 222 70° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 222 80° 15° 16 22 80° 15° 20 22 70° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° 20 22 75° 15° |

- 1. Допуск на диаметр посадочного отверетия d и размеры шионочной канавки по ГОСТ 4020-48. 2. Стандартные фрезы изготовляют праворежущими. Леворежущие фрезы изготовляют по специальному заказу. 3. Обозначение фрезы двухугловой иссимметричной, диаметром D=60 мм с углом  $\alpha=85^{\circ}$ :  $60\times85^{\circ}$  ГОСТ 3961-47.

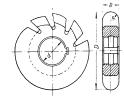
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.

  2. Standard cutters are furnished in right-hand cut. Cutters with left-hand cut are special.

  3. Designation of a double angle milling cutter with unsymmetrical tooth face, diameter  $D=60~\mathrm{mm}$  and angle  $\alpha=85^\circ$ :  $60\times85^\circ$  GOST 3961-47.

### ТАНКОИМПОРТ

#### ФРЕЗЫ ПОЛУКРУГЛЫЕ ВЫПУКЛЫЕ


(no FOCT 3962-47)

### RADIAL TOOTH FACE CONVEX MILLING CUTTERS

(acc. to GOST 3962-47)

Материал: быстрорежущая сталь.

Material: high speed steel.



Размеры в мм

Dimensions in mm

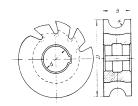
| R                                                  | D                                                              | В                                                               | đ                                                                          | Число<br>зубьев<br>Number of<br>teeth                    |
|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| 1,5<br>2<br>2,5<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 45<br>45<br>55<br>60<br>60<br>65<br>65<br>75<br>80<br>85<br>90 | 3<br>4<br>5<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20<br>24 | 16<br>16<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>27<br>27<br>27<br>27 | 18<br>18<br>16<br>14<br>14<br>12<br>12<br>12<br>10<br>10 |

1. Допуск на диаметр посадочного отверстия d и размеры липоночной канавки — по ГОСТ 4020-48.

- 2. По специальному заказу фрезы для глубокого фрезерования изготовляют с боковыми выточками.
- 3. Обозначение фрезы полукруглой выпуклой, радпусом  $R=8~\mathrm{mm}$  : 8 FOCT 3962-47.
- 1. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 2. On special order cutters for deep cuts are furnished with recessed sides.
- 3. Designation of a radial tooth face convex milling cutter, radius  $R=8\,\mathrm{mm}$ :

8 GOST 3962-47.

### ФРЕЗЫ ПОЛУКРУГЛЫЕ ВОГНУТЫЕ


(по ГОСТ 3963-47)

### RADIAL TOOTH FACE CONCAVE MILLING CUTTERS

(acc. to GOST 3963-47)

Материал: быстрорежущая сталь.

Material: high speed steel.



Pasmeph B MM Dimensions in mm

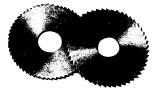
| R                                             | D                                                              | В                                                                  | d                                                                    | Число<br>зубьев<br>Number of<br>teeth                          |
|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|
| 1,5<br>2,5<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 45<br>45<br>55<br>60<br>60<br>65<br>65<br>75<br>80<br>85<br>90 | 7<br>8<br>10<br>12<br>15<br>18<br>20<br>24<br>26<br>30<br>34<br>38 | 16<br>16<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>27<br>27<br>27 | 18<br>18<br>16<br>14<br>14<br>12<br>12<br>12<br>10<br>10<br>10 |

1. Допуск на днаметр посадочного отверстии d и размеры интопочной канавки — по  $\Gamma$  OCT 4020-48.

- 2. По специальному заказу фрезы для глубокого фрезерования изготовляют е боковыми выточками.
- 3. Обозначение фрезы полукруглой вогнутой, радпусом  $R=8\,\mathrm{mm}$  : 8 ГОСТ 3963-47.
- 1. Tolerance on diameter of bore  $\boldsymbol{d}$  and dimensions of keyway are according to GOST 4020-48.
- 2. On special order cutters for deep cuts are furnished with recessed sides.
- 3. Designation of a radial tooth face concave milling cutter, radius  $R=8\,\mathrm{mm}$ :

8 GOST 3963-47.

### ФРЕЗЫ ПРОРЕЗНЫЕ


(no POCT 2680-44)

### SCREW-SLOTTING CUTTERS

(acc. to GOST 2680-44)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

|                                                                |                                                                                  |                                                                |                                                                     | бьев фрез<br>r of teeth                                              |
|----------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| D                                                              | В                                                                                | d                                                              | с мелким<br>зубом<br>fine-tooth<br>cutters                          | с крупным<br>зубом<br>coarse-<br>tooth<br>cutters                    |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>60<br>60<br>60<br>60 | 0,2<br>0,3<br>0,4<br>0,5<br>0,6<br>0,8<br>1,0<br>0,5<br>0,6<br>0,8<br>1,0<br>1,2 | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>16<br>16<br>16<br>16 | 108<br>108<br>90<br>90<br>90<br>72<br>72<br>120<br>108<br>108<br>90 | 72<br>60<br>60<br>50<br>50<br>40<br>40<br>72<br>72<br>72<br>60<br>60 |

# СТАНКОИМПОРТ

Продолжение Continued

### 

- Фрезы с мелким зубом предназначены для прорезания нетлубоких испицев, расшиловки тонких изделий и тонкостенных труб. Фрезы с крупным зубом предназначены для прорезания глубоких назов.
- -2. Фрезы со линопочной кананкой изготовляют по специальному заказу.
- 3. Размеры шиопочной кананки и допуск на диаметрd посадочного отверстии по ГОСТ 4020-48.
- . 4. Обозначение прорежной фрема диаметром D=40мм, шириной B=4мм с числом зубъев Z=40 :

40 × 1 × 40 FOCT 2680-44.

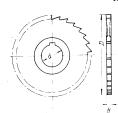
- Fine-tooth cutters are designed for slotting screw heads, slitting thin-wall tubes and for various operations where a shallow slot is needed. Coarse-tooth cutters are designed for cutting deep slots.
- 2. Cutters with keyway are special.
- 3. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 4. Designation of a screw-slotting cutter, diameter D=40 mm, width B=1 mm, number of teeth Z=40:

 $40 \times 1 \times 40$  GOST 2680-44.

### СТАНКОИМПОРТ

### ФРЕЗЫ ОТРЕЗНЫЕ

(по ГОСТ 2679-44)


### METAL SLITTING SAWS

(acc. to GOST 2679-44)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D                          | В                    | d                          | Число<br>зубьев<br>Number of<br>teeth | D                                 | В                           | đ                                | Число<br>зубьев<br>Number of<br>teeth |
|----------------------------|----------------------|----------------------------|---------------------------------------|-----------------------------------|-----------------------------|----------------------------------|---------------------------------------|
| 60<br>60<br>60<br>60<br>75 | 1<br>1,5<br>2<br>2,5 | 16<br>16<br>16<br>16<br>22 | 36<br>30<br>30<br>30<br>30<br>36      | 75<br>75<br>75<br>75<br>75<br>110 | 1,5<br>2<br>2,5<br>3<br>1,5 | 22<br>22<br>22<br>22<br>22<br>27 | 36<br>36<br>30<br>30<br>50            |

#### Продолжение Continued

| D                                             | В                                     | d                                            | Число<br>зубьев<br>Number of<br>teeth  | D                                             | В                              | d                                            | Число<br>зубьев<br>Number of<br>teeth |
|-----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------|---------------------------------------|
| 110<br>110<br>110<br>110<br>150<br>150<br>150 | 2<br>2,5<br>3<br>3,5<br>2<br>2,5<br>3 | 27<br>27<br>27<br>27<br>27<br>32<br>32<br>32 | 50<br>40<br>40<br>40<br>60<br>60<br>50 | 150<br>150<br>200<br>200<br>200<br>200<br>200 | 3,5<br>4<br>3<br>3,5<br>4<br>5 | 32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | 50<br>50<br>60<br>60<br>50<br>50      |

- 1. V фрез шириной до 2 мм инопочный наз изготовляют по епециальному заказу,
- 2. Допуск на днаметр посадочного отверстия d и размеры шпоночной канавки по ГОСТ 4020-48.
- 3. Обозначение отрезной фрезы днаметром  $D=60\,\mathrm{mm}$ , ингриной  $B=2.5\,\mathrm{mm}$  с числом зубьев Z=30 ;

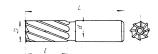
 $60\times2.5\times30$  FOCT 2679-44.

- $1. \ \, {\rm Saws\ up\ to\ 2\ mm\ width\ are\ made\ without\ a\ keyway.\ Saws\ of\ these\ sizes\ may\ be\ furnished\ with\ a\ keyway\ on\ special\ order.}$
- <sup>2</sup> 2. Tolerance on diameter of bore d and dimensions of keyway are according to GOST 4020-48.
- 3. Designation of a metal slitting saw, diameter D=60 mm, width B=2.5 mm, number of teeth Z=30 :

60×2.5×30 GOST 2679-44.

### СТАНКОИМПОРТ

### ФРЕЗЫ КОНЦЕВЫЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ


(no FOCT 3958-47)

### STRAIGHT SHANK END MILLS

(acc. to GOST 3958-47)

Maтериал:быстрорежущая сталь.Material:high speed steel.





Размеры в мм Dimensions in mm

| D                                                         | d                                                         | L                                                        | ı                                                             | Число<br>зубьев<br>Number of<br>teeth          |
|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
| 3<br>4<br>5<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>20 | 4<br>4<br>6<br>6<br>8<br>10<br>12<br>16<br>16<br>20<br>20 | 35<br>40<br>45<br>50<br>55<br>60<br>70<br>75<br>85<br>90 | 8<br>11<br>14<br>16<br>18<br>20<br>25<br>30<br>35<br>40<br>45 | 4<br>4<br>6<br>6<br>6<br>8<br>8<br>8<br>8<br>8 |

 $^{\circ}$  1. Стандартные фрезы изготовляют праворежущими с правой винтовой канавкой.

 $\Phi$ резы деворежущие или с девой винтовой канавкой изготовляют по специальному заказу.

- 2. Фрезы диаметром 3 и 4мм изготовляются без торцевого зуба.
- 3. Фрезы диаметром до 6 мм могут быть изготовлены c обратным центром со стороны хвостовика.
- 4. Обозначение концевой фрезы с цилиндрическим хвостом диаметром  $D=20~{\rm km}$  :  $20~{\rm FOCT}~3958\text{-}47.$
- 1. Standard end mills are furnished in right-hand cut, right-hand helix.

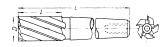
Mills with left-hand cut or left-hand helix are special.

- 2. End mills 3 and 4 mm diameter are furnished without face teeth.
- 3. End mills up to 6 mm diameter may be furnished with external center on shank.
- 4. Designation of a straight shank end mill, diameter  $D=20~\mathrm{mm}$  : 20 GOST 3958-47.

**АНКОИМПОРТ** 

### ФРЕЗЫ КОНЦЕВЫЕ С КОНИЧЕСКИМ ХВОСТОМ

(по ГОСТ 3959-47)


### TAPER SHANK END MILLS

(acc. to GOST 3959-47)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D                                                                          | L                                                                                       | ī                                                                          | № конуса<br>Морзе<br>Morse<br>taper No. | Число<br>зубьев<br>Number of<br>teeth   |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| 14<br>16<br>18<br>20<br>22<br>25<br>28<br>30<br>35<br>40<br>45<br>45<br>50 | 115<br>120<br>120<br>145<br>145<br>150<br>175<br>180<br>185<br>190<br>195<br>225<br>195 | 32<br>36<br>36<br>44<br>44<br>48<br>50<br>55<br>60<br>65<br>70<br>70<br>70 | 2 2 2 3 3 4 4 4 4 4 5 4 5 4 5 5         | 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |

- Стандартные фрезы изготовляют праворскущими с правой винтовой канавкой. Фрезы леворскущие или с левой винтовой канавкой изготовляют по специальному заказу.
  - 2. Размеры конусов Морзе по ГОСТ 2847-45.
- 3. Обозначение фрезы концевой с концческим хвостом диаметром  $D = 48\,\mathrm{mm}$ :

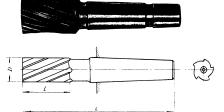
18 FOCT 3959-47.

- 1. Standard end mills are furnished in right-hand cut, right-hand helix. Mills with left-hand cut or left-hand helix are special.
  - 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a taper shank end mill, diameter  $D=18~\mathrm{mm}$  :

18 GOST 3959-47.

СТАНКОИМПОРТ

#### ФРЕЗЫ КОНЦЕВЫЕ С КОНИЧЕСКИМ ХВОСТОМ, БЕЗ ТОРЦЕВЫХ ЗУБЬЕВ


(но нормали ВН 323-51)

### TAPER SHANK END MILLS WITHOUT FACE TEETH

(acc. to Standard BH 323-51)

Материал: быстрорежущая сталь.

Material: high speed steel.



Размеры в мм Dimensions in mm

|                                                                | Фрезы короткие<br>Short series                                            |                                                          | Фрезы длинные<br>Long series                                              |                                                                  | № конуса<br>Морзе<br>Morse taper | Число<br>зубьев<br>Number of |
|----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|------------------------------|
| D                                                              | L                                                                         | ı                                                        | L                                                                         | ı                                                                | No.                              | teeth                        |
| 14<br>16<br>18<br>20<br>22<br>25<br>28<br>30<br>35<br>40<br>45 | 115<br>120<br>120<br>145<br>145<br>150<br>175<br>180<br>185<br>190<br>225 | 32<br>36<br>36<br>44<br>48<br>50<br>55<br>60<br>65<br>70 | 130<br>135<br>140<br>165<br>185<br>205<br>210<br>220<br>225<br>265<br>270 | 48<br>52<br>56<br>65<br>65<br>72<br>80<br>85<br>95<br>100<br>110 | 2 2 2 3 3 3 4 4 4 4 4 5 5 5      | 55555666666                  |

- 1. Пормальные фрезы изготовляют с левыми винтовыми канавками.
- 2. Размеры конусов Морзе по ГОСТ 2847-45.
- 3. Обозначение фрезы концевой короткой, диаметром  $D=18\,\mathrm{mm}$ с конусом Морзе № 2:

18 Морзе 2 кор. ВН 323-51;

то же, даниной фрезы:

18 Морзе 2 длин, ВН 323-51.

- 1. Standard cutters are furnished in left-hand helix.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a short end mill, diameter  $D=18~\mathrm{mm}$  and Morse taper No. 2:

18 Morse 2 short BH 323-51;

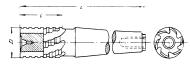
ditto for a long mill:

18 Morse 2 long BH 323-51.

СТАНКОИМПОРТ

# ФРЕЗЫ КОНЦЕВЫЕ ОБДИРОЧНЫЕ С КОНИЧЕСКИМ ХВОСТОМ, С ЗАТЫЛОВАННЫМ ЗУБОМ

(no FOCT 4675-49)


### TAPER SHANK END MILLS WITH RELIEVED TEETH

(acc. to GOST 4675-49)

Материал: быстрорежущая сталь.

Material: high speed steel.







I<sup>©</sup> вар**иан** Ist type



Размеры в мм Dimensions in mm

| D L l sydbes Mopsi<br>Number of teeth Morse<br>taper N |                                                                                              |                                                                                                              |                                                                                                      |                     |                                                                                                  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|
| 25 150 48 5 3<br>25 185 82 5 3                         | D                                                                                            | L                                                                                                            | ı                                                                                                    | зубьев<br>Number of | № конуса<br>Морзе<br>Morse<br>taper No.                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | 25<br>25<br>30<br>30<br>30<br>35<br>35<br>35<br>40<br>40<br>45<br>45<br>50<br>50<br>60<br>60 | 185<br>215<br>180<br>210<br>245<br>185<br>220<br>255<br>190<br>225<br>265<br>270<br>315<br>225<br>270<br>315 | 82<br>112<br>55<br>85<br>120<br>60<br>95<br>130<br>65<br>100<br>140<br>70<br>115<br>160<br>70<br>115 | 5555555556666888888 | 3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

- 1. Фрезы могут быть изготовлены с торцевыми зубьями и без них.
- Фрезы изготовляют праворежущими, с направлением винтовых канавок: левым—для фрез без торцевых зубьев и правым—для фрез с торцевыми зубыми.
- Певорежущие фрезы изготовляют по специальному заказу. При этом направление винтовых канавок изменяется.
- Фрезы спабжены струизко-разделительными капавками с затылованным профилем, которые смещены одна относительно другой.
- Обозначение концевой фрезы днаметром 45 мм и длиной 270 мм, без торцевых зубьев, с профилем стружко-разделительных канавок, выполненных по первому варианту;

. 45  $\times$  270-1 ГОСТ 4675-49;

то же, с торцевыми зубъями:

45 imes 270-1 с торцевыми зубьями ГОСТ 4675-49.

### СТАНКОИМПОРТ

- 1. End mills can be furnished either with or without face teeth.
- 2. Standard end mills without face teeth are furnished in right-hand cut, left-hand helix. Mills with face teeth are furnished in right-hand cut, right-hand helix.

Mills with left-hand cut are special, the direction of hand of helix being changed.

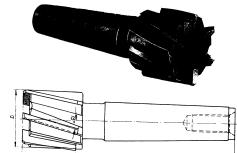
- $3.\ {\rm Cutters}$  are furnished with relieved profile chip dividing grooves displaced in respect to each other.
- 4. Designation of a relieved tooth taper shank end mill with type No. 1 chip dividing groove, diameter 45 mm, length 270 mm:

45×270-1 GOST 4675-49;

same mill with face teeth:

 $45 \times 270\text{-}1$  with face teeth GOST 4675-49.

#### ФРЕЗЫ КОНЦЕВЫЕ ТОРЦЕВЫЕ СО ВСТАВНЫМИ НОЖАМИ


(по нормали завода-изготовителя)

#### INSERTED BLADE END MILLS

(acc. to Maker's Standard)

Материал ножей: быстрорежущая сталь.

Material of blades: high speed steel.



Размеры в мм Dimensions in mm

| D  | L   | В  | Число<br>ножей<br>Number of<br>blades | № конуса<br>Морзе<br>Morse<br>taper No. |
|----|-----|----|---------------------------------------|-----------------------------------------|
| 40 | 140 | 35 | 5                                     | 3                                       |
| 45 | 170 | 45 | 6                                     | 4                                       |
| 50 | 175 | 50 | 6                                     | 4                                       |
| 60 | 225 | 55 | 8                                     | 5                                       |

СТАНКОИМПОРТ

- Стандартные фрезы изготовлиют праворсжущими с правой винтовой канавкой. Фрезы леворсжущие или с девой винтовой канавкой изготовлиют по специальному заказу.
  - 2. Размеры копусов Морзе по ГОСТ 2847-45.
- Конетрукция фрез позволиет перемещать пожи в назу корпуса на требуемое количество рифлений.

Крепление ножей в корпусе фрезы осуществляется при помощи клиньев,

4. Обозначение фрезы концевой торцевой со вставными ножами диаметром D=50 мм, праворежущей:

Фреза концевая со вставными ножами 50 нормаль завода.

По специальному заказу, отдельно от фрез могут быть поставлены запасные ножи и клинья, размеры которых приведены ниже.

- 1. Standard mills are furnished in right-hand cut, right-hand helix. Mills with left-hand cut or left-hand helix are special.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. The cutter design permits moving the blades in the slots of cutter body in a desired number of serrations.

The blades are locked by means of wedges.

4. Designation of a right-hand inserted blade end mill, diameter  $D=50\;\mathrm{mm}$  :

Inserted blade mill 50 Maker's Standard.

On special order spare blades and wedges can be furnished separately. Dimensions of spare blades and wedges are given below.

### запасные ножи

(по нормали завода-изготовителя)

### SPARE BLADES

(acc. to Maker's Standard)



Размеры в мм Dimensions in mm

|                                         | Dimens               | sions in min                 |
|-----------------------------------------|----------------------|------------------------------|
| Диаметр<br>фрезы<br>Diameter of<br>mill | l                    | h                            |
| 40<br>45<br>50<br>60                    | 37<br>48<br>53<br>58 | 13,5<br>13,5<br>14,5<br>15,5 |

Обозначение пожа правого с размерами  $t \coloneqq 37$  мм и  $h \coloneqq 13,\!5$  мм: Пож к концевой торцевой фрезе диам. 40 пормаль завода.

Designation of a right-hand blade  $l=37\,\mathrm{mm},\,h=13.5\,\mathrm{mm}$  : Blade for end mill diam. 40 Maker's Standard.

### CTAHKOMMHODT

#### запасные клинья

(по нормали завода-изготовителя)

#### SPARE WEDGES

(acc. to Maker's Standard)



Размеры в мм Dimensions in mm

| Диаметр<br>фрезы<br>Diameter of<br>mill | ı  | h   |
|-----------------------------------------|----|-----|
| 40                                      | 32 | 8   |
| 45                                      | 42 | 7,5 |
| 50                                      | 48 | 8   |
| 60                                      | 53 | 8,5 |

Обозначение клина размерами  $l=32\,\mathrm{mm}$  и  $h=8\,\mathrm{mm}$ : Клин к концевой торцевой фрезе диам. 40 нормаль завода.

Designation of a wedge  $l=32~\mathrm{mm},\,h=8~\mathrm{mm}$ : Wedge for end mill diam. 40 Maker's Standard.

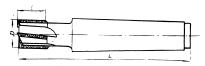
# **ФРЕЗЫ КОНЦЕВЫЕ ТОРЦЕВЫЕ С КОНИЧЕСКИМ** XBOCTOM, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по нормали завода-изготовителя)

### CARBIDE TIPPED TAPER SHANK END MILLS

(acc. to Maker's Standard)

Материал пластинок: вольфрамо-титано-кобальтовые сплавы ма-


рок ТК для обработки стали и вольфрамокобальтовые сплавы марок ВК для обработки

чугуна.

Material of tips:

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.





 ${
m Pasmeph}$  в мм  ${
m Dimensions}$  in mm

| D                    | L                       | ı                    | Число<br>зубьев<br>Number of<br>teeth | M конуса<br>Mopse<br>Morse<br>taper No. |
|----------------------|-------------------------|----------------------|---------------------------------------|-----------------------------------------|
| 12<br>14<br>16<br>18 | 90<br>105<br>105<br>105 | 15<br>15<br>15<br>20 | 4<br>4<br>4<br>5                      | 1<br>2<br>2<br>2<br>2                   |

### СТАНКОИМПОРТ

## Продолжение Continued

| D                                            | L                                                           | ı                                                        | Число<br>зубьев<br>Number of<br>teeth | № конуса<br>Морзе<br>Morse<br>taper No. |
|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------------|
| 20<br>22<br>25<br>28<br>30<br>35<br>40<br>45 | 125<br>125<br>125<br>150<br>150<br>150<br>150<br>190<br>190 | 20<br>20<br>20<br>20<br>20<br>20<br>25<br>25<br>30<br>30 | 5<br>5<br>5<br>5<br>6<br>6<br>6<br>6  | 3<br>3<br>4<br>4<br>4<br>4<br>5<br>5    |

- 1. Фрезы выпускают праворежущими. Фрезы леворежущие изготовляют по особому заказу.
- 2. Размеры конусов Морзе по ГОСТ 2847-45.
- 3. Обозначение торцевой концевой фрезы с концческим хвостом, оснащенной твердым сплавом Т15К6 диаметром  $D=30~\mathrm{mm}$ :

Торцевая фреза с коническим хвостом 30 Т15К6 нормаль завода.

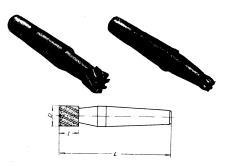
- 1. Standard end mills are right-hand cut. Mills with left-hand cut are special.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a taper shank end mill tipped with T15K6 carbide, diameter  $D=30\colon$

Taper shank end mill 30 T15K6 Maker's Standard.

### ФРЕЗЫ КОНЦЕВЫЕ С КОРОНКАМИ ИЗ ТВЕРДОГО СПЛАВА

(но вормали завода-изготовителя)

#### END MILLS WITH CARBIDE CROWN


(acc. to Maker's Standard)

Материал коронки: вольфрамо-титано-кобальтовые сплавы ма-

рок ТК для обработки стали и вольфрамокобальтовые сплавы марок ВК для обработки чугуна.

Material of crown:

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.



Размеры в мм Dimensions in mm

| D  | L   | ı  | Число<br>зубьев<br>Number of<br>teeth | M конуса<br>Морзе<br>Morse<br>taper No. |
|----|-----|----|---------------------------------------|-----------------------------------------|
| 14 | 142 | 14 | 6                                     | 3                                       |
| 18 | 142 | 16 | 8                                     | 3                                       |
| 22 | 142 | 17 | 8                                     | 3                                       |

### СТАНКОИМПОРТ

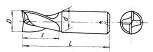
- Нормальные фрезы изготовляют праворежущими с правой винтовой капавкой.
  - 2. Конуса Морзе выполняются по ГОСТ 2847-45.
- 3. Обозначение фрезы концевой с коронкой из твердого силава марки Т15К6 диаметром 18 мм:

Фреза с коронкой 18 Т15К6 нормаль завода.

- 1. Standard mills are furnished in right-hand cut, right-hand helix.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of an end mill with T15K6 carbide crown, diameter  $18\,\mathrm{mm}$ : Crown end mill 18 T15K6 Maker's Standard.

### ФРЕЗЫ ШПОНОЧНЫЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ

(по ОСТ НКТП 3942)


### TWO-LIPPED SLOTTING END MILLS WITH STRAIGHT SHANK.

(acc. to OST NKTP 3942)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D                           | d                           | L                                | l                            | D                          | d                          | L                          | ı                          |
|-----------------------------|-----------------------------|----------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 3<br>4<br>5<br>6<br>8<br>10 | 4<br>4<br>6<br>6<br>8<br>10 | 30<br>30<br>35<br>40<br>45<br>50 | 6<br>6<br>8<br>9<br>12<br>14 | 12<br>14<br>16<br>18<br>20 | 12<br>16<br>16<br>20<br>20 | 60<br>65<br>70<br>75<br>85 | 18<br>21<br>24<br>28<br>32 |

СТАНКОИМПОРТ

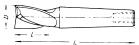
- Стандартные фрезы изготовляют праворежущими с правой винтовой канавкой. Фрезы леворежущие или с левой винтовой канавкой изготовляют по специальному заказу.
- 2. Фрезы диаметром до 6 мм могут быть изготовлены с обратным центром со стороны хвостовика.
- 3. Обозначение фрезы шпоночной с цилиндрическим хвостом диаметром  $D=40~\mathrm{mm}$ :

10 OCT HRTH 3942.

- 1. Standard mills are furnished in right-hand cut, right-hand helix. Mills with left-hand cut or left-hand helix are special.
- 2. Mills up to 6 mm diameter may be furnished with external center on shank.
- 3. Designation of a straight shank slotting end mill, diameter  $D=10\;\mathrm{mm}\colon$  10 OST NKTP 3942.

### ФРЕЗЫ ШПОНОЧНЫЕ С КОНИЧЕСКИМ ХВОСТОМ

(по ОСТ НКТП 3943)


### TWO-LIPPED SLOTTING END MILLS WITH TAPER SHANK

(acc. to OST NKTP 3943)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| D  | L   | ı  | M конуса<br>Морзе<br>Morse<br>taper No. |
|----|-----|----|-----------------------------------------|
| 16 | 100 | 24 | 2                                       |
| 18 | 105 | 28 | 2                                       |
| 20 | 110 | 32 | 2                                       |
| 24 | 130 | 35 | 3                                       |
| 28 | 140 | 44 | 3                                       |
| 32 | 145 | 48 | 3                                       |
| 36 | 175 | 55 | 4                                       |
| 40 | 180 | 60 | 4                                       |

СТАНКОИМПОР

- Стандартные фрезы изготовляют праворежущими с правой вин-товой канавкой. Фрезы леворежущие или с левой винтовой канавкой. изготовляют по специальному заказу.
  - 2. Размеры конусов Морзе по ГОСТ 2847-45.
- 3. Обозначение фрезы шпоночной е коническим хвостом диаметром D = 20 мм:

20 OCT HRTH 3943.

- 1. Standard mills are furnished in right-hand cut, right-hand helix. Mills with left-hand cut or left-hand helix are special.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a taper shank slotting end mill, diameter  $D=20~\mathrm{mm}$  : 20 OST NKTP 3943.

СТАНКОИМП

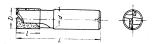
# ФРЕЗЫ ШПОНОЧНЫЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по ГОСТ 6396-52)

# TWO-LIPPED CARBIDE TIPPED SLOTTING END MILLS WITH STRAIGHT SHANK

(acc. to GOST 6396-52)

**Материал пластинок:** вольфрамо-титано-кобальтовые сплавы марок ТК для обработки стали и вольфрамо-


рок ТК для обработки стали и вольфрамокобальтовые сплавы марок ВК для обработки

чугуна. Material of tips: ТК tung

TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.







Размеры в мм Dimensions in mm

| D  | L  | d  | ı  |  |  |
|----|----|----|----|--|--|
| 8  | 45 | 8  | 12 |  |  |
| 10 | 50 | 10 | 12 |  |  |
| 12 | 60 | 12 | 15 |  |  |
| 14 | 65 | 16 | 20 |  |  |
| 16 | 70 | 16 | 20 |  |  |

### СТАНКОИМПОРТ

- Стандартные фрезы изготовляют праворежущими. Фрезы леворежущие изготовляют но специальному заказу.
- 2. Обозначение фрезы шпоночной, оснащенной твердым сплавом Т15К6 днаметром  $D=16\,\mathrm{mm}$ :

I 16T15R6 FOCT 6396-52.

- $1.\ Standard$  mills are furnished in right-hand cut, Mills with left-hand cut are special.
- 2. Designation of a slotting end mill tipped with T15K6 carbide, diameter  $D=16\,\mathrm{mm}$  :

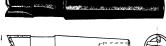
I 16 T15K6 GOST 6396-52.

### ФРЕЗЫ ШПОНОЧНЫЕ С КОНИЧЕСКИМ ХВОСТОМ, ОСНАЩЕННЫЕ ТВЕРДЫМ СПЛАВОМ

(по ГОСТ 6396-52)

# TWO-LIPPED CARBIDE TIPPED SLOTTING END MILLS WITH TAPER SHANK

(acc. to GOST 6396-52)


Материал пластинок: вольфрамо-титано-кобальтовые сплавы ма-

рок ТК для обработки стали и вольфрамокобальтовые сплавы марок ВК для обработки

чугуна. Material of tips: ТК tung

tips: TK tungsten-titanium carbide for machining steel and BK tungsten carbide for machining cast iron.







Размеры в мм Dimensions in mm

| D                          | L                             | ı                                | № конуса<br>Морзе<br>Morse<br>taper No. | D                          | L                               | ı                          | M konyca<br>Mopse<br>Morse<br>taper No. |
|----------------------------|-------------------------------|----------------------------------|-----------------------------------------|----------------------------|---------------------------------|----------------------------|-----------------------------------------|
| 12<br>14<br>16<br>18<br>20 | 85<br>85<br>100<br>105<br>110 | 15<br>20<br>20<br>20<br>20<br>20 | 1<br>1<br>2<br>2<br>2                   | 24<br>28<br>32<br>36<br>40 | 130<br>140<br>145<br>175<br>180 | 25<br>25<br>30<br>30<br>30 | 3<br>3<br>3<br>4<br>4                   |

СТАНКОИМПОРТ

- Стандартные фрезы изготовлиют праворежущими. Фрезы леворежущие изготовлиют по специальному заказу.
- 2. Размеры конусов Морзе - по ГОСТ 2847-45.
- —3. Обозначение фрезы интоночной, оснащенной твердым силаном Т15К6 диаметром  $D \coloneqq 32\,\mathrm{mm}$  :

H 32 T15K6 FOCT 6396-52.

- $\,$  1. Standard mills are furnished in right-hand cut, Mills with left-hand cut are special.
- 2. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a slotting end mill tipped with T15K6 carbide, diameter  $D=32~{\rm mm}$  : II 32 T15K6 GOST 6396-52.

СТАНКОИМПОРТ

### ФРЕЗЫ Т-ОБРАЗНЫЕ ДЛЯ СТАНОЧНЫХ ПАЗОВ

(по ОСТ НКТИ 3656)

### T-SLOT CUTTERS

(acc. to OST NKTP 3656)

Материал: быстрорежущая сталь.

Material: high speed steel.





Размеры в мм Dimensions in mm

| Номи-<br>нальный<br>размер паза<br>Nominal<br>slot size             | D                                                                      | В                                                                         | L                                                                      | d                                                                   | l                                                                    | №<br>конуса<br>Морзе<br>Morse<br>taper<br>No.                 | Число<br>зубьев<br>Number<br>of teeth                     |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>28<br>32<br>36 | 14,5<br>17,5<br>21,5<br>25,5<br>29<br>32<br>35<br>38<br>42<br>49<br>55 | 6,5<br>7,5<br>9,5<br>11,5<br>13<br>15<br>16<br>17<br>19<br>22<br>24<br>27 | 78<br>82<br>98<br>102<br>105<br>110<br>130<br>134<br>138<br>148<br>180 | 8<br>10<br>12<br>14<br>16<br>18<br>20<br>22<br>24<br>28<br>32<br>36 | 11<br>12<br>15<br>18<br>20<br>23<br>25<br>28<br>30<br>36<br>42<br>46 | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>4<br>4 | 6<br>6<br>8<br>8<br>8<br>10<br>10<br>10<br>10<br>12<br>12 |

СТАНКОИМПОРТ

- Стандартные фрезы изготовляют праворежущими с правой винтовой канавкой. Фрезы леворежущие или с левой винтовой канавкой изготовляют по специальному заказу.
- 2. Размеры конусов Морзе по ГОСТ 2847-45.
- 3. Обозначение фрезы Т-образной для наза с номинальным размером 14 мм:

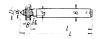
44 OCT HKTH 3656.

- $1.\ Standard\ cutters\ are\ furnished\ in\ right-hand\ cut,\ right-hand\ helix.$  Cutters with left-hand cut\ or\ left-hand\ helix\ are\ special.
- 3. For Morse taper sizes see GOST 2847-45.
- 3. Designation of a T-slot cutter for a slot of 14 mm nominal size:

14 OST NKTP 3656.

#### ФРЕЗЫ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ для пазов сегментных шпонок

(по ГОСТ 6648-53)


#### STRAIGHT SHANK WOODRUFF KEYSEAT CUTTERS

(acc. to GOST 6648-53)

Материал: быстрорежущая или легированияя сталь.

Material: high speed steel or alloy steel.







Размеры в мм Dimensions in mm

| Обозна-<br>чение<br>фрезы<br>De-<br>signation<br>of cutter | D    | В   | L  | d<br>наиб.<br>max. | d <sub>1</sub><br>наиб.<br>max. |    | l <sub>1</sub><br>наим.<br>min. | Наим.<br>число<br>зубьев<br>Minimum<br>number<br>of teeth | Для валов<br>диаметром<br>Diameter<br>of shafts |
|------------------------------------------------------------|------|-----|----|--------------------|---------------------------------|----|---------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| 7 × 1,5                                                    | 7,5  | 1,5 | 50 | 3                  | 3                               | 44 | 8                               | 6                                                         | от 4 до 5                                       |
| 7 	imes 2                                                  | 7,5  | 2   | 50 | 3                  | 3                               | 44 | 8                               | 6                                                         | from 4 to 5<br>от 5 до 9                        |
| $10 \times 2$                                              | 10,8 | 2   | 50 | 4                  | 4                               | 44 | 6                               | 6                                                         | from 5 to 9<br>от 5 до 9                        |
| 10 × 3                                                     | 10,8 | 3   | 50 | 4,5                | 4,5                             | 43 | 6                               | 6                                                         | from 5 to 9<br>от 9 до 13<br>from 9 to 13       |
|                                                            |      |     |    |                    |                                 |    |                                 |                                                           | 110111 0 10 10                                  |

1. Стандартные фрезы изготовляют праворскущими. Леворскущие фрезы изготовляют по специальному заказу. 2. Обозначение фрезы для шионки с поминальным размером

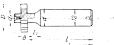
 $10 \times 2$  мм: . A  $10 \times 2$  FOCT 6648-53.

1. Standard cutters are furnished in right-hand cut. Cutters with lefthand cut are special.

2. Designation of a cutter for Woodruff key of  $10 \times 2$  mm nominal size: A 10  $\times$  2 GOST 6648-53.

# СТАНКОИМПОРТ

#### ФРЕЗЫ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ для пазов сегментных шпонок


(по ГОСТ 6648-53)

#### STRAIGHT SHANK WOODRUFF KEYSEAT CUTTERS

(acc. to GOST 6648-53)

Материал: быстрорежущая или легированная сталь.

Material: high speed steel or alloy steel.





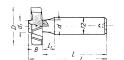
Размеры в мм

|                                                            |      |   |    |                    |                                 |    |                                 | Dillict                                                   | ensions in mm                                   |
|------------------------------------------------------------|------|---|----|--------------------|---------------------------------|----|---------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Обозна-<br>чение<br>фрезы<br>De-<br>signation<br>of cutter | D    | В | L  | d<br>напб.<br>тах. | d <sub>1</sub><br>наиб.<br>тах. | ı  | l <sub>1</sub><br>наим.<br>min. | Наим.<br>число<br>зубьев<br>Minimum<br>number<br>of teeth | Для валов<br>диаметром<br>Diameter<br>of shafts |
| 13 × 2                                                     | 14   | 2 | 60 | 4,5                | 4,5                             | 53 | 9                               | 6                                                         | от 5 до 9<br>from 5 to 9                        |
| $13 \times 3$                                              | 14   | 3 | 60 | 5                  | 5                               | 52 | 9                               | 6                                                         | от 9 до 13<br>from 9 to 13                      |
| $13 \times 4$                                              | 14   | 4 | 60 | 6                  | 6                               | 51 | 9                               | 6                                                         | от 13 до 18<br>from 13 to 18                    |
| 16 × 3                                                     | 17,3 | 3 | 60 | 5                  | 5                               | 52 | 9                               | 8                                                         | от 9 до 13<br>from 9 to 13                      |
| 16 × 4                                                     | 17,3 | 4 | 60 | 6                  | 6                               | 51 | 9                               | 8                                                         | от 13 до 18<br>from 13 to 18                    |
| 19 × 3                                                     | 20,5 | 3 | 60 | - 5                | 5                               | 52 | 9                               | 8                                                         | от 9 до 13<br>from 9 to 13                      |
| 19 × 4                                                     | 20,5 | 4 | 60 | 6                  | 6                               | 51 | 9                               | -8                                                        | от 13 до 18<br>from 13 to 18                    |
| 19 × 5                                                     | 20,5 | 5 | 60 | 7                  | 7                               | 50 | 9                               | . 8                                                       | от 18 до 24<br>from 18 to 24                    |
| 22 	imes 4                                                 | 23,8 | 4 | 60 | 6                  | 6                               | 51 | 9                               | 8                                                         | от 13 до 18<br>from 13 to 18                    |
| 22 	imes 5                                                 | 23,8 | 5 | 60 | 7                  | 7                               | 50 | 9                               | 8                                                         | от 18 до 24<br>from 18 to 24                    |
| 25 	imes 5                                                 | 27   | 5 | 60 | 7.                 | 7                               | 50 | 9                               | . 8                                                       | от 18 до 24<br>from 18 to 24                    |
| 28 × 5                                                     | 30,2 | 5 | 60 | 8                  | 8                               | 50 | 9                               | 8                                                         | от 18 до 24<br>from 18 to 24                    |

# СТАНКОИМПОРТ

- 1. Стандартные фрезы изготовляют праворежущими.
- Леворежущие фрезы изготовляют по специальному заказу.
- 2. По специальному заказу фрезы могут быть поставлены с коническими шейками.
- 3. Обозначение фрезы для шпонки с номинальным размером  $22 \times 5$  мм:
  - $\to 22 \times 5$  FOCT 6648-53.
- $\,$  1. Standard cutters are furnished in right-hand cut. Cutters with left hand cut are special.
- 2. On special order cutters can be furnished with tapered neck.
- 3. Designation of a cutter for Woodruff key of 22  $\times$  8 mm nominal size:  $B~22\times 8~GOST~6648\text{--}53,$

# ФРЕЗЫ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ ДЛЯ ПАЗОВ СЕГМЕНТНЫХ ШПОНОК


(по ГОСТ 6648-53)

### STRAIGHT SHANK WOODRUFF KEYSEAT CUTTERS

(acc. to GOST 6648-53)

Материал: быстрорежущая или легированная сталь.

Material: high speed steel or alloy steel.





Размеры в мм Dimensions in mm

| Обозна-<br>чение<br>фрезы<br>De-<br>signation<br>of cutter      | D                                        | В                | L                          | d<br>наиб.<br>max.    | d <sub>1</sub><br>наиб.<br>тах. | ı                                | <i>l</i> 1<br>на <b>им.</b><br>min. | Наим.<br>число<br>зубьев<br>Minimum<br>number<br>of teeth | Для валов<br>диаметром<br>Diameter<br>of shafts                                                                                                                                                |
|-----------------------------------------------------------------|------------------------------------------|------------------|----------------------------|-----------------------|---------------------------------|----------------------------------|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $25 \times 6$ 2 $25 \times 8$ 2 $28 \times 6$ 3 $28 \times 8$ 3 | 23,8<br>27<br>27<br>30,2<br>30,2<br>34,5 | 6<br>8<br>6<br>8 | 60<br>60<br>60<br>60<br>60 | 8<br>8<br>9<br>9<br>9 | 8<br>8<br>9<br>9                | 50<br>50<br>50<br>50<br>50<br>50 | 9 9 9 9 9 9 9                       | 8<br>8<br>8<br>8                                          | or 24 no 30<br>from 24 to 30<br>or 24 no 30<br>from 24 to 30<br>or 30 no 36<br>from 30 to 36<br>or 24 no 30<br>from 24 to 30<br>or 30 no 36<br>from 30 to 36<br>from 30 to 36<br>from 30 to 36 |

- Стандартные фрезы изготовляют праворежущими. Леворежущие фрезы изготовляют по специальному заказу.
  - 2. Фрезы могут быть изготовлены с прямыми канавками.

СТАНКОИМПОРТ

- Но ецециальному заказу фрезы могут быть поставлены с коинческими шейками.
- : 4. Обозначение фрезы для інпонки є номинальным размером  $25 \times 8 \ \mathrm{mm}$  :

B  $25 \times 8$  FOCT 6648-53.

- $1.\ \mbox{Standard cutters}$  are furnished in right-hand cut. Cutters with left-hand cut are special.
- 2. Cutters can be furnished with straight teeth.
- 3. On special order cutters can be furnished with tapered neck.
- 4. Designation of a cutter for Woodruff key of 25  $\times$  8 mm nominal size :

V 25×8 GOST 6648-53.

# ФРЕЗЫ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ ДЛЯ ПАЗОВ СЕГМЕНТНЫХ ШПОНОК

(но ГОСТ 6648-53)

### STRAIGHT SHANK WOODRUFF KEYSEAT CUTTERS

(acc. to GOST 6648-53)

Материал: быстрорежущая или легированная сталь.

Material: high speed steel or alloy steel.



Размеры в мм Dimensions in mm

|     | Обозна-<br>чение<br>фрезы<br>De-<br>signation<br>of cutter | D    | В  | L  | d<br>наиб.<br>тах. | d <sub>1</sub><br>напб.<br>max. | ı  | l <sub>1</sub><br>наим.<br>min. | Наим.<br>число<br>зубьев<br>Minimum<br>number<br>of teeth | Для валов<br>диаметром<br>Diameter<br>of shafts |
|-----|------------------------------------------------------------|------|----|----|--------------------|---------------------------------|----|---------------------------------|-----------------------------------------------------------|-------------------------------------------------|
|     | 32 × 8                                                     | 34,5 | 8  | 60 | 10                 | 10                              | 50 | 10                              | 8                                                         | от 30 до 36<br>from 30 to 36                    |
| - 1 | $32 \times 10$                                             | 34,5 | 10 | 60 | 11                 |                                 | 50 | 10                              | 8                                                         | от 36 до 48                                     |
|     |                                                            |      |    |    |                    | 10                              | 50 | 10                              | 10                                                        | from 36 to 48<br>от 24 до 30                    |
|     | $35 \times 6$                                              | 37,8 | 6  | 60 | 10                 | 10                              | 90 | 10                              | 10                                                        | from 24 to 30                                   |
| 1   | 35 × 8                                                     | 37,8 | 8  | 60 | 11                 | 11                              | 50 | 10                              | 10                                                        | от 30 до 36                                     |
|     |                                                            |      |    |    | l                  |                                 | 50 | - 10                            | 10                                                        | from 30 to 36<br>от 36 до 48                    |
|     | $35 \times 10$                                             | 37,8 | 10 | 60 | 11                 |                                 | 50 | 10                              | 10                                                        | from 36 to 48                                   |
| ٠   | 38 × 6                                                     | 41   | 6  | 60 | 11                 | 11                              | 50 | 10                              | 10                                                        | от 24 до 30                                     |
|     | 00 / 0                                                     |      | 1  |    | l                  |                                 |    | ١                               |                                                           | from 24 to 30<br>or 30 no 36                    |
|     | $38 \times 8$                                              | 41   | 8  | 60 | 11                 | .11                             | 50 | 10                              | 10                                                        | from 30 to 36                                   |
|     | 38 × 10                                                    | 41   | 10 | 60 | 11                 | -                               | 50 | 10                              | 10                                                        | от 36 до 48<br>from 36 to 48                    |
|     |                                                            |      |    |    |                    |                                 |    |                                 |                                                           |                                                 |

СТАНКОИМПОРТ

СТАНКОИМПОРТ

104

- 1. Стандартные фрезы изготовляют праворежущими. Леворежущие фрезы изготовляют по специальному заказу.
- 2. Фрезы могут быть изготовлены с прямыми канавками.
- —3. Обозначение фрезы для шпонки с номинальным размером  $35 \times 10 \ \mathrm{мm}$ :

 $\Gamma$  35  $\times$  10 POCT 6648-53.

- $1.\ \mbox{Standard}$  cutters are furnished in right-hand cut. Cutters with left-hand cut are special.
- 2. Cutters can be furnished with straight teeth.
- 3. Designation of a cutter for Woodruff key of 35  $\times$  10 mm nominal size:

G  $35\!\times\!10$  GOST 6648-53.

### СПЕЦИАЛЬНЫЕ ФРЕЗЫ

### SPECIAL MILLING CUTTERS

Кроме приведенных выше стандартных фрез, промышленность Совстского Союза выпускает веська ингрокую и многообразную номенклатуру специальных, ненормализованных фрез цельных и сборных конструкций, поставляемых по специальному заказу.

Специальные фрезы выпускают как для обработки плоскостей, так и для обработки сложных фасонных профилей. Фрезы выпускают как из быстрорежущей стали, так и оснащенные твердыми сплавами.

Besides the standard cutters illustrated herein a great variety of types of special non-standard cutters of both solid and sectional design can be furnished on special order.

Special cutters for flat surface work, as well as for irregular shape or profile work are available. These cutters are made of high specd steel or tipped with sintered carbides of different grades.

СТАНКОИМПОРТ

СТАНКОИМПОРТ

106

### ДИАМЕТРЫ ЦИЛИНДРИЧЕСКИХ ОТВЕРСТИЙ В ИНСТРУМЕНТЕ (КРЕПЛЕНИЕ ИНСТРУМЕНТА НА ШПОНКЕ)

(по ГОСТ 4020-48)

DIMENSIONS OF BORES AND KEYWAYS FOR CUTTING TOOLS (acc. to GOST 4020-48)



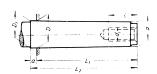
Размеры в мм Dimensions in mm

|                            | d                                           |                            | ь                                           |                            | t                                           |     |
|----------------------------|---------------------------------------------|----------------------------|---------------------------------------------|----------------------------|---------------------------------------------|-----|
| Номинал<br>Nominal<br>size | Допускае-<br>мое<br>отклонение<br>Tolerance | Номинал<br>Nominal<br>size | Допускае-<br>мое<br>отклонение<br>Tolerance | Номинал<br>Nominal<br>size | Допускае-<br>мое<br>отклонение<br>Tolerance | , r |
| 8                          | + 0,016                                     | 2                          | + 0,06<br>+ 0,18                            | 8,9                        | + 0,36                                      | 0,2 |
| 10                         | + 0,016                                     | 3                          | + 0,06<br>+ 0,18                            | 11,5                       | + 0,43                                      | 0,3 |
| 13                         | + 0,019                                     | 3                          | + 0,06<br>+ 0,18                            | 14,6                       | + 0,43                                      | 0,4 |
| 16                         | + 0,019                                     | 4                          | + 0,08<br>+ 0,24                            | 17,7                       | + 0,43                                      | 0,5 |
| 22                         | + 0,023                                     | 6                          | + 0,08<br>+ 0,24                            | 24,1                       | + 0,52                                      | 0,5 |
| 27                         | + 0,023                                     | 6                          | + 0,08<br>+ 0,24                            | 29,4                       | + 0,52                                      | 0,8 |

# СТАНКОИМПОРТ

Продолжение

Continued


| i                                           |                                                                              | b                                           |                               | t                                           |                   |
|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|-------------------|
| Допускас-<br>мое<br>отклонение<br>Tolerance | Номинал<br>Nominal<br>size                                                   | Допускае-<br>мое<br>отклонение<br>Tolerance | Номинал<br>Nominal<br>size    | Допускае-<br>мое<br>отклонение<br>Tolerance | r                 |
| + 0,027                                     | 8                                                                            | + 0,1<br>+ 0,3                              | 34,8                          | + 0,62                                      | 0,8               |
| + 0,027                                     | 10                                                                           | + 0,1                                       | 43,5                          | + 0,62                                      | 1,0               |
| + 0,027                                     | 12                                                                           | + 0,12<br>+ 0,36                            | 53,5                          | + 0,74                                      | 1,0               |
| + 0,03                                      | 14                                                                           | + 0,12<br>+ 0,36                            | 64,2                          | + 0,74                                      | 1,2               |
| + 0,03                                      | 16                                                                           | + 0,12<br>+ 0,36                            | 75,0                          | + 0,74                                      | 1,5               |
| + 0,03 ·                                    | 18                                                                           | + 0,12<br>+ 0,36                            | 85,5                          | + 0,87                                      | 1,5               |
| + 0,035                                     | 24                                                                           | + 0,14<br>+ 0,42                            | 107                           | + 0,87                                      | 2                 |
|                                             | моготиловение Тоlerance + 0,027 + 0,027 + 0,027 + 0,027 + 0,03 + 0,03 + 0,03 | Nominal Tolerance                           | Nominal ortizonemic Tolerance | Nominal Tolerance                           | Nominal Tolerance |

# НАРУЖНЫЕ КОНУСЫ ДЛЯ ИНСТРУМЕНТОВ (БЕЗ ЛАПКИ)

(по ГОСТ 2847-45)

### MORSE TAPER TOOL SHANKS WITHOUT TONGUE

(acc. to GOST 2847-45)



Размеры в мм Dimensions in mm

| № конуса<br>Морзе<br>Morse taper<br>No. | D                                                                | $D_1$                                                          | d                                                                | $L_1$                                                 | $L_2$                                     | a                                           | $d_1$                                 | i<br>ne menee<br>not less        |
|-----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6         | 9,045<br>12,065<br>17,78<br>23,825<br>31,267<br>44,399<br>63,348 | 9,212<br>12,24<br>17,98<br>24,051<br>31,542<br>44,731<br>63,76 | 6,453<br>9,396<br>14,583<br>19,784<br>25,933<br>37,573<br>53,905 | 49,8<br>53,5<br>64<br>80,5<br>102,7<br>129,7<br>181,1 | 53<br>57<br>68<br>85<br>108<br>136<br>189 | 3,2<br>3,5<br>4<br>4,5<br>5,3<br>6,3<br>7,9 | M6<br>M10<br>M12<br>M14<br>M18<br>M24 | 16<br>24<br>28<br>32<br>40<br>50 |

НКОИМПОРТ

# Металлорежущие станки

Деревообрабатывающие станки Кузнечно-прессовое оборудование Прокатное оборудование (импорт)

Измерительные приборы и инструменты

Приборы и машины для испытания металлов

Оптические приборы и инструменты Ручной электрический и пневматический инструмент

Режущий инструмент по металлу и дереву

всесоюзное экспортно-импортное объединение

«СТАНКОИМПОРТ»

экспортирует и импортирует:

Слесарно-монтажный инструмент и зажимные патроны

Изделия из твердых сплавов

Абразивные изделия

Шариковые и роликовые подшипники

Металлографические, биологические и поляризационные микроскопы

Кинооборудование и киноаппаратуру

Геодезические приборы и инструменты Фотоаппаратуру, бинокли, лупы, линзы

Сырое оптическое стекло

С запросами на все товары, относящиеся к номенклатуре B/O "Станкоимпорт" и за дополнительными сведениями просим обращаться по адресу:

Москва, 200, Смоленская-Сенная пл., 32/34

Всесоюзное Экспортно-Импортное Объединение

"Станкоимпорт".

Телеграфный адрес: Москва Станкоимпорт.

Конструкции и технические характеристики инструмента, приведенного в каталоге, могут быть изменены без дополнительной информации.

### СТАНКОИМПОР

### VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

# "STANKOIMPORT"

**EXPORT AND IMPORT:** 

Machine Tools

Woodworking Machinery
Metal Working Machinery (Presses, Hammers, Shears,

Cold Forming Machines, Punching Machines)

Rolling Mills (import)

Measuring Instruments and Apparatus (for metal industry) Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools Mechanic's Tools and Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photographic Cameras

Binoculars

Magnifiers

Lenses

Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to:

 ${\bf Vsesojuznoje} \ {\bf Exportno-Importnoje} \ {\bf Objedinenije}$ 

"Stankoimport"

32/34, Smolenskaja-Sennaja pl., Moscow, USSR.

For cables: Stankoimport Moscow

Design and specifications of the tools illustrated herein are subject to change without notice.

### СТАНКОИМПОРТ

112

Внешторгиздат. Заказ № 2638.

# CBEPJIA CПИРАЛЬНЫЕ





ВСЕСОЮЗНОЕ ЭКСПОРТНО-ИМПОРТНОЕ ОБЪЕДИНЕНИЕ

СТАНКОИМПОРТ

CCCP

MOCKBA

50X1-HUM

# СВЕРЛА





STANKOIMPORT

СТАНКОИМПОРТ

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

Поставляемые В/О "Станконмнорт" сверла изготовлевы из лучших сортов стали с соответствующей термической обработкой, что обеспечивает им отличную стойкость и позволяет работать на высоких скоростях резания и больших подачах.

Сверла отвечают всем современным требованиям как в отношении геометрии режущих элементов, так и в отношении качества отделки режущих граней инструмента.

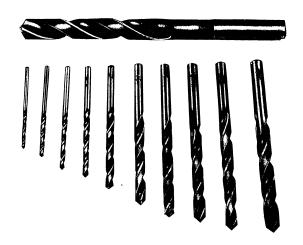
The Twist Drills furnished by V/O "Stankoimport" are made of the best grades of steel and undergo suitable heat treatment. This provides for extra long drill life and permits work at higher surface speeds and at heavy feeds. Geometry of cutting elements and the finish on the cutting edges of the Twist Drills meet all up-to-date requirements.

### содержание

### CONTENTS

|                                                                                                   | Page |
|---------------------------------------------------------------------------------------------------|------|
| Сверла спиральные короткие с цилиндрическим хвостом                                               |      |
| Straight shank twist drills, short series                                                         | 5    |
| Сверла сипральные длинные с цилиндрическим хвостом                                                |      |
| Straight shank twist drills, long series                                                          | 11   |
| Сверла свиральные левые с цилиндрическим хвостом для автоматов                                    |      |
| Left-hand straight shank twist drills for automatic machines                                      | 14   |
| Сверла спиральные с коническим хвостом                                                            |      |
| Taper shank twist drills                                                                          | 17   |
| Сверла спиральные удлиненные с коническим хвостом                                                 |      |
| Taper shank twist drills, long series                                                             | 24   |
| Сверла спиральные укороченные с усиленным коническим хвостом                                      |      |
| Taper shank twist drills, short series, shanks larger than regular                                | 28   |
| Сперла спиральные с четырехгранным суживающимся хвостом                                           |      |
| Taper square shank ratchet drills                                                                 | 31   |
| Сверда с цилиндрическим хвостом, оснащенные пластинками на твердого силава                        |      |
| Straight shank drills tipped with cemented carbide                                                | 33   |
| Сверда с коническим мвостом, оснащенные пластинками из твердого сплава                            |      |
| Taper shank drills tipped with cemented carbide                                                   | 35   |
| Сперла центровочные 60 комбинированные для центровых отверстий без пре-<br>дохранительного конуса |      |
| 60° combined drills and countersinks                                                              | 4    |
| Сверда центровочные 60 комбинированные для центровых отверстий с предохранительным конусом        |      |
| 60° protected center combined drills and countersinks                                             | 4    |
| Таблица назвачения свера                                                                          |      |
| Table of application of twist drills                                                              | 4    |
|                                                                                                   |      |

### СВЕРЛА СПИРАЛЬНЫЕ КОРОТКИЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ


(no TOCT 887-43)

### STRAIGHT SHANK TWIST DRILLS, SHORT SERIES

(acc. to GOST 887-43)

Материал: углеродистая или быстрорежущая сталь

Material: carbon or high speed steel





Размеры в мм - Dimensions in mm

| Газмеры в мм | - Dimension | ns in mm       |
|--------------|-------------|----------------|
| d            | L           | l <sub>o</sub> |
| 0.25         | 20          | 6              |
| 0.3          | 20          | 6              |
| 0.35         | 22          | 8              |
| 0.4          | 22          | 8              |
| 0.45         | 25          | 8              |
| 0.5          | 25          | 8              |
| 0.55         | 28          | 10             |
| 0.6          | 30          | 10             |
| 0.65         | 30          | 10             |
| 0.7          | 32          | 12             |
| 0.75         | 32          | 12             |
| 0.8          | 35          | 15             |
| 0.85         | 35          | 15             |
| 0.95         | 40          | 18             |

| 1.0  | 40 | 18 |
|------|----|----|
| 1.1  | 40 | 18 |
| 1.15 | 40 | 18 |
| 1.2  | 42 | 20 |
| 1.25 | 42 | 20 |
| 1.3  | 45 | 22 |
| 1.35 | 45 | 22 |
| 1.4  | 48 | 25 |
| 1.5  | 48 | 25 |
| 1.6  | 48 | 25 |
| 1.7  | 48 | 25 |
| 1.75 | 52 | 28 |
| 1.8  | 52 | 28 |
| 1.9  | 55 | 30 |
| 2.0  | 55 | 30 |
| 2.05 | 60 | 32 |
| 2.1  | 60 | 32 |
| 2.15 | 60 | 32 |
| 2.2  | 60 | 32 |
| 2.25 | 60 | 32 |
| 2.3  | 60 | 32 |
| 2.4  | 65 | 35 |
| 2.5  | 65 | 35 |
| 2.6  | 65 | 35 |
| 2.65 | 65 | 35 |
| 2.7  | 65 | 35 |
| 2.8  | 65 | 35 |
| 2.9  | 68 | 38 |
| 3.0  | 68 | 38 |
|      |    |    |

d L

lo

 $P_{\text{Вамеры в мм}}$  — Dimensions in mm

| d                        | L  |          | e                        | b                 | r          |
|--------------------------|----|----------|--------------------------|-------------------|------------|
| 3.15                     | 70 | 40       | 2.2                      | 1.6               | 0.3        |
| 2.2                      | 70 | 40       | 2.2                      | 1.6               | 0.3        |
| 3.3<br>3.4<br>3.5        | 70 | 40       | 2.2                      | 1.6               | 0.3        |
| 3.4                      | 72 | 42       | 2.2                      | 1.6               | 0.3        |
| 3.5                      | 72 | 42       | 2.2                      | 1.6               | 0.3        |
| 3.6                      | 75 | 45       | 2.2                      | 2.0               | 0.3        |
| 3.7                      | 75 | 45<br>45 | 2.2                      | 2.0               | 0.3        |
| 3.6<br>3.7<br>3.8<br>3.9 | 75 | 45       | 2.2                      | 2.0               | 0.3        |
| 3.9                      | 80 | 48       | 2.2                      | 2.0               | 0.3        |
| 4.0                      | 80 | 48       | 2.2                      | 2.0               | 0.3        |
| 4.1<br>4.2               | 82 | 50       | 2.2<br>2.2<br>2.5<br>2.5 | 2.2               | 0.3<br>0.3 |
| 4.2                      | 82 | 50       | 2.5                      | 2.2               | 0.3        |
| 4.4                      | 85 | 52       | 2.5                      | 2 2               | 0.3        |
| 4.4<br>4.5<br>4.7        | 85 | 52       | 2.5                      | 2.2<br>2.2<br>2.5 | 0.3        |
| 4.7                      | 88 | 55       | 2.5                      | 2.5               | 0.3        |
| 4.8                      | 88 | 55       | 2.5                      | 2.5               | 0.3        |
| 4.9<br>5.0               | 90 | 55       | 2.5                      | 2.5               | 0.3        |
| 5.0                      | 90 | 55       | 2.5<br>2.5               | 2.5               | 0.3        |
| 5.1                      | 95 | 60       | 2.5                      | 2.5               | 0.3        |
| 5.2<br>5.3<br>5.4<br>5.5 | 95 | 60       | 2.5                      | 2.5               | 0.3        |
| 5.3                      | 95 | 60       | 2.5                      | 2.5               | 0.3        |
| 5.4                      | 95 | 60       | 2.5<br>2.5               | 2.5               | 0.3        |
| 5.5                      | 95 | 60       | 2.5                      | 2.5               | 0.3        |

Размеры в мм — Dimensions in mm

|                   |            |                | газмерг    | a p and - Dim | ensions in inin |
|-------------------|------------|----------------|------------|---------------|-----------------|
| d                 | L          | l <sub>o</sub> | e          | b             | r               |
| 5.7               | 100        | 65             | 3.0        | -3.0          | 0.3             |
| 5.8               | 100        | 65             | 3.0        | 3.0           | 0.3             |
| 5.9               | 100        | 65             | 3.0        | 3.0           | 0.3             |
| 6.0               | 100        | 65             | 3.0        | 3.0           | 0.3             |
| 6.2               | 105        | 68             | 3.0        | 3.0           | 0.3             |
| 6.4               | 105        | 68             | 3.0        | 3.0           | 0.3             |
| 6.3<br>6.4        | 105        | 68             | 3.0        | 3.0           | 0.3             |
| 6.5               | 105        | 68             | 3.5        | 3.5           | 0.3             |
| 6.5               | 110        | 70             | 3.5        | 3.5           | 0.3             |
| 0.0               | 110        | 70             | 3.5        | 3.5           | 0.3             |
| 6.6<br>6.7<br>6.8 | 110        | 70             | 3.5        | 3.5           | 0.3             |
| 6.8               | 110        | 70             | 3.5        | 3.5           | 0.3             |
| 6.9               |            | 70             | 4.0        | 4.0           | 0.4             |
| 7.0               | 110        | 75             | 4.0        | 4.0           | 0.4             |
| 7.1               | 115<br>115 | 73             | 4.0        | 4.0           | 0.4             |
| 7.2               |            | 75             | 4.0        | 4.0           | 0.4             |
| 7.3               | 115        | 75             | 4.0        | 4.0           | 0.4             |
| 7.4<br>7.5        | 115        | 75             | 4.0        | 4.0           | 0.4             |
| 7.5               | 115        | 75             | 4.0        | 4.0           | 0.4             |
| 7.6<br>7.7        | 120        | 80             |            | 4.0           | 0.4             |
| 7.7               | 120        | 80             | 4.0<br>4.0 | 4.0           | 0.4             |
| 7.8               | 120        | 80             | 4.0        | 4.0           | 0.4             |
| 7.9<br>8.0<br>8.1 | 120        | 80             |            | 4.0           | 0.4             |
| 8.0               | 120        | 80             | 4.0        | 4.0           | 0.4             |
| 8.1               | 125        | 85             | 4.0<br>4.0 | 4.0           | 0.4             |
| 8.2               | 125        | 85             |            | 4.0           | 0.4             |
| 8.3               | 125        | 85             | 4.0        | 4.0           | 0.4             |
| 8.4               | 125        | 85             | 4.0        | 4.5           | 0.4             |
| 8.5               | 125        | 85             | 4.5        | 4.5           | 0.4             |
| 8.6               | 130        | 90             | 4.5        | 4.5<br>4.5    | 0.4             |
| 8.7               | 130        | 90             | 4.5        | 4.5           | 0.4             |
| 8.8               | 130        | 90             | 4.5<br>4.5 | 4.5           | 0.4             |
| 8.9               | 130        | 90             | 4.5<br>4.5 | 4.5           | 0.4             |
| 9.0               | 130        | 90             | 4.5<br>4.5 | 4.5           | 0.4             |
| 9.1               | 130        | 90             | 4.5        | 4.5           | 0.4             |
| 9.2               | 130        | 90             | 4.5        | 4.5           | 0.4             |
| 9.3               | 130        | 90             | 4.5<br>4.5 | 4.5           | 0.4             |
| 9.4               | 130        | 90             | 4.5<br>5.0 | 5.0           | 0.4             |
| 9.5               | 130        | 90             |            | 5.0           | 0.4             |
| 9.6               | 135        | 95             | 5.0<br>5.0 | 5.0<br>5.0    | 0.4             |
| 9.7               | 135        | 95             | 5.0        | 5.0           | 0.4             |
| 9.8               | 135        | 95<br>95       | 5.0        | 5.0           | 0.4             |
| 9.9               | 135        |                | 5.0        | 5.0           | 0.4             |
| 10.0              | 135        | 95<br>95       | 5.0        | 5.0           | 0.4             |
| 10.1              | 140        | 95             |            | 5.0           | 0.4             |
| 10.2              | 140        | 95             | 5.0<br>5.0 | 5.0           | 0.4             |
| 10.3              | 140        | 95             | 5.0        | 5.0<br>5.0    | 0.4             |
| 10.4              | 140        | 95             | 5.0        | 5.0           | 0.4             |
| 10.5              | 140        | 95             | 5.0        | 5.0           | 0.4             |
| 10.6              | 140        | 95<br>95       | 5.0        | 5.0           | 0.4             |
| 10.7              | 140        |                | 5.0        | 5.0           | 0.4             |
| 10.8              | 140        | 95             | 5.0<br>5.0 | 5.0           | 0.4             |
| 10.9              | 140        | 95             | 6.0        | 6.0           | 0.4             |
| 11.0              | 140        | 95             | 6.0        | 6.0           | 0.4             |
| 11.2              | 145        | 100            | 6.0        | 6.0           | 0.4             |
| 11.3              | 145        | 100<br>100     | 6.0        | 6.0           | 0.4             |
| 11.4              | 145        |                | 6.0        | 6.0           | 0.4             |
| 11.5              | 145        | 100<br>100     | 6.0        | 6.0           | 0.4             |
| 11.7              | 145        | 100            | 0.0        | 0.0           |                 |

Размеры в мм — Dimensions in mm

| d    | L   | l <sub>o</sub> | $l_1$ | $l_2$ | e   | b   | r     |
|------|-----|----------------|-------|-------|-----|-----|-------|
| 44.0 | 145 | 100            | _     |       | 60  | 6.0 | 0.4   |
| 11.8 |     | 100            | _     |       | 6.0 | 6.0 | 0.4   |
| 11.9 | 145 | 100            | -     |       | 6.0 | 6.0 | 0.4   |
| 12.0 | 145 | 100            |       |       | 6.0 | 6.0 | 0.4   |
| 12.1 | 160 | 100            | 45    | 10    |     |     | 0.4   |
| 12.3 | 160 | 100            | 45    | 10    | 6.0 | 6.0 |       |
| 12.4 | 160 | 100            | 45    | 10    | 6.0 | 6.0 | 0.4   |
| 12.5 | 160 | 100            | 45    | 10    | 6.0 | 6.0 | 0.4   |
|      | 160 | 100            | 45    | 10    | 6.0 | 6.0 | 0.4   |
| 12.7 |     | 100            | 45    | 10    | 6.0 | 6.0 | 0.4   |
| 12.8 | 160 |                | 45    | 10    | 6.0 | 6.0 | 0.4   |
| 12.9 | 160 | 100            |       | 10    | 7.0 | 7.0 | 0.4   |
| 13.0 | 160 | 100            | 45    |       | 7.0 | 7.0 | 0.4   |
| 13.2 | 160 | 100            | 45    | 10    | 7.0 |     | 0.4   |
| 13.3 | 160 | 100            | 45    | 10    | 7.0 | 7.0 |       |
| 13.5 | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 13.7 | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
|      | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 13.8 | 100 |                | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 14.0 | 160 | 100            |       | 10    | 7.0 | 7.0 | 0.4   |
| 14.3 | 160 | 100            | 45    |       |     | 7.0 | 0.4   |
| 14.4 | 160 | 100            | 45    | 10    | 7.0 |     | 0.4   |
| 14.5 | 160 | 100            | 45    | 10    | 7.0 | 7.0 |       |
| 14.6 | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 14.7 | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
|      | 160 | 100            | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 14.8 | 100 |                | 45    | 10    | 7.0 | 7.0 | 0.4   |
| 14.9 | 160 | 100            | 40    | 10    | 8.0 | 8.0 | 0.5   |
| 15.0 | 170 | 105            | 50    |       | 8.0 | 8.0 | 0.5   |
| 15.1 | 170 | 105            | 50    | 10    |     |     | 0.5   |
| 15.2 | 170 | 105            | 50    | 10    | 8.0 | 8.0 |       |
| 15.3 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 15.4 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 15.5 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
|      | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 15.6 |     |                | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 15.7 | 170 | 105            |       |       | 8.0 | 8.0 | 0.5   |
| 15.8 | 170 | 105            | 50    | 10    |     |     | 0.5   |
| 16.0 | 170 | 105            | 50    | 10    | 8.0 | 8.0 |       |
| 16.2 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 16.3 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 16.4 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 16.5 | 170 | 105            | 50    | 10    | 8.0 | 8.0 | # 0.5 |
|      | 170 | 105            | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 16.6 | 170 |                | 50    | 10    | 8.0 | 8.0 | 0.5   |
| 16.8 | 170 | 105            |       |       | 8.0 | 8.0 | 0.5   |
| 16.9 | 170 | 105            | 50    | 10    |     |     | 0.5   |
| 17.0 | 170 | 105            | 50    | 10    | 9.0 | 9.0 |       |
| 17.1 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 17.2 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 17.3 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 17.4 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
|      | 170 |                | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 17.5 | 170 | 105            |       |       | 9.0 | 9.0 | 0.5   |
| 17.6 | 170 | 105            | 50    | 10    |     |     | 0.0   |
| 17.7 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 17.9 | 170 | 105            | 50    | 10    | 9.0 | 9.0 | 0.5   |
| 18.0 | 185 | 115            | 55    | 10    | 9.0 | 9.0 | 0.5   |
| 18.3 | 185 | 115            | 55    | 10    | 9.0 | 90  | 0.5   |
|      |     | 115            | 55    | 10    | 9.0 | 9.0 | 0.5   |
| 18.4 | 185 |                |       | 10    | 9.0 | 9.0 | 0.5   |
| 18.5 | 185 | 115            | 55    |       |     | 9.0 | 0.5   |
| 18.6 | 185 | 115            | 55    | 10    | 9.0 |     |       |
| 18.8 | 185 | 115            | 55    | 10    | 9.0 | 9.0 | 0.5   |
| 18.9 | 185 | 115            | 55    | 10    | 9.0 | 9.0 | 0.5   |
| 19.0 | 185 | 115            | 55    | 10    | 10  | 10  | 0.5   |

| Γ   | d                   | L          | $l_0$      | l,       | $l_2$    | e        | b        | r                 |
|-----|---------------------|------------|------------|----------|----------|----------|----------|-------------------|
| H   | 40.4                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| 1   | 19.1<br>19.2        | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| 1   | 19.2                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| ١   | 19.5                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| 1   | 19.6                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| 1   | 19.7                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| ١   | 20.0                | 185        | 115        | 55       | 10       | 10       | 10       | 0.5               |
| 1   | 20.3                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| 1   | 20.4                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| ١   | 20.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| -   | 20.7                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
| 1   | 20.8                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| ١   | 20.9                | 200        | 120        | 65       | 10       | 10<br>10 | 10<br>10 | 0.5               |
| -   | 21.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| -   | 21.2                | 200        | 120        | 65       | 10<br>10 | 10       | 10       | 0.5               |
| 1   | 21.5                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| - 1 | 21.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
| - 1 | 21.7                | 200        | 120        | 65<br>65 | 10       | 10       | 10       | 0.5               |
| ١   | 21.8                | 200        | 120<br>120 | 65       | 10       | 10       | 10       | 0.5               |
| - 1 | 21.9                | 200        | 120<br>120 | 65       | 10       | 10       | 10       | 0.5               |
| ١   | 22.0                | 200<br>200 | 120        | 65       | 10       | 10       | 10       | 0.5               |
| ١   | 22.3                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
| ı   | 22.6                |            | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | $\frac{22.7}{22.8}$ | 200<br>200 | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 22.8                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 23.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 23.5                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 23.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 23.7                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 24.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 24.1                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 24.3                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 24.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 24.7                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 24.8                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 25.0                | 200        | 120        | 65       | 10       | 10       | 10<br>10 | 0.5               |
|     | 25.3                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 25.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 26.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5<br>0.5 |
|     | 26.4                | 200        | 120        | 65       | 10<br>10 | 10       | 10       | 0.5               |
|     | 26.4                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 26.6                | 200        | 120        | 65<br>65 | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 26.9                | 200        | 120<br>120 | 65       | 10       | 10       | 10       | 0.5<br>0.5<br>0.5 |
|     | 27.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 27.6                | 200<br>200 | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 27.7                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 27.8<br>27.9        | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 28.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 28.4                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 28.3                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 28.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 28.8                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 29.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5<br>0.5        |
|     | 29.2                | 200        | 120        | 65<br>65 | 10       | 10       | 10       | 0.5               |
|     | 29.6                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |
|     | 30.0                | 200        | 120        | 65       | 10       | 10       | 10       | 0.5               |

- 1. Сверла по настоящему стандарту предназначаются:
  - а) днаметром до 12 мм для работы на станках общего пазначения;
  - б) диаметром свыше 12 мм для работы на автоматах тижелого типа,
- 2. Нааначение епіральных сверл по диаметрам см. "Табліпцу назначения сверл", стр. 42.
- 3. Сверла из углеродистой стали изготовляются без ланки.
- 4. Сверда на быстрорежущей стали диаметром свыше 3 мм изготовляются как е ланкой, так и без ланки.
- Допускается изготовление сверя диаметром до 6 мм с обратным центром.
- 6. Сверла диаметром свыше 12 мм изготовляются с шейкой.
- 7. Обозначение сверла сипрального короткого с цилиндрическим хвостом, диаметром  $20~{\rm мм}$

### 20 FOCT 887-43

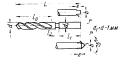
- a) Drills up to 12 mm in diameter are designed for general purpose machine-tools;
  - b) Drills larger than 12 mm in diameter are designed for heavy-duty automatic machines.
- $2.\ For application of twist drills in accordance with drill diameter see table on page 42.$
- 3. Shanks of carbon steel drills are made without tang.
- $4.\ Shanks$  of high speed drills larger than  $3\ mm$  in diameter are made either with or without tang.
- $\,$  5. Shanks of drills up to 6 mm in diameter may be made with external center.
  - 6. Drills larger than 12 mm in diameter are furnished with neck.
- 7. Designation of a straight shank twist drill, short series,  $20\,\mathrm{mm}$  diameter:

20 GOST 887-43

# СВЕРЛА СПИРАЛЬНЫЕ ДЛИННЫЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ (по ГОСТ 886-41)

### STRAIGHT SHANK TWIST DRILLS, LONG SERIES

(acc. to GOST 886-41)


Материал: углеродистая или быстрорежущая сталь

Material: carbon or high speed steel



Размеры в мм — Dimensions in mm

| d   | L   | 0  |
|-----|-----|----|
| 2   | 95  | 50 |
| 2.1 | 95  | 50 |
| 2.2 | 100 | 55 |
| 2.3 | 100 | 55 |
| 2.4 | 100 | 55 |
| 2.5 | 105 | 60 |



Pasmenia B MM - Dimensions in mm

| d    | L   | $l_0$ | e   | b   | r   |
|------|-----|-------|-----|-----|-----|
| 2.6  | 105 | 60    |     |     | _   |
| 2.7  | 105 | 60    | _   | -   | _   |
| 2.8  | 110 | 65    |     | -   |     |
| 2.9  | 110 | 65    | -   | - 1 |     |
| 3.0  | 110 | 65    |     |     | _   |
| 3.15 | 115 | 70    | 2.2 | 1.6 | 0.3 |
| 3.2  | 115 | 70    | 2.2 | 1.6 | 0.3 |
| 3.3  | 115 | 70    | 2.2 | 1.6 | 0.3 |
| 3.4  | 115 | 70    | 2.2 | 1.6 | 0.3 |
| 3.5  | 120 | 75    | 2.2 | 1.6 | 0.3 |
| 3.6  | 120 | 75    | 2.2 | 2.0 | 0.3 |
| 3.7  | 120 | 75    | 2.2 | 2.0 | 0.3 |
| 3.8  | 120 | 75    | 2.2 | 2.0 | 0.3 |
| 3.9  | 125 | 80    | 2.2 | 2.0 | 0.3 |
| 4.0  | 125 | 80    | 2.2 | 2.0 | 0.3 |
| 4.2  | 130 | 85    | 2.5 | 2.2 | 0.3 |



12

| d            | L   | / <sub>0</sub> | l <sub>1</sub> | $l_2$ | e   | b   | r   |
|--------------|-----|----------------|----------------|-------|-----|-----|-----|
|              | 405 | 85             |                |       | 2.5 | 2.2 | 0.3 |
| 4.5          | 135 | 90             |                | - 1   | 2.5 | 2.5 | 0.3 |
| 4.8          | 140 |                | -              |       | 2.5 | 2.5 | 0.3 |
| 4.9          | 140 | 90             | =              | _     | 2.5 | 2.5 | 0.3 |
| 5.0          | 140 | 90             | _              | _     | 2.5 | 2.5 | 0.3 |
| 5.2          | 145 | 95             |                | -     | 2.5 | 2.5 | 0.3 |
| 5.3          | 145 | 95             | -              |       |     | 2.5 | 0.3 |
| 5.5          | 145 | 95             | - !            | - !   | 2.5 |     | 0.3 |
| 5.8          | 145 | 95             | - 1            | -     | 3.0 | 3.0 |     |
| 6.0          | 150 | 100            | - 1            | -     | 3.0 | 3.0 | 0.3 |
| 6.2          | 150 | 100            | - 1            | 1     | 3.0 | 3.0 | 0.3 |
| 6.3          | 150 | 100            | _              | - 1   | 3.0 | 3.0 | 0.3 |
| 0.0          | 155 | 105            |                | _     | 3.5 | 3.5 | 0.3 |
| 6.5          |     | 105            |                |       | 3.5 | 3.5 | 0.3 |
| 6.7          | 155 |                |                | _     | 3.5 | 3.5 | 0.3 |
| 6.8          | 155 | 105            | -              |       | 4.0 | 4.0 | 0.4 |
| 7.0          | 155 | 105            | _              |       | 4.0 | 4.0 | 0.4 |
| 7.2          | 155 | 105            | -              | - 1   |     | 4.0 | 0.4 |
| 7.3          | 155 | 105            | - :            |       | 4.0 |     | 0.4 |
| 7.5          | 160 | 110            |                |       | 4.0 | 4.0 |     |
| 7.7          | 160 | 110            | -              |       | 4.0 | 4.0 | 0.4 |
| 7.8          | 160 | 110            | -              |       | 4.0 | 4.0 | 0.4 |
| 8.0          | 160 | 110            | !              |       | 4.0 | 4.0 | 0.4 |
| 8.2          | 160 | 110            | _              |       | 4.0 | 4.0 | 0.4 |
| 8.3          | 160 | 110            |                |       | 4.0 | 4.0 | 0.4 |
| 8.3          |     | 110            |                |       | 4.5 | 4.5 | 0.4 |
| 8.5          | 165 | 110            | _              | _     | 4.5 | 4.5 | 0.4 |
| 8.7          | 165 |                |                | _     | 4.5 | 4.5 | 0.4 |
| 8.8          | 170 | 115            | _              | _     | 4.5 | 4.5 | 0.4 |
| 9.0          | 170 | 115            | -              |       | 4.5 |     | 0.4 |
| 9.4          | 170 | 115            | -              | _     | 4.5 | 4.5 |     |
| 9.5          | 175 | 115            |                |       | 5.0 | 5.0 | 0.4 |
| 9.7          | 175 | 115            | _              | -     | 5.0 | 5.0 | 0.4 |
| 9.8          | 175 | 115            |                | -     | 5.0 | 5.0 | 0.4 |
| 10.0         | 175 | 115            | _              | _     | 5.0 | 5.0 | 0.4 |
| 10.3         | 175 | 115            |                | _     | 5.0 | 5.0 | 0.4 |
| 10.5         | 180 | 120            |                | _     | 5.0 | 5.0 | 0.4 |
|              |     | 120            |                | _     | 5.0 | 5.0 | 0.4 |
| 10.7         | 180 | 120            |                | _     | 6.0 | 6.0 | 0.4 |
| 11.0         | 180 |                | _              | _     | 6.0 | 6.0 | 0.4 |
| 11.5         | 185 | 125            | _              | _     |     | 6.0 | 0.4 |
| 11.7         | 185 | 125            |                |       | 6.0 |     | 0.4 |
| 12.0         | 190 | 125            | 50             | 10    | 6.0 | 6.0 |     |
| 12.5         | 195 | 130            | 50             | 10    | 6.0 | 6.0 | 0.4 |
| 12.7         | 195 | 130            | 50             | 10    | 6.0 | 6.0 | 0.4 |
| 13.0         | 195 | 130            | 50             | 10    | 7.0 | 7.0 | 0.4 |
| 13.2         | 200 | 130            | 55             | 10    | 7.0 | 7.0 | 0.4 |
| 13.5         | 200 | 130            | 55             | 10    | 7.0 | 7.0 | 0.4 |
| 13.7         | 200 | 130            | 55             | 10    | 7.0 | 7.0 | 6.4 |
| 4/.0         | 200 | 130            | 55             | 10    | 7.0 | 7.0 | 0.4 |
| 14.0         | 210 | 140            | 55             | 10    | 7.0 | 7.0 | 0.4 |
| 14.3         |     |                | 55             | 10    | 7.0 | 7.0 | 0.4 |
| 14.5         | 210 | 140            | 55             |       |     | 8.0 | 0.5 |
| 15.0         | 210 | 140            | 55             | 10    | 8.0 |     | 0.5 |
| 15.3         | 215 | 145            | 55             | 10    | 8.0 | 8.0 | 0.5 |
| 15.5         | 215 | 145            | 55             | 10    | 8.0 | 8.0 | 0.5 |
| 15.6         | 215 | 145            | 55             | 10    | 8.0 | 8.0 | 0.5 |
| 16.0         | 220 | 145            | 60             | 12    | 8.0 | 8.0 | 0.5 |
| 16.0<br>16.3 | 220 | 145            | 60             | 12    | 8.0 | 8.0 | 0.5 |
| 16.5         | 220 | 145            | 60             | 12    | 8.0 | 8.0 | 0.5 |
| 16.6         | 225 | 150            | 60             | 12    | 8.0 | 8.0 | 0.5 |
|              |     | 150            | 60             | 12    | 9.0 | 9.0 | 0.5 |
| 17.0         | 225 |                |                |       |     |     |     |
| 17.5         | 225 | 150            | 60             | 12    | 9.0 | 9.0 | 0.5 |

Размеры в мм — Dimensions in mm

| d    | L   | l <sub>o</sub> | 1,             | . l <sub>2</sub> | e · | b   | r   |
|------|-----|----------------|----------------|------------------|-----|-----|-----|
| 17.6 | 235 | 155            | 65             | 12               | 9.0 | 9.0 | 0.5 |
| 18.0 | 235 | 155            | 65             | 12               | 9.0 | 9.0 | 0.5 |
| 18.5 | 240 | 160            | 65<br>65       | 12               | 9.0 | 9.0 | 0.5 |
| 18.6 | 240 | 160            | 65             | 12               | 9.0 | 9.0 | 0.5 |
| 19.0 | 240 | 160            | 65             | 12               | 10  | 10  | 0.5 |
| 19.6 | 245 | 165            | 65<br>65<br>65 | 12               | 10  | 10  | 0.5 |
| 20.0 | 245 | 165            | 65             | 12               | 10  | 10  | 0.5 |

- 1. Назначение спиральных свера по диаметрам см. "Таблицу назначения свера", стр. 42.
  - 2. Сверна из углеродистой стали изготовляются без данки.
- 3. Сверта на быстрорежущей стали днаметром свыше 3 мм изго-товлиются как с лашкой, так и без лашки.
- 4. Допускается изготовление сверы диаметром до 6 мм с обратным центром.
- 5. Сверла днаметром свыне 12 мм изготовляются с нейкой.
  6. Обозначение сверла спирального длинного с дазиндрическим хвостом, днаметром 20 мм:  $20~\Gamma \mathrm{OCT}~886\text{--}41$
- 1. For application of twist drills in accordance with drill diameter see table on page 42.
  2. Shanks of carbon steel drills are made without tang.
- 3. Shanks of high speed steel drills larger than 3 mm in diameter are made either with or without tang.
  4. Shanks of drills up to 6 mm in diameter may be made with external

- 5. Drills larger than 12 mm in diameter are furnished with neck.
  6. Designation of straight shank twist drill, long series, 20 mm diameter: 20 GOST 886-41



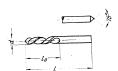
СВЕРЛА СПИРАЛЬНЫЕ ЛЕВЫЕ С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ ДЛЯ АВТОМАТОВ

(но ГОСТ 2090-43)

### LEFT-HAND STRAIGHT SHANK TWIST DRILLS FOR AUTOMATIC MACHINES

(acc. to GOST 2090-43)

Материал: углеродистая или быстрорежущая сталь


Material: carbon or high speed steel





Pagmeph B MM -- Dimensions in mm

| 1 game has a sea                         | Dimensions in its          |                                  |  |  |  |
|------------------------------------------|----------------------------|----------------------------------|--|--|--|
| d                                        | L                          | lo                               |  |  |  |
| 1.1<br>1.2<br>1.35<br>1.5<br>1.6<br>1.75 | 60<br>60<br>60<br>60<br>60 | 30<br>30<br>30<br>30<br>30<br>30 |  |  |  |



|             |          | -        |
|-------------|----------|----------|
| d           | L        | $l_0$    |
| 0           | CE       | 35       |
| 2<br>2.05   | 65<br>65 | 35<br>35 |
|             | 65       | 35       |
| 2.1         | 65       | 35       |
| 2.15<br>2.2 | 65       | 35       |
| 2.25        | 65       | 35<br>35 |
| 2.23        | 65       | 35       |
| 2.4         | 65       | 35       |
| 2.5         | 65       | 35       |
| 2.6         | 65       | 35       |
| 2.65        | 65       | 35       |
| 2.7         | 65       | 35       |
| 2.8         | 65       | 35       |
| 2.9         | 65       | 35       |
| 3           | 70       | 40       |
| 3.15        | 70       | 40       |
| 3.2         | 70       | 40       |
| 3.3         | 70       | 40       |
| 3.4         | 70       | 40       |
| 3.5         | 70       | 40       |
| 3.6         | 70       | 40       |
| 3.7         | 70       | 40       |
| 3.8         | 70       | 40       |
| 3.9         | 70       | 40       |
| 4           | 70       | 40       |
| 4.1         | 70       | 40       |
| 4.2         | 70       | 40       |
| 4.4         | 70       | 40       |
| 4.5         | 70       | 40       |
| 4.7         | 70<br>70 | 40<br>40 |
| 4.8         | 70       | 40       |
| 4.9         | 75       | 45       |
| 5<br>5.1    | 75       | 45       |
| 5.1         | 75       | 45       |
| 5.3         | 75       | 45       |
| 5.4         | 75       | 45       |
| 5.5         | 75       | 45       |
| 5.7         | 75       | 45       |
| 5.8         | 75       | 45       |
| 5.9         | 75       | 45       |
| 6           | 75       | 45       |
| 6.2         | 75       | 45       |
| 6.3         | 75       | 45       |
| 6.4         | 75       | 45       |
| 6.5         | 75       | 45       |
| 6.6         | 75       | 45       |
| 6.7         | 75       | 45       |
| 6.8         | 75       | 45       |
| 6.9         | 75       | 45       |
| 7           | 75       | 45       |
| 7.1         | 75       | 45       |
| 7.2         | 75       | 45       |
| 7.3         | 75       | 45       |
| 7.4         | 75       | 45       |
| 7.5         | 75       | 45       |
| 7.6         | 75       | 45       |
| 7.7         | 75       | 45       |

|     | Размеры п    | мм — Dime | nsions in mn   |
|-----|--------------|-----------|----------------|
|     | d            | L         | l <sub>o</sub> |
| ſ   | 7.8          | 75        | 45             |
| 1   | 7.9          | 75        | 45             |
| ļ   | 8            | 80        | 50             |
| -   | 8.1          | 80        | 50             |
| 1   | 8.2<br>8.3   | 80<br>80  | 50<br>50       |
| -   | 8.4          | 80        | 50             |
| -   | 8.5          | 80        | 50             |
| ١   | 8.6          | 80        | 50             |
| - 1 | 8.7          | 80        | 50             |
| ١   | 8.8          | 80        | 50             |
| -1  | 8.9          | 80        | 50             |
| -1  | 9            | 80        | 50             |
| ١   | 9.1          | 80        | 50             |
| -   | 9.2          | 80        | 50             |
| - 1 | 9.3          | 80        | 50             |
| - 1 | 9.4<br>9.5   | 80<br>80  | 50<br>50       |
| -   | 9.6          | 80        | 50             |
| ١   | 9.7          | 80        | 50             |
| ١   | 9.8          | 80        | 50             |
| 1   | 9.9          | 80        | 50             |
| - 1 | 10           | 80        | 50             |
|     | 10.1         | 80        | 50             |
|     | 10.2         | 80        | 50             |
| -   | 10.3         | 80        | 50             |
|     | 10.4         | 80        | 50<br>50       |
| 1   | 10.5<br>10.6 | 80<br>80  | 50             |
|     | 10.6         | 80        | 50             |
|     | 10.5         | 80        | 50             |
|     | 10.9         | 80        | 50             |
|     | 11           | 80        | 50             |
|     | 11.2         | 80        | 50             |
|     | 11.3         | 80        | 50             |
|     | 11.4         | 80        | 50             |
|     | 11.5         | 80        | 50             |
|     | 11.7<br>11.8 | 80<br>80  | 50<br>50       |
|     | 11.8         | 80        | 50             |
|     | 12           | 80        | 50             |
|     | 12.1         | 80        | 50             |
|     | 12.3         | 80        | 50             |
|     | 12.4         | 80        | 50             |
|     | 12.5         | 80        | 50             |
| ĺ   | 12.7         | 80        | 50             |
|     | 12.8         | 80        | 50             |
|     | 12.9         | 80        | 50             |
|     | 13<br>13.2   | 85<br>85  | 55<br>55       |
|     | 13.2         | 85<br>85  | 55             |
|     | 13.5         | 85        | 55             |
|     | 13.7         | 85        | 55             |
|     | 13.8         | 85        | 55             |
|     | 14           | 85        | 55             |
|     | 14.3         | 85        | 55             |
|     | 14.4         | 85        | 55             |
|     | • 14.5       | 85        | 55             |
|     |              |           |                |

всесоюзное объединение

станкои



| Размеры в мя | · — Dimension | ns in mm |
|--------------|---------------|----------|
| d            | L             | $l_0$    |
| 14.6         | 85            | 55       |
| 14.7         | 85            | 55       |
| 14.8         | 85            | 55       |
| 14.9         | 85            | 55       |
| 15           | 90            | 55       |
| 15.1         | 90            | 55       |
| 15.2         | 90            | 55       |
| 15.3         | 90            | 55       |
| 15.4         | 90            | 55       |
| 15.5         | 90            | 55       |
| 15.6         | 90            | 55       |
| 15.7         | 90            | 55       |
| 15.8         | 90            | 55       |
| 16           | 90            | 55       |
| 16.2         | 90            | 55       |
| 16.3         | 90            | 55       |
| 16.4         | 90            | 55       |
| 16.5         | 90            | 55       |
| 16.6         | 90            | 55       |
| 16.8         | 90            | 55       |
| 16.9         | 90            | 55       |
| 17           | 90            | 55       |
| 17.1         | 90            | 55       |
| 17.2<br>17.3 | 90            | 55       |
|              | 90            | 55       |
| 17.4         | 90            | 55       |
| 17.5         | 90            | 55       |
| 17.6         | 90            | 55       |
| 17.7         | 90            | 55       |
| 17.9         | 90            | 55       |
| 18           | 90            | 55       |
| 18.3         | 90            | 55       |
| 18.4         | 90            | 55       |
| 18.5         | 90            | 55       |
| 18.6         | 90            | 55       |
| 18.8         | 90            | 55       |
| 18.9         | 90            | 55       |
| 19           | 90            | 55       |

| d          | L   | l <sub>0</sub> |
|------------|-----|----------------|
| 19.1       | 90  | 55             |
| 19.2       | 90  | 55             |
| 19.3       | 90  | 55             |
| 19.5       | 90  | 55             |
| 19.6       | 90  | 55             |
| 19.7       | 90  | 55             |
| 20         | 100 | 60             |
| 20.3       | 100 | 60             |
| 20.4       | 100 | 60             |
| 20.6       | 100 | 60             |
| 20.7       | 100 | 60             |
| 20.8       | 100 | 60             |
| 20.9       | 100 | 60             |
| 21         | 100 | 60             |
| 21.2       | 100 | 60             |
| 21.5       | 100 | 60             |
| 21.6       | 100 | 60             |
| 21.7       | 100 | 60             |
| 21.8       | 100 | 60             |
| 21.9       | 100 | 60             |
| 22         | 100 | 60             |
| 22.3       | 100 | 60             |
| 22.6       | 100 | 60             |
| 22.7       | 100 | 60             |
| 22.8       | 100 | 60             |
| 22.9       | 100 | 60             |
| 23         | 100 | 60             |
| 23.5       | 100 | 60             |
| 23.6       | 100 | 60             |
| 23.7       | 100 | 60             |
| 24         | 100 | 60             |
| 24.1       | 100 | 60             |
| 24.3       | 100 | 60             |
| 24.6       | 100 | 60             |
| 24.7       | 100 | 60             |
| 24.8       | 100 | 60             |
| 24.8<br>25 | 100 | 60             |

- 1. Назначение спиральных сверл по днаметрам см. "Таблицу на-значения сверл", стр. 42.
  2. Допускается изготовление сверл днаметром до 6 мм собратным центром.
  3. Обозначение сверла спирального левого с цилиндрическим хвостом для автоматов, днаметром 20 мм:

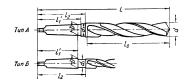
### 20 FOCT 2090-43

- For application of twist drills in accordance with drill diameter see table on page 42.
   Drills up to 6 mm in diameter may be made with external center.
   S. Designation of a left-hand straight shank twist drill for automatic machines, 20 mm diameter:

20 GOST 2090-43

### СВЕРЛА СПИРАЛЬНЫЕ С КОНИЧЕСКИМ ХВОСТОМ (no FOCT 888-41)

### TAPER SHANK TWIST DRILLS


(acc. to GOST 888-41)

Материал: углеродистая или быстрорежущая сталь

Material: carbon or high speed steel







Размеры в мм — Dimensions in mm

| d   | Тип<br>Туре                                    | L   | l <sub>o</sub> | Конус хвоста<br>Shank taper | $l_2$ | $d_1$   |
|-----|------------------------------------------------|-----|----------------|-----------------------------|-------|---------|
| 6.0 | E<br>E                                         | 160 | 78             | Морзе № 1                   | 77.5  | d = 0.7 |
| 6.2 | Б                                              | 160 | 78             | Morse No. 1                 | 77.5  |         |
| 6.3 | Б                                              | 160 | 78             | D = 12.239                  | 77.5  |         |
| 6.4 | E                                              | 160 | 78             |                             | 77.5  |         |
| 6.5 | B                                              | 160 | 78             | $l_1 = 65.5$                | 77.5  |         |
| 6.6 | Б                                              | 160 | 78             | l' <sub>1</sub> == 70       | 77.5  |         |
| 6.7 | B                                              | 160 | 78             |                             | 77.5  |         |
| 6.8 | E E E E E                                      | 160 | 78             |                             | 77.5  |         |
| 6.9 | Б                                              | 160 | 78             |                             | 77.5  |         |
| 7.0 | <i>Б</i><br><i>Б</i>                           | 165 | 83             |                             | 77.5  |         |
| 7.1 | Ē                                              | 165 | 83             |                             | 77.5  |         |
| 7.2 | E                                              | 165 | 83             |                             | 77.5  |         |
| 7.3 | Б<br>Б<br>Б                                    | 165 | 83             |                             | 77.5  |         |
| 7.4 | Б                                              | 165 | 83             |                             | 77.5  |         |
| 7.5 | E                                              | 165 | 83             |                             | 77.5  |         |
| 7.6 | Б                                              | 165 | 83             |                             | 77.5  |         |
| 7.7 | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | 165 | 83             |                             | 77.5  |         |
| 7.8 | E                                              | 165 | 83             |                             | 77.5  |         |
| 7.9 | E                                              | 165 | 83             |                             | 77.5  |         |
| 8.0 | B                                              | 170 | 88             |                             | 77.5  |         |
| 8.1 | E                                              | 170 | 88             |                             | 77.5  |         |
| 8.2 | E                                              | 170 | 88             |                             | 77.5  |         |
| 8.3 | Б<br>Б<br>Б                                    | 170 | 88             | ļ                           | 77.5  |         |
| 8.4 | E                                              | 170 | 88             |                             | 77.5  |         |
| 8.5 | E                                              | 170 | 88             |                             | 77.5  |         |
| 8.6 | B<br>B                                         | 170 | 88             |                             | 77.5  |         |
| 8.7 | Б                                              | 170 | 88             |                             | 77.5  |         |
| 8.8 | B                                              | 170 | 88             |                             | 77.5  |         |
| 8.9 | Б                                              | 170 | 88             | 1                           | 77.5  |         |
| 9.0 | Б                                              | 175 | 93             |                             | 77.5  |         |
| 9.1 | Б                                              | 175 | 93             |                             | 77.5  |         |
| 9.2 | E                                              | 175 | 93             |                             | 77.5  |         |
| 9.3 | Б<br>Б                                         | 175 | 93             |                             | 77.5  |         |
| 9.4 | E                                              | 175 | 93             | 1                           | 77.5  |         |
| 9.5 | $\frac{B}{B}$                                  | 175 | 93             |                             | 77.5  |         |
| 9.6 | E                                              | 175 | 93             |                             | 77.5  |         |
| 9.7 | Б<br>Б<br>Б                                    | 175 | 93             |                             | 77.5  |         |
| 9.7 | P                                              | 175 | 93             |                             | 77.5  |         |
| 9.9 | Б<br>Б                                         | 175 | 93             |                             | 77.5  |         |
|     |                                                |     |                |                             |       |         |

Размеры в мм — Dimensions in mm

|                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                               | 1 40%                                                                                      | ры в мя                                                      | - Dimensions in inin                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| d                                                                                                                                                                                                                                                                    | Тип<br>Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                  | $l_0$                                                                                         | Конус хвоста<br>Shank taper                                                                | 12                                                           | $d_1$                                                         |
| 10.1<br>10.2<br>10.3<br>10.5<br>10.5<br>10.5<br>10.7<br>10.9<br>11.0<br>11.2<br>11.4<br>11.7<br>11.8<br>11.9<br>12.1<br>12.4<br>12.7<br>12.8<br>12.9<br>13.3<br>13.5<br>13.5<br>14.4<br>14.4<br>14.6<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8 | B         B         B         B         B         B         B         B         B         B         B         B         B         B         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A | 180 180 180 180 180 180 180 180 180 180                            | 98 98 98 98 98 98 98 98 98 103 103 103 103 103 103 103 113 113 118 118 118 118 118 118 118 11 | Mopse № 1<br>Morse No. 1<br>D = 12.239<br>l <sub>1</sub> = 65.5<br>l' <sub>1</sub> = 70    | 77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5 | d = 0.7 Tun $E$ Type $B$ $D = 0.7$ Tun $A$ Type $A$ $d = 0.7$ |
| 15.6<br>15.7<br>15.8<br>16.0<br>16.2<br>16.3<br>16.4<br>16.5<br>16.6<br>16.8                                                                                                                                                                                         | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 225<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225 | 130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130                            | Mopae & 2<br>Morse No. 2<br>D == 17.981<br>l <sub>1</sub> == 78.5<br>l' <sub>1</sub> == 83 | 90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5 | d 0.8                                                         |

станкоимпорт



 $\mathrm{Paamepы}\ \mathrm{B}\ \mathrm{MM} \rightarrow \mathrm{Dimensions}$  in mm

| d                                                                            | Тип<br>Туре                                  | L                               | l <sub>o</sub>                  | Конус хвоста<br>Shank taper | $l_2$                    | d <sub>1</sub>                                                                                             |
|------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------|-----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|
| 17.0                                                                         | Б                                            | 230                             | 135                             | Морзе № 2                   | 90.5                     | d - 0.8                                                                                                    |
| 17.1                                                                         | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5        | 230                             | 135                             | Morse No. 2                 | 90.5                     | . 0.0                                                                                                      |
| 17.2                                                                         | F                                            | 230                             | 135                             |                             | 90.5                     | i                                                                                                          |
| 17.3                                                                         | P                                            | 230                             | 135                             | D = 17.981                  |                          |                                                                                                            |
|                                                                              | D                                            |                                 |                                 | $l_1 = 78.5$                | 90.5                     | i                                                                                                          |
| 17.4                                                                         | Б                                            | 230                             | 135                             | $l'_{1} = 83$               | 90.5                     |                                                                                                            |
| 17.5                                                                         | Б                                            | 230                             | 135                             | 11 — 03                     | 90.5                     |                                                                                                            |
| 17.6                                                                         | Б                                            | 230                             | 135                             |                             | 90.5                     |                                                                                                            |
| 17.7                                                                         | Б                                            | 230                             | 135                             |                             | 90.5                     |                                                                                                            |
| 17.9                                                                         | Б                                            | 230                             | 135                             |                             | 90.5                     |                                                                                                            |
| 18.0                                                                         | Б                                            | 235                             | 140                             |                             | 90.5                     |                                                                                                            |
| 18.3                                                                         | Б                                            | 235                             | 140                             |                             | 90.5                     | Тип Б ( р _ о с                                                                                            |
| 18.4                                                                         | Б                                            | 235                             | 140                             |                             | 90.5                     | $\left\{ \begin{array}{cc} \operatorname{Tun} & B \\ \operatorname{Type} & B \end{array} \right\} D = 0.8$ |
| 18.5                                                                         | Б                                            | 235                             | 140                             |                             | 90.5                     |                                                                                                            |
| 18.6                                                                         | E-A                                          | 235                             | 140                             | 1                           | 90.5                     | Tun $A \setminus_{d=0}$                                                                                    |
|                                                                              |                                              |                                 |                                 |                             |                          | Type $A d = 0.8$                                                                                           |
| 18.8                                                                         | E-A                                          | 235                             | 140                             |                             | 90.5                     | - J P )                                                                                                    |
| 18.9                                                                         | E-A                                          | 235                             | 140                             |                             | 90.5                     |                                                                                                            |
| 19.0                                                                         | E-A                                          | 240                             | 145                             |                             | 90.5                     |                                                                                                            |
| 19.1                                                                         | E-A                                          | 240                             | 145                             |                             | 90.5                     | j                                                                                                          |
| 19.2                                                                         | E-A                                          | 240                             | 145                             |                             | 90.5                     | 1                                                                                                          |
| 19.3                                                                         | $_{E-A}^{E-A}$                               | 240                             | 145                             |                             | 90.5                     |                                                                                                            |
| 19.5                                                                         | E-A                                          | 240                             | 145                             |                             | 90.5                     |                                                                                                            |
| 19.6                                                                         | A                                            | 240                             | 145                             |                             | 90.5                     |                                                                                                            |
| 19.7                                                                         | Ā                                            | 240                             | 145                             | i                           | 90.5                     |                                                                                                            |
| 20.0                                                                         | A                                            | 245                             |                                 |                             |                          | d = 0.8                                                                                                    |
|                                                                              | A                                            |                                 | 150                             |                             | 90.5                     |                                                                                                            |
| 20.3                                                                         |                                              | 245                             | 150                             | İ                           | 90.5                     |                                                                                                            |
| 20.4                                                                         | A                                            | 245                             | 150                             |                             | 90.5                     |                                                                                                            |
| 20.6                                                                         | A                                            | 245                             | 150                             |                             | 90.5                     |                                                                                                            |
| 20.7                                                                         | A                                            | 245                             | 150                             |                             | 90.5                     | 1                                                                                                          |
| 20.8                                                                         | A                                            | 245                             | 150                             |                             | 90.5                     |                                                                                                            |
| 20.9                                                                         | A                                            | 245                             | 150                             |                             | 90.5                     |                                                                                                            |
| 21.0                                                                         | A                                            | 250                             | 155                             |                             | 90.5                     |                                                                                                            |
| 21.2                                                                         | A                                            | 250                             | 155                             |                             | 90.5                     |                                                                                                            |
| 21.5                                                                         | Ā                                            | 250                             | 155                             |                             | 90.5                     |                                                                                                            |
| 21.6                                                                         | · A                                          | 250                             | 155                             |                             | 90.5                     |                                                                                                            |
| 21.7                                                                         | A                                            | 250                             |                                 | i                           |                          |                                                                                                            |
|                                                                              |                                              |                                 | 155                             | l l                         | 90.5                     |                                                                                                            |
| 21.8                                                                         | A                                            | 250                             | 155                             | 3                           | 90.5                     |                                                                                                            |
| 21.9                                                                         | A                                            | 250                             | 155                             |                             | 90.5                     | 4                                                                                                          |
| 22.0                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
| 22.3                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
| 22.6                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
| 22.7                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
| 22.8                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
| 22.9                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     | İ                                                                                                          |
| 23.0                                                                         | Â                                            | 255                             | 160                             | 1                           | 90.5                     |                                                                                                            |
| 23.5                                                                         | A                                            | 255                             | 160                             |                             | 90.5                     |                                                                                                            |
|                                                                              |                                              |                                 |                                 |                             |                          |                                                                                                            |
| 23.6                                                                         | Б                                            | 290                             | 170                             | Морае № 3                   | 113                      | Tun Blp 40                                                                                                 |
|                                                                              | Б                                            | 290                             | 170                             | Morse No. 3                 | 113                      | $T_{\text{UDO}} = \{D = 1.0\}$                                                                             |
|                                                                              | Б                                            | 290                             | 170                             | i                           | 113                      | Type D )                                                                                                   |
| 24.0                                                                         |                                              |                                 | 170                             | D = 24.052                  | 113                      | Тип А)                                                                                                     |
| 24.0<br>24.1                                                                 | Б                                            | 290                             |                                 |                             |                          |                                                                                                            |
| $24.0 \\ 24.1$                                                               | Б<br>Б                                       | 290<br>290                      |                                 | $l_1 = 98$                  | 113                      | Type $A \stackrel{?}{\downarrow} a = 1.0$                                                                  |
| 24.0<br>24.1<br>24.3                                                         | Б<br>Б                                       | 290                             | 170                             | $l_1 = 98$                  | 113                      | $\left\{ \begin{array}{l} \operatorname{Tun} A \\ \operatorname{Type} A \end{array} \right\} d - 1.0$      |
| 24.0<br>24.1<br>24.3<br>24.6                                                 | $\begin{array}{c} B \\ B \\ B-A \end{array}$ | 290<br>290                      | 170<br>170                      | $l_1 = 98$<br>$l'_1 = 105$  | 113                      | Type $A \int_{0}^{a} a^{-1.0}$                                                                             |
| 24.0<br>24.1<br>24.3<br>24.6<br>24.7                                         | Б<br>Б<br>Б-А<br>Б-А                         | 290<br>290<br>290               | 170<br>170<br>170               |                             | 113<br>113               | Type $A \int_{0}^{a} a = 1.0$                                                                              |
| 24.0<br>24.1<br>24.3<br>24.6<br>24.7<br>24.8                                 | Б<br>Б-А<br>Б-А<br>Б-А                       | 290<br>290<br>290<br>290        | 170<br>170<br>170<br>170        |                             | 113<br>113<br>113        | Type A j a - 1.0                                                                                           |
| 24.0<br>24.1<br>24.3<br>24.6<br>24.7<br>24.8<br>25.0                         | Б<br>Б-А<br>Б-А<br>Б-А<br>Б-А                | 290<br>290<br>290<br>290<br>295 | 170<br>170<br>170<br>170<br>170 |                             | 113<br>113<br>113<br>113 | Type $A \int_{0}^{a} A = 1.0$                                                                              |
| 23.7<br>24.0<br>24.1<br>24.3<br>24.6<br>24.7<br>24.8<br>25.0<br>25.3<br>25.6 | Б<br>Б-А<br>Б-А<br>Б-А                       | 290<br>290<br>290<br>290        | 170<br>170<br>170<br>170        |                             | 113<br>113<br>113        | Type A j a - 1.0                                                                                           |

|                                                                                                                                                                                      |                                                                    |                                                                                                                                   |                                                                                           | Разм                                                                                    | еры в мм -                                                         | - Dimensions in mm                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d                                                                                                                                                                                    | Тип<br>Туре                                                        | L                                                                                                                                 | l <sub>o</sub>                                                                            | Конус хвоста<br>Shank taper                                                             | $l_2$                                                              | $d_1$                                                                                                                                                                                                         |
| 26.1<br>26.4<br>26.6<br>26.9<br>27.0<br>27.6<br>27.7<br>27.9<br>28.0<br>28.1<br>28.6<br>28.8<br>29.0<br>29.2<br>29.6<br>30.5<br>30.7<br>30.8<br>31.0<br>31.4<br>31.5<br>31.6<br>32.5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              | 300 300 300 300 300 305 305 305 305 305                                                                                           | 180 180 180 180 180 180 185 185 185 185 190 190 190 200 200 200 200 200 200 200 200 200 2 | Mopae Ws<br>Morse No. 3<br>D = 24.052<br>l <sub>1</sub> = 98<br>l' <sub>1</sub> = 105   | 113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113 | d-1.0                                                                                                                                                                                                         |
| 32.6<br>32.7<br>33.0<br>33.4<br>33.5<br>33.6<br>33.7<br>34.0<br>34.4<br>34.5<br>35.0<br>35.2<br>35.5<br>35.7<br>35.9<br>36.5<br>36.7<br>37.3<br>37.3<br>37.3<br>37.3<br>37.3         | B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A | 365<br>365<br>365<br>365<br>365<br>365<br>365<br>365<br>365<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 | 215 215 215 215 215 215 215 215 215 215                                                   | Морзе № 4<br>Morse No. 4<br>D = 31.544<br>l <sub>i</sub> = 123<br>l' <sub>i</sub> = 132 | 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140 | $ \begin{array}{c} \operatorname{Tyn}_{\mathbf{T}} E \\ \operatorname{Type}_{B} \end{array} D - 1.2 \\ \operatorname{Tnn}_{A} A \\ \operatorname{Type}_{A} \end{array} d - 1.2 \\ \\ d - 1.2 \\ \end{array} $ |

всесоюзное объединение



 $d_1$ 

Б-А Б-А Б-А Б-А

Размеры в мм — Dimensions in mm

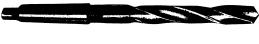
| d                                | Тип<br>Туре                | L                                      | l <sub>o</sub>                                | Конус хвоста<br>Shank taper                                                   | $l_2$                                              | $d_1$ |
|----------------------------------|----------------------------|----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-------|
| 56<br>57<br>58<br>60<br>62<br>65 | A<br>A<br>A<br>A<br>A<br>A | 450<br>450<br>460<br>460<br>460<br>460 | 265<br>265<br>275<br>275<br>275<br>275<br>275 | Mopae N 5<br>Morse No. 5<br>D = 44.732<br>$l_1 = 155.5$<br>$l'_1 = 164.5$     | 172.5<br>172.5<br>172.5<br>172.5<br>172.5<br>172.5 | d-1.2 |
| 68<br>70<br>72<br>75<br>78<br>80 | A<br>A<br>A<br>A<br>A<br>A | 535<br>535<br>535<br>535<br>535<br>535 | 285<br>285<br>285<br>285<br>285<br>285<br>285 | Mopae $N_2$ 6<br>Morse No. 6<br>D = 63.762<br>$l_1 = 217.5$<br>$l_1' = 227.5$ | 237.5<br>237.5<br>237.5<br>237.5<br>237.5<br>237.5 | d-1.2 |

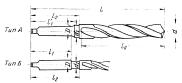
- 1. Назначение спиральных свера по диаметрам -- см. "Таблицу назначения сверл", стр. 42.
- 2. Сверла диаметром от 6 до 10 мм могут изготовляться без шейки.
- $3. \ \, ext{Сверда тина} \ \, A \, \, \, ext{могут быть изготовлены с канавкой на хвосте для}$ выхода инпфовального круга.
- 4. Обозначение сверла спирального с коническим хвостом типа A, диаметром 25 мм: A 25 l'OCT 888-41
- 1. For application of twist drills in accordance with drill diameter see table on page 42.
- 2. Drills from 6 to 10 mm in diameter may be made without neck.
- 3. Drills of type A may be made with a recess on shank providing a way for the grinding wheel.
- 4. Designation of taper shank twist drill, type A, 25 mm diameter: A 25 GOST 888-41

ста нкоим по рт

Mopae No. 5 Morse No. 5 D = 44.732  $l_1 = 155.5$   $l'_1 = 164.5$ 

172.5 172.5 172.5 172.5 172.5 172.5 172.5 172.5


 $\left. \begin{array}{l} \text{Тип} \quad B \\ \text{Туре} \quad B \\ \text{Тип} \quad A \\ \text{Туре} \quad A \end{array} \right\} D = 1.2$ d - 1.2


# СВЕРЛА СПИРАЛЬНЫЕ УДЛИПЕННЫЕ С КОПИЧЕСКИМ ХВОСТОМ (по ГОСТ 2092-43)

#### TAPER SHANK TWIST DRILLS, LONG SERIES

(acc. to GOST 2092-43)

**Материал:** быстрорежущая сталь **Material:** high speed steel





Размеры в мм — Dimensions in mm

|                                                                                                                     | Гип<br>ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_0$                                                                                                        | Конус хвоств<br>Shank taper                                                            | $l_2$                                                        | $d_1$   |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|
| 6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.9<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.7<br>7.7<br>7.7<br>7.9 | B 230<br>B 250<br>B 250 | 145<br>145<br>145<br>145<br>145<br>145<br>145<br>145<br>165<br>165<br>165<br>165<br>165<br>165<br>165<br>165 | Mopae № 1<br>Morse № 1.<br>D = 12.239<br>l <sub>1</sub> = 65.5<br>l' <sub>i</sub> = 70 | 77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5 | d = 0.7 |

|     | d    | Тип<br>Туре | L   | $l_0$ | Конус хвоста<br>Shank taper | $l_2$ | $d_1$                                                                                  |
|-----|------|-------------|-----|-------|-----------------------------|-------|----------------------------------------------------------------------------------------|
| 1   | 8.1  | Б           | 250 | 165   | Морзе № 1                   | 77.5  | d - 0.7                                                                                |
| н   | 8.2  | Б           | 250 | 165   | Morse No. 1                 | 77.5  | 1 4 0.7                                                                                |
| 1   | 8.3  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| 1   |      | Б           | 250 | 165   | D = 12.239                  | 77.5  |                                                                                        |
| 1   | 8.4  | Б           |     | 165   | $l_1 = 65.5$                | 77.5  |                                                                                        |
| -   | 8.5  | Б           | 250 |       | l' <sub>1</sub> == 70       | 77.5  |                                                                                        |
| ı   | 8.6  | Б           | 250 | 165   | 1170                        |       |                                                                                        |
| 1   | 8.7  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| -   | 8.8  | Б           | 250 | 165   |                             | 77.5  | 1                                                                                      |
| 1   | 8.9  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| -   | 9.0  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| -   | 9.1  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| - 1 | 9.2  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| - 1 | 9.3  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| 1   | 9.4  | Б           | 250 | 165   |                             | 77.5  | 1                                                                                      |
| -1  | 9.5  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| - 1 | 9.6  | Б           | 250 | 165   | 1                           | 77.5  |                                                                                        |
| -1  | 9.7  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| - 1 | 9.8  | Б           | 250 | 165   |                             | 77.5  | 1                                                                                      |
| - [ | 9.9  | Б           | 250 | 165   |                             | 77.5  |                                                                                        |
| - 1 | 10.0 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| ١   | 10.1 | Б<br>Б      | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 10.2 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| -1  | 10.3 | Б           | 260 | 175   |                             | 77,5  |                                                                                        |
| - 1 | 10,4 | E<br>E      | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 10.5 | Б           | 260 | 175   |                             | 77.5  | ł .                                                                                    |
| - 1 | 10.6 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 10.7 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 10.8 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 10.9 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| - 1 | 11.0 | Б           | 260 | 175   |                             | 77.5  | I                                                                                      |
| - 1 | 11.2 | Б           | 260 | 175   |                             | 77.5  | 1                                                                                      |
| - 1 | 11.3 | Б           | 260 | 175   |                             | 77.5  | l                                                                                      |
| - [ | 11.4 | Б           | 260 | 175   |                             | 77.5  | 1                                                                                      |
| - 1 | 11.5 | Б           | 260 | 175   |                             | 77.5  | 1                                                                                      |
| - 1 | 11.7 | Б           | 260 | 175   | 1                           | 77.5  | 1                                                                                      |
|     | 11.8 | Б           | 260 | 175   |                             | 77.5  | 1                                                                                      |
| - 1 | 11.9 | Б           | 260 | 175   |                             | 77.5  |                                                                                        |
| -   | 12.0 | Б           | 270 | 185   |                             | 77.5  |                                                                                        |
| - 1 | 12.1 | Б           | 270 | 185   |                             | 77.5  |                                                                                        |
| - 1 | 12.3 | Б           | 270 | 185   | 1                           | 77.5  |                                                                                        |
| - 1 | 12.4 | B           | 270 | 185   |                             | 77.5  | Tun B D = 0.7                                                                          |
|     | 12.5 | Б           | 270 | 185   |                             | 77.5  | Type $E \mid D = 0.7$                                                                  |
| - 1 | 12.7 | B-A         | 270 | 185   | 1                           | 77.5  | Tur. 4)                                                                                |
| - [ | 12.8 | B-A         | 270 | 185   | 1                           | 77.5  | $\left\{\begin{array}{c} \text{Tun} & A \\ \text{Type } A \end{array}\right\} d = 0.7$ |
| ١   | 12.9 | B-A         | 270 | 185   |                             | 77.5  | Type A j                                                                               |
| - 1 | 13.0 | B-A         | 270 | 185   | 1                           | 77.5  |                                                                                        |
| - 1 | 13.2 | B-A         | 270 | 185   |                             | 77.5  |                                                                                        |
| ١   | 13.3 | B-A         | 270 | 185   |                             | 77.5  |                                                                                        |
| - 1 | 13.5 | E-A         | 270 | 185   |                             | 77.5  | 1                                                                                      |
|     | 13.7 | B-A         | 270 | 185   |                             | 77.5  |                                                                                        |
| - 1 | 13.8 | E-A         | 270 | 185   |                             | 77.5  |                                                                                        |
| ı   | 14.0 | A           | 280 | 195   |                             | 77.5  |                                                                                        |
|     | 14.3 | A           | 280 | 195   | 1                           | 77.5  |                                                                                        |
| - 1 | 14.0 | **          | 200 | 1 112 | 1                           | 55.5  | 1                                                                                      |

всесоюзное объединение



26 Размеры в мм — Dimensions in mm

| d                                                                            | Тип<br>Туре                                                 | L                                                                  | l <sub>0</sub>                                                     | Конус хвоста<br>Shank taper                                                               | $l_2$                                                                | $d_1$                                                   |
|------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|
| 14.8<br>14.9<br>15.0<br>15.1<br>15.2<br>15.3<br>15.4                         | A<br>A<br>A<br>A<br>A<br>A                                  | 280<br>280<br>280<br>280<br>280<br>280<br>280<br>280               | 195<br>195<br>195<br>195<br>195<br>195<br>195                      | Mopae № 1<br>Morse No. 1<br>D = 12.239<br>$l_1 = 65.5$<br>$l'_1 = 70$                     | 77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5         |                                                         |
| 15.4<br>15.5<br>15.6<br>15.7<br>15.8<br>16.0<br>16.2<br>16.3<br>16.4         | ## A ## B ## B ## B ## B ## B ## B ## B                     | 290<br>290<br>290<br>290<br>290<br>290<br>290<br>290<br>290        | 195<br>195<br>195<br>195<br>195<br>195<br>195<br>195<br>195        | Mopae № 2<br>Morse No. 2<br>D == 17.981<br>l <sub>1</sub> == 78.5<br>l <sub>i</sub> == 83 | 77.5<br>77.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5 | d - 0.8                                                 |
| 16.5<br>16.6<br>16.8<br>16.9<br>17.0<br>17.1<br>17.2<br>17.3<br>17.4         | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                       | 290<br>290<br>290<br>290<br>290<br>290<br>290<br>290<br>290<br>290 | 195<br>195<br>195<br>195<br>195<br>195<br>195<br>195<br>195        |                                                                                           | 90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5         |                                                         |
| 17.6<br>17.7<br>17.9<br>18.0<br>18.3<br>18.4<br>18.5<br>18.6                 | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B-A<br>B-A<br>B-A<br>B-A | 290<br>290<br>290<br>320<br>320<br>320<br>320<br>320<br>320<br>320 | 195<br>195<br>195<br>215<br>215<br>215<br>215<br>215<br>215        |                                                                                           | 90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5         | Tim $E$ $D = 0.8$ Type $B$ $D = 0.8$ Type $A$ $D = 0.8$ |
| 18.9<br>19.0<br>19.1<br>19.2<br>19.3<br>19.5<br>19.6<br>19.7<br>20.0<br>20.3 | B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>B-A<br>A<br>A<br>A       | 320<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>320 | 215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>225 |                                                                                           | 90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5         | d - 0.8                                                 |
| 20.4<br>20.6<br>20.7<br>20.8<br>20.9<br>21.0<br>21.2<br>21.5                 | A<br>A<br>A<br>A<br>A<br>A<br>A                             | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340        | 235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235 |                                                                                           | 90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5<br>90.5         |                                                         |
| 21.6<br>21.7<br>21.8<br>21.9                                                 | A<br>A<br>A<br>A                                            | 340<br>340<br>340<br>340                                           | 235<br>235<br>235<br>235                                           |                                                                                           | 90.5<br>90.5<br>90.5<br>90.5                                         |                                                         |

|      |                |     |                  | Разме р                     | ы в мм | - Dimensions in mn                                                                       |
|------|----------------|-----|------------------|-----------------------------|--------|------------------------------------------------------------------------------------------|
| d    | Тип<br>Туре    | L   | · l <sub>0</sub> | Конус хвоста<br>Shank taper | $l_2$  | $d_1$                                                                                    |
| 22.0 | A              | 340 | 235              | Морзе № 2                   | 90.5   | d - 0.8                                                                                  |
| 22.3 | A              | 340 | 235              | Morse No. 2                 | 90.5   |                                                                                          |
| 22.6 | A              | 340 | 235              | D = 17.981                  | 90.5   |                                                                                          |
| 22.7 | A              | 340 | 235              | $l_1 = 78.5$                | 90.5   | 1                                                                                        |
| 22.8 | 1 4            | 340 | 235              |                             | 90.5   | 1                                                                                        |
| 22.9 | A              | 340 | 235              | $l'_1 = 83$                 | 90.5   | 1                                                                                        |
| 23.0 | A              | 340 | 235              |                             | 90.5   |                                                                                          |
| 23.5 | A              | 340 | 235              |                             | 90.5   |                                                                                          |
| 23.6 | Б              | 360 | 240              | Морзе №3                    | 113    | $T_{\text{WIR}} \stackrel{E}{E} D = 1.0$                                                 |
| 23.7 | Б              | 360 | 240              | Morse No. 3                 | 113    | Type $B$ $D = 1.0$                                                                       |
| 24.0 | E<br>E         | 360 | 240              | D = 24.052                  | 113    | Tun 4) .                                                                                 |
| 24.1 | Б              | 360 | 240              | $l_1 = 98$                  | 113    | $\left\{ \begin{array}{c} \text{Тип}  A \\ \text{Туре}  A \end{array} \right\}  d = 1.0$ |
| 24.3 | Б              | 360 | 240              |                             | 113    | Type A)                                                                                  |
| 24.6 | E-A            | 360 | 240              | $l'_1 = 105$                | 113    |                                                                                          |
| 24.7 | B-A            | 360 | 240              |                             | 113    |                                                                                          |
| 24.8 | E-A            | 360 | 240              |                             | 113    |                                                                                          |
| 25.0 | E-A            | 360 | 240              |                             | 113    |                                                                                          |
| 25.3 | E-A            | 360 | 240              | 1                           | 113    | i                                                                                        |
| 25.6 | B-A            | 360 | 240              |                             | 113    |                                                                                          |
| 26.0 | E-A            | 380 | 250              | 1                           | 113    |                                                                                          |
| 26.1 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 26.4 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 26.6 | A              | 380 | 250              |                             | 113    | İ                                                                                        |
| 26.9 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 27.0 | A              | 380 | 250              |                             | 113    | į.                                                                                       |
| 27.6 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 27.7 | A              | 380 | 250              |                             | 113    | 1                                                                                        |
| 27.8 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 27.9 | A              | 380 | 250              |                             | 113    |                                                                                          |
| 28.0 | $\overline{A}$ | 410 | 275              |                             | 113    | ì                                                                                        |
| 28.1 | A              | 410 | 275              |                             | 113    | 1                                                                                        |
| 28.3 | A              | 410 | 275              |                             | 113    |                                                                                          |
| 28.6 | A              | 410 | 275              |                             | 113    |                                                                                          |
| 28.8 | A              | 410 | 275              | 1                           | 113    | i                                                                                        |
| 29.0 | A              | 410 | 275              |                             | 113    |                                                                                          |
| 29.2 | A              | 410 | 275              |                             | 113    | 1                                                                                        |
| 29.6 | A              | 410 | 275              |                             | 113    |                                                                                          |
| 30.0 | A              | 410 | 275              |                             | 113    |                                                                                          |

Пазначение спиразыных сверл по днаметрам — ем. "Таблицу па-значения сверл", стр. 42.
 Сверла днаметром от 6 до 10 мм могут изготовляться без шейки.
 Обозначение сверла спирального удлиненного с коническим хвостом типа А, днаметром 25 мм:

А 25 ГОСТ 2092-43

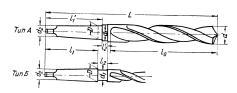
For application of twist drills in accordance with drill diameter see table on page 42.
 Drills from 6 to 10 mm in diameter may be made without neck.
 Designation of a taper shank twist drill, long series, type A, 25 mm diameter:

A 25 GOST 2092-43



# сверда спиральные укороченные с усиленным коническим хвостом

(по ОСТ 20182-40)


# TAPER SHANK TWIST DRILLS, SHORT SERIES, SHANKS LARGER THAN REGULAR

(acc. to OST 20182-40)

Material: быстрорежущая сталь
Material: high speed steel







Размеры в мм -- Dimensions in mm

| d                                                          | Тип<br>Туре                           | L                                                                  | l <sub>0</sub>                                           | Конус хвоста<br>Shank taper                                                                                            | $l_2$                                                                      | $l_2^{\prime}$         | $d_1$   |
|------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|---------|
| 6<br>6.5<br>7<br>7.5<br>8<br>8.5<br>9<br>9.5<br>10<br>10.5 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 135<br>135<br>140<br>140<br>140<br>145<br>145<br>145<br>150<br>150 | 55<br>55<br>60<br>60<br>60<br>65<br>65<br>65<br>70<br>70 | Mopae № 1<br>Morse No. 1<br>D = 12.239<br>$d_2 = 8.973$<br>$l_1 = 65.5$                                                | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                        | d - 0.  |
| 12<br>12.5<br>13<br>13.5<br>14<br>14.5<br>15<br>16<br>17   | E                                     | 170<br>175<br>175<br>180<br>180<br>185<br>185<br>190<br>195        | 75<br>80<br>80<br>85<br>85<br>90<br>90<br>95<br>100      | Mopae N 2<br>Morse No. 2<br>D = 17.981<br>d <sub>2</sub> = 14.060<br>l <sub>1</sub> = 78.5                             | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12       | -                      | d = 0.  |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26               | Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>А<br>А  | 225<br>230<br>230<br>235<br>235<br>240<br>245<br>250               | 105<br>110<br>110<br>115<br>115<br>120<br>125<br>130     | Mopse No. 3<br>Morse No. 3<br>D == 24.052<br>d <sub>2</sub> = 19.133<br>l <sub>1</sub> == 98<br>l' <sub>1</sub> == 105 | 15<br>15<br>15<br>15<br>15<br>15<br>15                                     | <br><br><br><br>8<br>8 | d = 0   |
| 27<br>28<br>29<br>30<br>32<br>35                           | Б<br>Б<br>Б<br>Б                      | 285<br>290<br>295<br>300<br>305<br>310                             | 135<br>140<br>145<br>150<br>155<br>160                   | Mopae N-4<br>Morse No. 4<br>D = 31.544<br>$d_2 = 25.156$<br>$l_1 = 123$<br>$l'_1 = 132$                                | 17<br>17<br>17<br>17<br>17                                                 |                        | d — 1.0 |

всесоюзное объединение



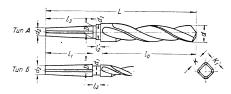
Размеры в мм -- Dimensions in mm

| d  | Тип<br>Туре | L   | $l_0$ | Конус хвоста<br>Shank taper | $l_2$ | l'i | $d_1$   |
|----|-------------|-----|-------|-----------------------------|-------|-----|---------|
| 38 | Б           | 350 | 165   | Морзе № 5                   | 17    |     | d - 1.0 |
| 40 | Б           | 355 | 170   | Morse No. 5                 | 17    | _   |         |
| 42 | Б           | 360 | 175   | D = 44.732                  | 17    | _   |         |
| 45 | Б           | 365 | 180   | $d_2 = 36.549$              | 17    | -   |         |
| 48 | A           | 370 | 185   |                             |       | 8   |         |
| 50 | A           | 375 | 190   | $l_1 = 155.5$               |       | 8   |         |
| 52 | A           | 380 | 195   | $l_1' = 164.5$              |       | 8   |         |
| 55 | A           | 385 | 200   | 1                           | -     | 8   |         |

- Назначение спиральных сверл по днаметрам см. "Таблицу назначения сверл", стр. 42.
   Сверла днаметром от 6 до 10 мм могут изготовляться без шейки.
- 3. Обозначение сверла сипрального укороченного с усиленным конпческим хвостом, диаметром 25 мм:

 $25\,\mathrm{OCT}\,20182\text{--}40$ 

- 1. For application of twist drills in accordance with drill diameter see table on page 42.
- 2. Drills from 6 to 10 mm in diameter may be made without neck.
- 3. Designation of taper shank twist drill, short series, shank larger than regular, 25 mm diameter: 25 OST 20182-40


#### СВЕРЛА СПИРАЛЬНЫЕ С ЧЕТЫРЕХГРАННЫМ СУЖИВАЮЩИМСЯ ХВОСТОМ (для трещеток)

(по ОСТ 20231-40)

#### TAPER SQUARE SHANK RATCHET DRILLS

(acc. to OST 20231-40)

Материал: инструментальная легированная сталь Material: alloy tool steel



Размеры в мм — Dimensions in mm

|                                                                                                     |                                                                                                                                                                                       |                                                                                               | 110 111 111111                                                             |                                                                                           |                                                                                 |        |         |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|---------|
| d                                                                                                   | Тип<br>Туре                                                                                                                                                                           | L                                                                                             | l <sub>0</sub>                                                             | Размеры хвоста<br>Size of shank                                                           | l <sub>2</sub>                                                                  | $l_2'$ | $d_1$   |
| 9.5<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 150<br>150<br>150<br>150<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>16 | 87<br>87<br>87<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>94<br>94<br>94 | Размеры квадрата: Size of square: $K=15$ $K_1=10.8$ $D=19.5$ $d_2=14.1$ $l_1=45$ $l_3=48$ | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1 |        | d = 0.5 |



Размеры в мм - Dimensions in mm

| d                                                                                | Тип<br>Туре                                                                                 | L                                                                  | l <sub>0</sub>                                                       | Размеры хвоста<br>Size of shank                                                              | $l_2$ | l' <sub>2</sub>                                                      | $d_1$ |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------|-------|
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170 | 94<br>94<br>94<br>94<br>94<br>94<br>94<br>91<br>91<br>91<br>91<br>91 | Размеры квадрата: Size of square: $K=17.5$ $K_1=12.4$ $D=22.80$ $d_2=16.2$ $l_1=55$ $l_3=58$ |       | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>14<br>14<br>14<br>14<br>14 | d-1.0 |

Обозначение сверла спирального с четырехгранным суживающимся хвостом, днаметром 30 мм: 30 ОСТ 20231-40

Designation of taper square shank ratchet drill, 30 mm diameter:  $30\ \mathrm{OST}\ 20231\text{--}40$ 

# СВЕРЛА С ЦИЛИНДРИЧЕСКИМ ХВОСТОМ, ОСНАЩЕННЫЕ ПЛАСТИНКАМИ ИЗ ТВЕРДОГО СПЛАВА

(Тип I по ГОСТ 6647-53)

#### STRAIGHT SHANK DRILLS TIPPED WITH CEMENTED CARBIDE

(Type I, acc. to GOST 6647-53)

Материал: сверла оснащаются вольфрамо-кобальтовым твердым сплавом Material: drills are tipped with tungsten cemented carbide









| d   | L  | l <sub>o</sub> |
|-----|----|----------------|
| 5   | 75 | 40             |
| 5.1 | 75 | 40             |
| 5.2 | 75 | 40             |
| 5.3 | 75 | 40             |
| 5.5 | 80 | 45             |
| 5.8 | 80 | 45             |
| 6   | 80 | 45             |

| Размеры в | мм — Dime | nsions in mm |
|-----------|-----------|--------------|
| d         | L         | 10           |
| 6.4       | 80        | 45           |
| 6.5       | 85        | 50           |
| 6.6       | 85        | 50           |
| 6.7       | 85        | 50           |
| 6.8       | 85        | 50           |
| 6.9       | 85        | 50           |
| 7         | 85        | 50           |



Размеры в мм — Dimensions in mm

| d   | L  | 10 |  |  |  |  |
|-----|----|----|--|--|--|--|
| 7.1 | 85 | 50 |  |  |  |  |
| 7.2 | 85 | 50 |  |  |  |  |
| 7.6 | 90 | 53 |  |  |  |  |
| 7.7 | 90 | 53 |  |  |  |  |
| 7.8 | 90 | 53 |  |  |  |  |
| 7.9 | 90 | 53 |  |  |  |  |
| 8   | 90 | 53 |  |  |  |  |
| 8.3 | 90 | 53 |  |  |  |  |
| 8.4 | 90 | 53 |  |  |  |  |
| 8.8 | 95 | 56 |  |  |  |  |
| 8.9 | 95 | 56 |  |  |  |  |
| 9   | 95 | 56 |  |  |  |  |
| 9.1 | 95 | 56 |  |  |  |  |

| d                                                                                    | L                                                                       | l <sub>o</sub>                                           |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| 9.2<br>9.7<br>10<br>10.1<br>10.4<br>10.5<br>10.6<br>10.8<br>11<br>11.7<br>11.8<br>12 | 95<br>95<br>100<br>100<br>100<br>100<br>100<br>100<br>110<br>115<br>115 | 56<br>56<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>70 |

- 1. Допускается изготовление сверл диаметром до 6 мм с наружным
- центром.

  2. Обозначение сверла типа I диаметром 6 мм, оснащенного пластин-ками из твердого силава ВК:

6 ВК І ГОСТ 6647-53

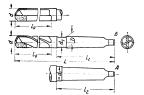
- 1. Shanks of drills up to 6 mm in diameter may be made with external center.
- 2. Designation of type I straight shank drill tipped with cemented carbide BK,  $6\ \mathrm{mm}$  diameter:

6 BK I GOST 6647-53

# СВЕРЛА С КОНИЧЕСКИМ ХВОСТОМ, ОСНАЩЕННЫЕ ПЛАСТИНКАМИ ИЗ ТВЕРДОГО СПЛАВА


(Тип II по ГОСТ 6647-53)

#### TAPER SHANK DRILLS TIPPED WITH CEMENTED CARBIDE


(Type II, acc. to GOST 6647-53)

Материал: сверла оснащаются вольфрамо-кобальтовым твердым сплавом Material: drills are tipped with tungsten cemented carbide









Pазмеры в мм — Dimensions in mm

36

|                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           | L                                                                                                                   |                                                                                              | / <sub>0</sub>                                                                                                                                              |                                                              |         |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|--------------------------------|
| d                                                                                                                                                  | Форма<br>жвоста<br>длин-<br>Туре of<br>shank         для<br>длин-<br>им укоро-<br>ных ченных ных ченных<br>ченных ных ченных<br>series         для<br>укоро-<br>ченных ных ченных<br>ченных ных<br>series           short         long<br>series         short<br>series         series         series |                                                                                                                                                                                           | l <sub>2</sub>                                                                                                      | d <sub>1</sub>                                                                               | Конус<br>хвоста<br>Shank<br>taper                                                                                                                           |                                                              |         |                                |
| 6 6.4<br>6.5<br>6.6<br>6.6<br>6.8<br>6.9<br>7.7.2<br>7.7.5<br>7.7<br>7.9<br>8.3<br>8.4<br>8.8<br>9.1<br>10.4<br>10.4<br>10.6<br>10.8<br>11<br>11.8 |                                                                                                                                                                                                                                                                                                        | 160<br>160<br>160<br>160<br>160<br>160<br>165<br>165<br>165<br>165<br>165<br>165<br>170<br>170<br>170<br>170<br>170<br>170<br>175<br>175<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | 78 78 78 78 78 78 78 83 83 83 83 83 83 83 83 83 83 83 84 88 88 88 88 88 88 88 88 88 88 88 88 | 35<br>35<br>35<br>35<br>35<br>35<br>40<br>40<br>40<br>40<br>40<br>445<br>445<br>445<br>45<br>50<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>56<br>60<br>60 | 77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5 | d - 0.7 | Mopae<br>N 1<br>Morse<br>No. 1 |

Размеры в мм — Dimensions in mm

|              |                                                                                             |              | 7                |              |                  | 1            | 1                               |                 |  |  |  |      |         |  |  |      |                   |  |
|--------------|---------------------------------------------------------------------------------------------|--------------|------------------|--------------|------------------|--------------|---------------------------------|-----------------|--|--|--|------|---------|--|--|------|-------------------|--|
|              | × 1                                                                                         |              |                  |              | l <sub>0</sub>   | ĺ            |                                 | l               |  |  |  |      |         |  |  |      |                   |  |
|              | Форма<br>хвоста                                                                             | для          | для              | для          | для              |              |                                 | Конус<br>хвоста |  |  |  |      |         |  |  |      |                   |  |
| d ,          | Type of                                                                                     | длин-<br>ных | укоро-<br>ченных | длин-<br>ных | укоро-<br>ченных | $l_2$        | $d_1$                           |                 |  |  |  |      |         |  |  |      |                   |  |
|              | shank                                                                                       | long         | short            | long         | short            | 1            |                                 | Shank<br>taper  |  |  |  |      |         |  |  |      |                   |  |
|              |                                                                                             | series       | series           | series       | series           |              |                                 | . •             |  |  |  |      |         |  |  |      |                   |  |
| 12           | Б                                                                                           | 205          | 165              | 110          | 63               | 90.5         | d - 0.8                         | Морзе           |  |  |  |      |         |  |  |      |                   |  |
| 12.3<br>12.4 | Б<br>Б<br>Б<br>Б                                                                            | 205          | 165              | 110          | 63               | 90.5         |                                 | Nº 2            |  |  |  |      |         |  |  |      |                   |  |
| 12.4         | Б                                                                                           | 205<br>205   | 165<br>165       | 110<br>110   | 63<br>63         | 90.5<br>90.5 | 1                               | Morse           |  |  |  |      |         |  |  |      |                   |  |
| 12.8         | Б                                                                                           | 205          | 165              | 110          | 63               | 90.5         |                                 | No. 2           |  |  |  |      |         |  |  |      |                   |  |
| 13           | Б                                                                                           | 210          | 170              | 115          | 68               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 13.3<br>13.5 | Б<br>Б<br>Б<br>Б                                                                            | 210<br>210   | 170<br>170       | 115<br>115   | 68<br>68         | 90.5 $90.5$  |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 13.7         | Б                                                                                           | 210          | 170              | 115          | 68               | 90.5         | 1                               |                 |  |  |  |      |         |  |  |      |                   |  |
| 13.8         | Б                                                                                           | 210          | 170              | 115          | 68               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 14.3         | <i>E</i> :                                                                                  | 215          | 175              | 120<br>120   | 71<br>71         | 90.5<br>90.5 |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 14.4         | Б                                                                                           | 215<br>215   | 175<br>175       | 120          | 71               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 14.5         | Б                                                                                           | 215          | 175              | 120          | 71               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 14.7         | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                   | 215          | 175              | 120          | 71               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 14.8<br>15   | Б                                                                                           | 215<br>220   | 175<br>180       | 120<br>125   | 71<br>76         | 90.5<br>90.5 |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 15.1         | Б                                                                                           | 220          | 180              | 125          | 76               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 15.3         | Б                                                                                           | 220          | 180              | 125          | 76               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 15.6<br>16   | E                                                                                           | 225<br>225   | 180<br>180       | 130<br>130   | 80<br>80         | 90.5<br>90.5 |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 16.3         | Б<br>Б                                                                                      | 225          | 180              | 130          | 80               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 16.4         | Б                                                                                           | 225          | 180              | 130          | 80               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 16.6<br>16.8 | Б<br>Б<br>Б                                                                                 | 225<br>225   | 180<br>180       | 130<br>130   | 80<br>80         | 90.5<br>90.5 |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 17           | Б                                                                                           | 230          | 185              | 135          | 85               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 17.1         | $\bar{B}$                                                                                   | 230          | 185              | 135          | 85               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 17.3<br>17.6 | Б<br>Б<br>Б                                                                                 | 230          | 185              | 135<br>135   | 85<br>85         | 90.5<br>90.5 |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 18           | Б                                                                                           | 230<br>235   | 185<br>190       | 140          | 90               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 18.3         | Б                                                                                           | 235          | 190              | 140          | 90               | 90.5         |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 18.6         | A; E                                                                                        | 235          | 190              | 140 90       |                  | 90           |                                 |                 |  |  |  | 90   | 90      |  |  | 90.5 | Форма А<br>Туре А |  |
| 18.8         | A; E                                                                                        | 00"          | 400              | 140          |                  |              |                                 |                 |  |  |  | 90.5 | d - 0.8 |  |  |      |                   |  |
| 18.8         | A; b                                                                                        | 235          | 190              | 140          | 90               | 90.5         | Форма <i>Б</i><br>Туре <i>Б</i> |                 |  |  |  |      |         |  |  |      |                   |  |
| 19           | Б                                                                                           | 265          | 220              | 145          | 95               | 113          | D - 0.8                         |                 |  |  |  |      |         |  |  |      |                   |  |
| 19.1         | Б                                                                                           | 265          | 220              | 145          | 95               | 113          | d-1                             | Mopae<br>№ 3    |  |  |  |      |         |  |  |      |                   |  |
| 19.3         | Б                                                                                           | 265          | 220              | 145          | 95               | 113<br>113   |                                 | Morse           |  |  |  |      |         |  |  |      |                   |  |
| 19.6<br>20   | Б                                                                                           | 265<br>270   | 220<br>225       | 145<br>150   | 95<br>100        | 113          |                                 | No. 3           |  |  |  |      |         |  |  |      |                   |  |
| 20.3         | Б                                                                                           | 270          | 225              | 150          | 100              | 113          |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 20.4         | Б                                                                                           | 270          | 225              | 150          | 100              | 113          |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 20.6         | Б                                                                                           | 270<br>270   | 225<br>225       | 150<br>150   | 100<br>100       | 113<br>113   |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 20.8         | Б                                                                                           | 270          | 225              | 150          | 100              | 113          |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 21           | Б                                                                                           | 275          | 225              | 155          | 100              | 113          |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 21.6<br>21.7 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 275<br>275   | 225<br>225       | 155<br>155   | 100<br>100       | 113<br>113   |                                 |                 |  |  |  |      |         |  |  |      |                   |  |
| 21.8         | Б                                                                                           | 275          | 225              | 155          | 100              | 113          |                                 |                 |  |  |  |      |         |  |  |      |                   |  |



Размеры в мм — Dimensions in mm

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | газмер                                                                                                                             | ы в мм                                                                               | Dimension                                                                                                                                | is in mm                                                                                                                          |                                                                                                                                          |                                                                                                                                  |                                                                    |                                              |                 |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-----------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                                                    | Фоли                                                                                 |                                                                                                                                          | L                                                                                                                                 |                                                                                                                                          | l <sub>o</sub>                                                                                                                   |                                                                    | 1                                            | 70              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | d                                                                                                                                  | хвоста<br>Туре of                                                                    | длин-<br>ных<br>long                                                                                                                     | укоро-<br>ченных<br>short                                                                                                         | длин-<br>ных<br>long                                                                                                                     | укоро-<br>ченных<br>short                                                                                                        | l <sub>2</sub>                                                     | $d_1$                                        | хвоста<br>Shank |
| 29                                                     | 22, 32, 6<br>23, 23, 5<br>23, 6<br>23, 7<br>24, 7<br>24, 8<br>25, 3<br>25, 6<br>26, 1<br>27, 8<br>27, 8<br>27, 9<br>28, 3<br>29, 2 | E<br>A; E<br>A; E<br>A; E<br>A; E<br>A; E<br>A; E<br>B<br>E<br>E<br>E<br>E<br>E<br>E | 280<br>280<br>285<br>285<br>290<br>290<br>290<br>290<br>290<br>295<br>295<br>295<br>295<br>300<br>300<br>305<br>335<br>335<br>346<br>346 | 230<br>230<br>230<br>230<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>235<br>240<br>240<br>260<br>260<br>265<br>265<br>265 | 160<br>160<br>160<br>165<br>165<br>170<br>170<br>170<br>170<br>170<br>175<br>175<br>175<br>180<br>180<br>185<br>185<br>185<br>190<br>190 | 105<br>105<br>105<br>105<br>105<br>108<br>108<br>108<br>108<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>11 | 113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113 | D-1  Форма A Туре A d-1 Форма B Туре B D-1.2 | Morse<br>No. 3  |

- 1. Сверда с коническим хвостом изготовляются с длинной или укороченной рабочей частью.
- 2. Сверла с хвостом формы A могут быть изготовлены с канавкой для выхода шлифовального круга согласно рисунку.



| d         | Конус<br>хвоста | а       | b   |
|-----------|-----------------|---------|-----|
| 18,6-18,8 | Морзе № 2       | 0,3-0,4 | 3,0 |
| 24,6-27   | Морзе № 3       | 0,5-0,6 | 3,0 |


Сверла изготовляются с винтовыми канавками.
 По требованию заказчика допускается изготовление сверл с прямыми канавками.

- 4. Пластинки твердого сплава формы 14 и размеры их по ГОСТ 2209-49.
- 5. Назначение сверл по диаметрам см. "Таблицу назначения сверл",
- стр. 42. 6. Обозначение сверла типа II с длинной рабочей частью диаметром 20 мм, оснащенного пластинками из твердого силава ВК:

 $20~\mathrm{BK}$  II  $\Gamma\mathrm{OCT}$  6647--53

То же, с укороченной рабочей частью: У 20 ВК И ГОСТ 6647-53

- 1. Taper shank drills are made with both long and short length of twist.
- 2. Drills with A type of shank may be made with a recess providing a way for the grinding wheel according to sketch.



Dimensions in mm

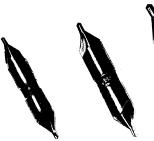
| d         | Taper shank | а      | ь   |
|-----------|-------------|--------|-----|
| 18.6—18.8 | Morse No. 2 | 0.30.4 | 3.0 |
| 24.6—27   | Morse No. 3 | 0.50.6 | 3.0 |

- Drills are made with helical flutes. On customer's demand drills may be furnished with straight flutes.
   For carbide tips of type 14 and their dimensions see GOST 2209-49.
- 5. For application of drills in accordance with drill diameter see table on
- page 42.

  6. Designation of type II taper shank drill with long length of twist tipped with cemented carbide BK, 20 mm diameter:

20 BK II GOST 6647-53

Same with short length of twist: У 20 ВК II GOST 6647-53




#### СВЕРЛА ЦЕНТРОВОЧНЫЕ $60^\circ$ КОМБИНИРОВАННЫЕ ДЛЯ ЦЕНТРОВЫХ ОТВЕРСТИЙ БЕЗ ПРЕДОХРАНИТЕЛЬНОГО КОПУСА (no OCT 3732)

#### $60\,^{\circ}$ combined drills and countersinks

(acc. to OST 3732)

Материал: быстрорежущая сталь Material: high speed steel

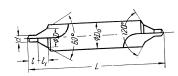




| d               | $d \qquad D_0 \qquad L$ |          |            |  |  |
|-----------------|-------------------------|----------|------------|--|--|
| 1               | 5                       | 45       | 1.8        |  |  |
| 1.5<br>2<br>2.5 | 7<br>8                  | 50<br>55 | 2.6<br>3.4 |  |  |
| 3               | 10<br>12                | 60<br>65 | 4.2<br>5   |  |  |
| 4<br>5          | 14<br>18                | 75<br>90 | 6.5        |  |  |
| 6               | 22                      | 105      | 8<br>9.5   |  |  |

Обозначение центровочного комбинированного сверла для центрового отверетия по ОСТ 3725 диаметром d=2.5 мм:  $60\,^{\circ}\times2.5$  OCT 3732

Designation of 60° combined drill and coutersinks for center hole acc. to OST 3725, d=2.5 mm:  $60^{\circ} \times 2.5$  OST 3729  $60\,^{\circ}\times 2.5$  OST 3732


сверла центровочные 60° комбинированные для центровых отверстий с предохранительным конусом

(по ОСТ 3733)

 $60\,^{\circ}$  protected center combined drills and countersinks

(acc. to OST 3733)

Материал: быстрорежущая сталь Material: high speed steel



Размеры в мм — Dimensions in mm

| d   | $D_0$ | D    | L   | ı   | l <sub>1</sub> |
|-----|-------|------|-----|-----|----------------|
| 1   | 5     | 2.5  | 45  | 1.8 | 1.3            |
| 1.5 | 7     | 4    | 50  | 2.6 | 2.2            |
| 2   | 8     | 5    | 55  | 3.4 | 2.6            |
| 2.5 | 10    | 6    | 60  | 4.2 | 3              |
| 3   | 12    | 7.5  | 65  | 5   | 3.9            |
| 4   | 14    | 10   | 75  | 6.5 | 5.2            |
| 5   | 18    | 12.5 | 90  | 8   | 6.5            |
| 6   | 22    | 15   | 105 | 9.5 | 7.8            |

Обозначение центровочного комбинированного сверла для центрового отверетия с предохранительным конусом по ОСТ 3725 диаметром d=2.5 мм: СО  $\times$  2.5 ОСТ 3733  $60^{\circ}\times2{,}5$  OCT 3733

Designation of 60° protected center combined drill and countersink for center hole acc. to OST 3725,  $d=2.5~\mathrm{mm}$ :

 $60\,^{\circ} \times 2.5$  OST 3733

станкои



# TABLE OF APPLICATION OF TWIST DRILLS (acc. to GOST 885-41) Induced in Nin - Dimensions in mm

|                 |                                                 | 1                                                                                                                                                                     |                 | Tpy6uyto<br>Pipe thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1   | 1    | 1    | ı   | 1   | 1   | 1   | 1    | i   | 1    | -        | i    | i   | 1    | i   | 1   | -    | 8.8  |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|------|-----|-----|-----|-----|------|-----|------|----------|------|-----|------|-----|-----|------|------|
|                 |                                                 |                                                                                                                                                                       |                 | Jiofi-<br>Mobyio<br>Snglish<br>thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H     | 1   | 1    | 1    | 1   | 1   | 1   | 1   | 1    | 1   | 1    | 1        | 1    | 1   | 1    | i   | 1   | 1    | I    |
|                 |                                                 |                                                                                                                                                                       |                 | Aloff-<br>Mobylo<br>English<br>thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     | 1   | I    | 1    | 1   | 1   | 1   | 1   | 1    | 1   | ı    | 1        | 1    | 1   | i    | 1   | 1   | 1    |      |
|                 | rills fo                                        |                                                                                                                                                                       | ş səi.          | 4-10 Menury10<br>Metric fine thread, ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1   | 1    | 1    | 1   | ı   | 1   | l   | 1    | 1   | 1    | I        | ı    | 1   | 1    | ı   | I   | 1    | ĺ    |
|                 | Сверление под резьбу — Tap drills for           |                                                                                                                                                                       |                 | 3-10<br>Metric fine<br>thread,<br>series 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 11 |     |      | 1    | 1   | 1   | 1   | 1   | 1    | 1   | 1    | 1        | 1    | 1   | 1    | 1   | !   | i    | 1    |
|                 | под резьбу                                      |                                                                                                                                                                       |                 | 2-10 Metric fine M thread, series 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | п     | 1   | 1    | 1    | 1   | ı   | 1   | 1   | 1    | i   | 1    | 1        | 1    | 1   | ı    | 1   | 1   | 1    | i    |
|                 | ние                                             |                                                                                                                                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | -   | . 1  | ı    | 1   | 1   | 1   | I   | 1    | 1   | 10   |          | 10   | 1   | 1    | 1   | 1   | 10   | 1    |
| so.             | верле                                           | i                                                                                                                                                                     |                 | 1-10<br>MeJRY10<br>etric fine<br>thread,<br>series 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н     |     | 0.8  | 1.0  | 1   | 5.  | I   | i   | 1.5  | 1   | 1.75 | 1        | 2.05 | ì   | 2.25 | I   | ì   | 2.65 | 1    |
| meter           | . 0                                             |                                                                                                                                                                       |                 | 1-10<br>Meary 10<br>Metric fine<br>thread,<br>series 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н     | 1   | 8.0  | 1.0  | 1   | 1.5 | 1   | -   | 1.5  | 1   | 1.75 | 1        | 2.05 | l   | 2.25 | ì   | 1   | 2.65 |      |
| Drill diameters |                                                 |                                                                                                                                                                       |                 | ad day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =     | 1   | 0.75 | 0.95 | ļ   | 1.  | I   | 1   | 1.35 | ĺ   | 1.6  | I        | 1.9  | 1   | 2.15 | 1   | 1   | 2.5  | 1    |
| l Dri           |                                                 | Основи.<br>метрич.<br>Metric<br>Lhread                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н     | 1   | 0.75 | 0.95 | I   | 1.1 | i   | I   | 1.35 | I   | 1.6  | ŀ        | 1.9  | 1   | 2.15 | İ   | I   | 2.5  | Į    |
| Диаметры сверл  | -11                                             | Obephenne noz zeurep — Drills leav-<br>ing a stock in hole for counterboring<br>Caepneune noz unu man-<br>tom unv yzertege z stock in<br>hole for reaming or grinding |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1   | 1    | 1    | 1   | i   | 1.4 | 1   | 1    | 1.7 | 1.9  | 2.1      | I    | 2.4 | 1    | i   | 2.2 | 5.9  | 1    |
| метр            |                                                 |                                                                                                                                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1   | 1    | í    | 1   | 1   | 1   | 1   | -    | 1   | ì    | 1        | 1    | 1   | 1    | 1   | î   | 1    | 1    |
| Дия             |                                                 |                                                                                                                                                                       |                 | ernuruM<br>ednifq&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1.0 | 1    | I    | 1.5 | 1   | 1   | 1   | 1    | 5.0 | i    | 24<br>75 | 1    | 1   | I    | 3.0 | 1   | i    | 1    |
|                 | 50                                              | e <u>&gt;</u>                                                                                                                                                         | lass 2          | Заклепип<br>Rivets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1   | I    | 1    | 1   | 1   | i   | I   | į    | I   | I    | ł        | 1    | 1   | i    | 1   | 1   | 1    | I    |
|                 | drillir                                         | сборк                                                                                                                                                                 | 2-n-Class 2     | nnannum, untitutioni, untitutioni, untitutioni, untitutioni, untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and untilum and until |       | 1   | I    | I    |     | I   | ı   |     | ı    | 1   | ì    | I        | I    | 1   | ı    | ì   | I   | 1    | 1    |
|                 | rough                                           | Грубая сборка<br>Rough assembly                                                                                                                                       | ass 1           | инпепия8<br>Віуеія                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | ī   | 1    | ı    | l   | I   | I.  | 6.  | ì    | ı   | 2.3  | 1        | 5.6  | 1   | 0.8  | 1   | 1   | 3.5  | 1    |
|                 | - Th                                            | FE                                                                                                                                                                    | 1-n - Class 1   | rei, buarei, munneku<br>iolts, serews, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | ī   | 1    | 1    | ŀ   | 1   | Ī   | ŀ   | I    | 1   | 1    | 1        | 1    | 1   | !    | i   | ı   | I    | ı    |
|                 | поход                                           |                                                                                                                                                                       |                 | Ваклепип<br>В Ругета                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1   | 1.2  | 1    | 1   | 1.6 | L   | .8  | i    | ı   | 2.2  | ı        | 2.5  | i   | 5.8  | i   | 1   | 3.3  | <br> |
|                 | те па т                                         | сборка<br>embly                                                                                                                                                       | 2-n - Class 2   | th, butth, mnnahkn<br>olts, screws, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1   | 1.3  | 1.5  | ı   | 1.7 | i   | l   | 0    | ı   | 5.4  | ı        | 5.8  | ı   | 3.15 | 1   | ī   | 3.5  | 1    |
|                 | Сверление на проход — Through drilling          | Точная сборка<br>Fine assembly                                                                                                                                        | 1-n - Class 1 2 | Заклепип<br>Віуеіз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1   | 77   | ı    | ı   | 1.5 | 1 3 | 1.7 | I    | 1   | 2.1  | ı        | 2.4  | 1   | 2.7  |     | ı   | 3.15 | 1    |
|                 | _                                               | ĺ                                                                                                                                                                     | 1-8             | rd, buhth, mnnakkn<br>olts, serews, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1   | 2    | 1.3  | 1   | 1.6 | ı   | I   | 1.9  | I   | 57   | 1        | 2.5  | I.  | 8.   | ı   | 1   | 3.5  | 1    |
|                 | водтэмвил дяд йынапланимоН<br>глэ1этвір fanimoV |                                                                                                                                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |      |      |     | 1.4 |     | 9.0 | 1.7  | 8.  | 0.0  | 7:7      |      | 5.5 | 5.6  | 2.7 | 8.7 | 3.0  | 1/8  |

| 111.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 111112333377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 13.5<br>11.55<br>11.55<br>11.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 10.25<br>11.22<br>11.22<br>11.22<br>11.22<br>11.22<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 11.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 20.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 3.15<br>4.5<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6<br>1.0.6 |     |
| 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3   1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 2.5<br>2.5<br>3.3<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   |
| 22.1.6.6.6.6.6.7.8.2.2.1.6.6.6.7.8.2.2.2.1.6.6.6.7.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 11.11.11.11.11.11.11.11.11.11.11.11.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1111   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 6.1.2.5.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5.3.8<br>5. | 1   |
| $\begin{array}{c} 8.8 \\ 5.5 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\$                                                                                                                                                                                                                                         | 1   |
| 0   40   620   62   62   82   82   62   62   63   64   64   64   64   64   64   64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
| 3.6 6.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |
| 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ī   |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33  |
| 28.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c,i |

ста н кои м порт



45

44

Размеры в мм — Dimensions in mm

| ľ |                                  |                       | T                               |               | Pipe thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | П       | -    | 30.5     | 1    | 1    | 1    | 5.2  | 1    | 1     | 1                                       | 39.2  | 1      | 1    | 1     | 9.1 | 1    | 1       | 1    | 1      | 45.1 | ī            |
|---|----------------------------------|-----------------------|---------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------|----------|------|------|------|------|------|-------|-----------------------------------------|-------|--------|------|-------|-----|------|---------|------|--------|------|--------------|
| I |                                  |                       | -                               |               | Трубную                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         | -       |      |          | -    |      | _    |      |      | -     |                                         | 93,   | -      |      |       | 7   | ÷    |         |      |        |      | ·            |
| 1 |                                  |                       |                                 |               | Дюй-<br>мовую<br>English<br>thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F         | L       | _    | 22       |      | 1    |      | 24.7 |      | 1     |                                         | 27.   | 1      | 1    | 1     | 1   | 1    |         |      |        | 33.5 | 1 -          |
| 1 |                                  | Ŀ                     |                                 |               | Eng Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н         |         | 1    | 21.9     | 1    | 1    | 1    | 24.6 | 1    | I     | 1                                       | 27.8  | I      | 1    | 1     | 1   | l    | İ       | 1    | 1      | 33.4 | I            |
| l |                                  | - Tap drills for      |                                 | səi           | 4-ю мелиую<br>еtric fine thread, ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W         | 1       | 1    | i        | 1    | 1    | 1    | 1    | I    | 1     | 1                                       | I     | 1      | 1    | 1     | I   | 1    | 1       | 1    | 1      | 1    | 1            |
|   |                                  | rap d                 | 1                               |               | o<br>yo<br>r fine<br>ad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ħ         | ı       | i    | I        | 1    | ŀ    | 1    | I    | 1    | I     | I                                       | ì     | I      | l    | ١     | I   | I    | I       | I    | i      | I    | l            |
|   |                                  | ,<br>1                |                                 |               | 3-to<br>Mearic fine<br>thread,<br>series 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н         | 1       | 200  | ı        | 1    | I    | I    | 1    | ı    | I     | 1                                       | 1     | 1      | ١    | I     | 1   | 1    | 1       | 1    | 1      | I    | ı            |
|   |                                  | pear                  |                                 |               | g Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н         | 8 66    | 1    | 1        | 1    | 25.3 | 1    | 1    | 1    | 28.3  | 1                                       | 1     | 1      | 31.3 | 1     | 1   | 1    | 33.7    | ļ    | 1      | 1    | 36.7         |
|   | İ                                | Сверление под резьбу  |                                 |               | 2-to<br>Metric fine<br>thread,<br>series 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H         | 8 66    |      | 1        | 1    | 5.3  | 1    | 1    |      | 28.3  | ï                                       | 1     |        | 31.3 | ı     | ŀ   | 1    | 33.7    | l    | ı      |      | 36.7         |
|   |                                  | лени                  | -                               |               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1         | 8 1.6   |      | 1        | 1    | 8.4  | 1    | 1    | 1    | 7.8   | 1                                       | 1     |        | 30.8 | 1     | 1   | ı    | 32.7    | ı    | 1      |      | 35.7         |
|   | ters                             | CBeI                  |                                 |               | 1-to<br>Metric fine<br>thread,<br>series 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         | 21.7 9  |      | 1        |      | 1.7  |      |      | -    | 7.7 2 | 1                                       | 1     |        | .7   | 1     | 1   |      | 32.6 3  | 1    | 1      |      | 35.6         |
|   | liame                            |                       | -                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 20.7 27 |      |          |      | 7 2  |      | ÷    |      | 1.2   |                                         |       |        | 3    |       |     |      |         |      | ŀ      |      |              |
|   | Drill                            |                       |                                 |               | Ocnobn.<br>Metric<br>thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F         |         |      |          | -    | 23   |      |      |      | 56.   |                                         | 1     |        | 29.5 |       |     |      | \$ 31.6 |      |        |      | 34.6         |
| l | ]                                |                       | 9                               | ATT. 1.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | 20.6    |      | 1        | -    | 23   | 1    | !    | 1    | 56    | -                                       | 1     | 1      | 29   | -     | 1   | 1    | 31.4    | 1    | 1      |      | 34.4         |
|   | свер                             | u;<br>-#              | 100k                            | 3 S           | aehne nog passeprey<br>17 — Drills leaving<br>10le for reaming or g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MORE      | 23.6    | 24.6 | 1        | 25.6 | 26.6 | 27.6 | I    | 28.6 | 29.6  | I                                       | 1     | 31.5   | 32.5 | 33.5  | I   | 34.5 | 35.5    | 36.5 | 37.5   | 1 8  | 38.0         |
|   | Диаметры сверл — Drill diameters | 31                    | rborir                          | əjur          | нение под зенкер —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Sui     | 9,13    | 22.6 | 1        | 53.6 | 9.77 | 52.6 | 1    | 56.6 | 2.6   | 1                                       |       | g.     | 30   | =     | i   | 61   | 33      |      |        | 1 9  |              |
|   | Диам                             |                       |                                 |               | atharoM<br>stailg2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 1       | 1    | 1        | 1    | 1    | 1    | 1    | · ·  |       | 1                                       | ï     |        | 1    | 1     | 1   | -    | 1       |      | ლ.<br> | : .° |              |
|   | İ                                |                       |                                 | 2 881         | Заклепки<br>Rivets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Politica  | 1       | 1    | 1        | -    | 1    | 1    | 1    | 1    | 1     | 1                                       | 1     | 1      | <br> | 1     | 1   | 1    | 1       | ı    | 1      | 1    | 1            |
|   | .                                | lling                 | Грубая сборка<br>Rough assembly | 2-H-Class 2   | olis, serews, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 58      | 1    | 31       | 1    | 35   | 1.   | 32   | 1    | 36    | 1.5                                     | 37    | 13     | 38   | 1:    | -   | 1    | 01      | ì    |        |      |              |
|   |                                  | th dr                 | ая cб<br>л asse                 |               | Rivets<br>и, винты, шпильки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rrod      |         |      | 00       |      | e.   |      | e    |      | 00    |                                         |       |        |      |       | 3   |      | -       |      |        | - :  | <del>-</del> |
|   |                                  | Through drilling      | Ppy6<br>Rougi                   | - Class 1     | Заклепки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 1       | 27   | 1        | 1    | 1    | 8    | 1    | 1;   | 35    | 8                                       | 1     | l      | 1 ;  | 36    | 1   | ŀ    | 1 :     | 33   | 1      | 1    | 1            |
| l | .                                | 1                     |                                 | 1-1           | el, buhtel, mnnaben<br>olts, screws, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrod<br>B | 26      | 1    | 58       | I    | 65   | 1;   | 33   | 1;   | 35    | L)                                      | 35    | 1 ;    | 36   | L     | 33  | i    | 40      | I    | 1:     | 7    |              |
| l |                                  | Сверление на проход — |                                 | ass 2         | инпепив5<br>гругія                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 1       | 56   | ı        | ı    | 13   | 53   | ı    | 1;   | 22    | 37                                      | ı     |        | 13   | 22    | 1   | 1    | 18      | 28   | ı      | 1    | 1            |
|   |                                  | ma n                  | Точная сборка<br>Fine assembly  | 2-n - Class 2 | ra, buhta, mnnaku<br>olts, serews, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B. B.     | 25      | 1    | 22       | 1    |      | 13   | 35   | 1;   | -     | 18                                      |       | <br>L: | <br> | 1 !   | 2   | 1    | 38      | 1    | 1.5    | 9 9  | 2            |
|   | -                                | ление                 | asse                            |               | Rivers Harring Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOH       |         |      |          |      |      |      |      |      |       |                                         |       |        |      |       |     |      |         |      |        |      |              |
|   | -                                | Свер                  | Tour<br>Fine                    | - Class 1     | Заклепки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |         | 56   | -        | -    | 18   | 54   | 1    | 1 8  | 5 6   | 32                                      | l<br> | 1      | ;    | ň     | 1   |      | 1 8     | Š    | 1      | l    |              |
| L | l                                |                       |                                 | 1-1           | ra, britta, mnundru<br>olts, screws, pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nod<br>R  | 24.6    | 1    | 56       | 1    | 28   | ١    | 30   | ١,   | 3.    | ١                                       | 23    | ١      | 7,0  | ١,    | 36  | 1    | 3       | 1    | ا      | 60   | 2            |
| 1 |                                  | 80                    |                                 |               | дяц йынапанимоН<br>nsib lanimoV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | · ·  | <u>.</u> | 9    |      | 2    | 8/,1 |      |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | / 1   | N 4    | n -  | , , , | 8/  | _    | ٠.      | _    |        |      | _            |
| ட |                                  |                       |                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 24      | 2    |          | 2    | 25   | Ń    |      | N    | 000   | ຕໍ                                      | č     | 9 6    | 3    | ຕໍ່   |     | 0    | 38      | 'nċ  | ຈັ"    | č    | ó            |

| 1    | 1    |      | 1    | ž.   | 1     | 1    | I    |                  | 1    | Mode | 1    | -     |
|------|------|------|------|------|-------|------|------|------------------|------|------|------|-------|
| 1    | 1    | ı    | 1    | 39   | 1     | 1    | ļ    | 41.5             | 1    |      | 44.7 | 1     |
| 1    | 35.8 | I    | ļ    | 38.9 | 1     | 1    | 1    | 41.4             | 1    | 1    | 64.6 | I     |
| İ    | 35.7 | 1    | l    | 1    | J     | ı    | 1    | I                | 1    | I    | I    | 1     |
|      | I    | 1    | 1    | I    | I     | I    | I    | 1                | 1    |      | 1    | 1     |
| 1    | 1    | 1    | 1    | I    | 1     | 1    | I    | 1                | 1    | 1    | 1    |       |
| 1    | 1    | 39.7 | 1    | 1    | 42.7  | 1    | I    | 1                | 45.7 | 1    | 1    | 49.7  |
| 1    | 1    | 39.7 | I    | ı    | 42.7  |      | l    | 1                | 45.7 | i    | 1    | 49.7  |
| 1    | 1    | 38.7 | I    | 1    | 41.7  | 1    | 1    | I                | 44.7 | 1    | 1    | 48.7  |
| 1    | 1    | 38.6 | 1    | ı    | 41.6  | i    |      | Ī                | 44.6 | 1    | I    | 48.6  |
| 1    | 1    | 37   | 1    | I    | 07    |      | 1    | 1                | 42.4 | I    | I    | 4.6.4 |
| 1    | [    | 36.8 | 1    | ı    | 83.8  | I    | 1    | 1                | 42.2 | 1    | 1    | 46.2  |
| 39.5 | 1    | 41.5 | 43.5 | 1    | 6.4.5 | 45.5 | 46.5 | 1                | 47.5 | 2.67 | 1    | I     |
| 37   | 1    | 33   | 71   | 1    | 42    | 43   | 7,7  | 1                | 45   | 6    | 1    | 200   |
| 1    | 1    | 1    | 1    | 1    | 1     | I    | 1    | 1                | 1    | 1    | 1    | 1     |
| I    |      | 1    | 1    | İ    | I     | İ    | 1    | I                | 1    | -    | 1    | I     |
| 1    | 84   | 84   | I    | 25   | 25    | I    | I    | 33               | 26   | I    | 62   | 62    |
| l    | 1    | 1    | ı    | 1    | 1     | I    | I    | I                | 1    | 1    | 1    | 1     |
| ı    | 97   | 9*7  | I    | 20   | 20    | ï    | 1    | 24               | 27   | 1    | 28   | 09    |
| 1    | I    | 1    | I    | I    | I     | I    | l    | I                | [    | ı    | I    | 1     |
| ı    | 7,1, | 44   | I    | 97   | 94    | I    | I    | 20               | 20   | 1    | ŝ    | 54    |
| 1    | 1    | i    | 1    | 1    | 1     | 1    | 1    | 1                | 1    | 1    | Ī    | 1     |
| I    | 42.5 | 43   | I    | 97   | 97    | I    | ı    | 20               | 20   | I    | 23   | 54    |
|      | 8    | ~1   | _    | `.,  |       |      |      | `.<br> <br> <br> | 85   | _    | ž.   |       |

4. В "Таблицу пазначения сверат въдочены диа-метры панболее часто применяемых сверл,

2. В графе "Помпнальный ряд днаметров" указаны днаметры: а) для болгов, вингов и линстем — паруживый дивметр ревъбы: по ОСТ ИКТИ 32, ОСТ ИКТИ 95 и ОСТ ИКТИ 1260;

 гля ревьб — поминальный диамотр ревьбы;
 для основной метрической:— по ОСТ ИНТИ 32
 и ОСТ ИКТИ 97; для 1-й метьой — по ОСТ ИКТИ 221; для 1-й метьой — по ОСТ ИКТИ 222 и ОСТ ИКТИ 96; для 3-й метьой по ОСТ ИКТИ 4129; для 4-й метьой — по ОСТ ИКТИ 4121; для дыймовой — по ОСТ ИКТИ 1260 и для трубной по ОСТ ИКТИ 266-40. 6) дли закленок — диаметр d пеноставленной закления по ГОСТ 1187–41 — 1195–41; в) для индинтов — днаметр d по  $\Gamma O(\Upsilon 397-41;$ 

1. The "Table of Application of Twist Drills" includes the most common drill diameters used in practice.

 a) for bolts, screws and pins—the major diameter of thread according to OST NKTP 32, OST NKTP 94 and OST NKTP 1260; 2. Column "Nominal diameters" shows:

b) for rivets — the diameter of rivet d acc. to GOST 1187-41 to 1195-41; c) for splints — the diameter d acc. to GOST 397-41;

d) for threads — the nominal thread diameter:
Metric thread arc, to OST NKTP 22 and OST
NKTP 94; Metric fine thread, series 1 acc. to
OST NKTP 271; Metric fine thread, series 2 acc.
to OST NKTP 272 and OST NKTP 94; Metric
fine thread, series 3 acc. to OST NKTP 4120;
Metric fine thread, series 4 acc. to OST NKTP
4121; English thread acc. to OST NKTP 1260;
pipe thread acc. to OST NKTP 1260;

- 3. В графах "Точная сборка" указаны диаметры сверт, предназначаемых для точной механики и приборостроения (сборка 4-и) и для машиностроения, станкостроения и т.д. (сборка 2-и).
- 4. В графах "Грубая сборка" указаны днаметры сверл, предназначаемых как для машиностросния, так и для других отраслей промышленности.
- В графе "Сверление под зенкер" указаны днаметры сверл, предназначаемых для выполнения отверстий сверлом и зенкером, или сверлом, зенкером и разверткой.
- 6. В графе "Сверление под развертку или индифовку" указаныя диаметры, свера, предназначаемых для выполнении отверстий сверлом и развертной или сверлом с последующей илифовкой.
- 7. В графах "Сверление под резьбу" указаны днаметры сверд, предназначаемых дли сверления в материалах, не даноних большого подъема витна резьбы (1), и в материалах, даноних повышенный подъем резьбы (1).
- подрем резоова (11).

  8. Отверстии под метрические ревьбы, 1-ю и 2-ю мелкие, начиная с диаметра 24 мм и выше, а тикже вес отверстии под 3-ю и 4-ю метрическое выполняются чистовым рассвердиванием после сверьницы.

- Column "Fine assembly" gives diameters of drills designed for the precision engineering and instrument making industries (class 1) and for the mechanical engineering, machine tool and other industries (class 2).
- 4. Column "Rough assembly" gives diameters of drills designed for the mechanical engineering and other branches of industry.
- 5. Column "Drills leaving a stock in hole for counterboring" shows diameters of drills designed for holes to be machined either with a drill and counterbore or with a drill, counterbore and reamer.
- 6. Column "Drills leaving a stock in hole for reaming or grinding" shows diameters of drills designed for holes to be machined either with a drill and reamer or with a drill and next grinding.
- 7. Column "Tap drills" shows diameters of drills designed for drilling either in metals which do not flow enough (1) or in metals with a considerable flow (11).
- 8. Holes larger than 24 mm in diameter for Metric thread and fine Metric threads, series 1 and 2 as well as all holes for fine Metric threads, series 3 and 4, are machined either with two drills or with a counterbore after drilling.

#### В СЕ СОЮЗНОЕ ЭК СПОРТНО-ИМПОРТНОЕ ОБЪЕДИНЕНИЕ

## "СТАНКОИМПОРТ"

ЭКСПОРТИРУЕТ И ИМПОРТИРУЕТ:

Металлорежущие станки Деревообрабатывающие станки Кузнечно-прессовое оборудование Прокатное оборудование (импорт) Измерительные приборы и инструменты Приборы и машины для испытания металлов Оптические приборы и инструменты Ручной электрический и пневматический инструмент Режущий инструмент по металлу и дереву Слесарно-монтажный инструмент и зажимные патроны Изделия из твердых сплавов Абразивные изделия Шариковые и роликовые подшипники Микроскопы различных типов Кинооборудование и киноаппаратуру Геодезические приборы и инструменты Фотоаппаратуру, бинокли, лупы, линзы Сырое оптическое стекло

С запросами на все товары, относящиеся к номенклатуре В/О "Станкопмпорт", и за дополнительными сведениями просим обращаться по адресу:

Москва, 200, Смоленская-Сенная пл., 32/34

## всесоюзное экспортно-импортное объединение "СТАНКОИМПОРТ"

Телеграфный адрес: Москва Станкоимпорт

Конструкции и технические характеристики инструмента, приведенного в каталоге, могут быть изменены без дополнительной. информации



#### V S E S O J U Z N O J E EXPORTNO - I M P O R T N O J E O B J E D I N E N I J E

#### "STANKOIMPORT"

#### EXPORTS AND IMPORTS:

Machine Tools Woodworking Machinery Metal Working Machinery Rolling Mills (imports) Measuring Instruments and Apparatus (for metal industry) Testing Machines and Instruments (for metals) Optical Instruments and Equipment Portable Electric and Pneumatic Tools (for metal and woodworking)
Metal and Wood Cutting Tools
Mechanic's Tools and Chucks Sintered Carbide and Hard-Alloy Products Abrasive Products Ball and Roller Bearings Microscopes of all types Motion Picture Equipment and Accessories Geodetic Instruments and Equipment Photographic Cameras

All inquiries and correspondence to be forwarded to:

Binoculars, Magnifiers, Lenses Crude Optical Glass Blocks and Blanks

# VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE "STANKOIMPORT"

32/34, Smolenskaja-Sennaja pl., Moscow, U.S.S.R. For cables: Stankoimport Moscow

. Design and specifications of the tools illustrated herein are subject to change without notice

Заказ № 2434. Внешторгиздат

всесоюзное объединение

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

# НАПИЛЬНИКИ НАДФИЛИ РАШПИЛИ

FILES NEEDLE FILES RASPS

сср 📆

москва

## СОДЕРЖАНИЕ CONTENTS

#### Запильники

| Напильники                                              |      |
|---------------------------------------------------------|------|
| Files                                                   | Стр. |
| Іапильники илоские тупоносые  Hand files                |      |
| Langua much manerine nermonociae                        |      |
| Flat files                                              | 13   |
| Square files                                            | 19   |
| Iапильники трехгранные Three-square files               | 25   |
| lanuльники круглые<br>Round files                       | 31   |
| łапильники полукруглые Half-round files                 | 37   |
| lanuльники ромбические Lozenge files                    | 43   |
| Iапильники ножовочные Knife files                       | 46   |
| Надфили                                                 |      |
| Needle Files                                            |      |
| Іадфили плоские тупоносые Equaling needle files         | 50   |
| Тадфили илоские остроносые<br>Flat needle files         | 51   |
| Тадфили квадратные<br>Square needle files               | 52   |
| Надфили трехгранные Three-square needle files           | 53   |
| Тадфили трехгранные односторонние Barrette needle files |      |
| Надфили круглые<br>Round needle files                   |      |
| Падфили полукруглые Half-round needle files             |      |
| Налфили овальные                                        |      |
| Crossing needle files                                   |      |
| Lozenge needle files                                    |      |
| Knife needle files                                      | . 59 |
| Crochet needle files                                    | . 60 |
| Рашпили                                                 |      |
| Rasps                                                   |      |
| Рашинли полукруглые<br>Half-round rasps                 | . 62 |
| Panninani canowinie<br>Shoe rasps                       |      |
| Раниили конные<br>Horse rasps                           |      |
| Turrac rushs                                            | . 04 |

Поставляемые В О «Станкоимпортнапильники изготовлены из лучших сортов стали с соответствующей термической обработкой, что обеспечивает им отличную стойкость.

Напильники отвечают всем современным требованиям как в отношении геометрии режущих элементов, так и в отношении качества их отделки.

The Files and Rasps furnished by  $V/O \ll Stanko imports are manufactured of the best grades of carbon tool steel and undergo suitable heat treatment. This provides for long file life.$ 

Geometry of cutting elements and the finish of the files meet all up-to-date requirements.

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

# НАПИЛЬНИКИ

FILES

#### напильники плоские тупоносые

с насечкой № 1 (по ГОСТ 1465-53)

#### HAND FILES, No. 1 CUT

(acc. to (iOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                                                      |                                                    |                                          |                                         | ывмэ<br>nsin n                                       |                                                    | ž"                                                       | ω <sup>0</sup>                            | Число основных<br>насечек на 10 мм<br>длины                    |                                                    |                                                   |
|------------------------------------------------------|----------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| I.                                                   | b                                                  | h                                        | $h_1$                                   | 1                                                    | l <sub>u</sub>                                     | $l_1$                                                    | c                                         |                                                                |                                                    | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>125<br>150<br>200<br>250<br>350<br>400<br>450 | 12<br>15<br>18<br>22<br>26<br>30<br>35<br>40<br>45 | 3,5<br>4<br>5<br>6<br>8<br>9<br>10<br>11 | 2<br>2,5<br>3,5<br>5,5<br>6<br>6,5<br>7 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>25<br>25<br>30 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200<br>425 | 1,5<br>2<br>2,5<br>2,5<br>3<br>3,3<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 18<br>11<br>11<br>10<br>9<br>8<br>7<br>6          |

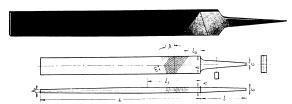
Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек лицроких сторон. Другая узкая сторона напильника не имеет насечен.

. По специальному заказу узкая сторона может изготовляться с двойной

2. Обоявачение илоского тупоносого нашильника с длиной рабочей части 150 мм. с насечкой  $\,N\!\!$  1:

Наинялы, илоск. тупон. 150 № 1 ГОСТ 4465-53.

- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.


   Designation of a hand file 150 mm working length, No. 1 cut:
  - Hand file 150 No. 1 GOST 1465-53.



#### напильники плоские тупоносые

с насечкой № 2 (по ГОСТ 1465-53)

HAND FILES, No. 2 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:

carbon steel

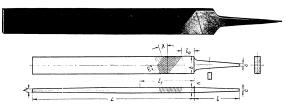
|                                                      |                                              |                                    | Размер<br>imensio             |                                               |                                                    | λ°                                                | න <sup>°</sup>                                      | Число основных<br>насечек на 10 мм<br>длины              |                                              |                                                   |
|------------------------------------------------------|----------------------------------------------|------------------------------------|-------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| L                                                    | b                                            | h                                  | $h_1$                         | l                                             | l <sub>0</sub>                                     | $l_1$                                             | c                                                   |                                                          |                                              | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400 | 12<br>15<br>18<br>22<br>26<br>30<br>35<br>40 | 3,5<br>4<br>5<br>6<br>8<br>9<br>10 | 2<br>2,5<br>3,5<br>5,5<br>6,6 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>20<br>25<br>25 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200 | 1,5<br>2<br>2<br>2,5<br>2,5<br>2,5<br>3<br>3<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>22<br>20<br>18<br>16<br>14<br>13      |

1. Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. Другая узкая сторона напильника не имеет насечек.

Но специальному заказу узкая сторона может изготовляться с двойной насечкой.

Обозначение илоского тупоносого напильника с длиной рабочей части 150 мм, с насечкой № 2;

Напильн, илоск, тупон, 150 ~%~2 ГОСТ 1465-53,


- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.
  - 2. Designation of a hand file,  $150\;\mathrm{mm}$  working length, No. 2 cut: Hand file 150 No. 2 GOST 1465-53.

напильники плоские тупоносые

с насечкой № 3 (по ГОСТ 1465-53)

HAND FILES, No. 3 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                                 |                           |                       | Размер<br>imensio         | λ°                         | ω°                         | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcu |                                    |                                  |                            |                              |
|---------------------------------|---------------------------|-----------------------|---------------------------|----------------------------|----------------------------|-----------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------|------------------------------|
| L                               | b                         | h                     | $h_1$                     | l                          | $l_0$                      | $l_1$                                                           | c                                  |                                  |                            | teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250<br>300 | 9<br>15<br>18<br>22<br>26 | 3<br>4<br>5<br>6<br>8 | 1,5<br>2<br>2,5<br>3<br>4 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20 | 33<br>50<br>67<br>83<br>100                                     | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25   |

1. Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. Другая узкая сторона напильника не имеет насечек.

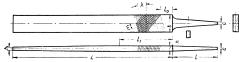
По специальному заказу узкая сторона может изготовляться с двойной насечкой.

2. Обозначение илоского тупоносого напильника с длиной рабочей части 450 мм, с насечкой N; 3:

Напильн. плоск. тупон. 150 № 3 ГОСТ 1465-53.

- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.
  - 2. Designation of a hand file, 150 mm working length, No. 3 cut: Hand file 150 No. 3 GOST 1465-53.




#### НАПИЛЬНИКИ ПЛОСКИЕ ТУПОНОСЫЕ

с насечкой № 4 (по ГОСТ 1465-53)

HAND FILES, No. 4 CUT

(acc. to GOST 1465-53)





Материал: углеродистая сталь

Material: ca

carbon steel

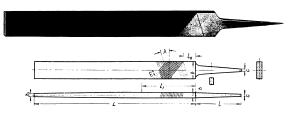
|                          |                     |                  | Размер<br>imensio    |                      |                      | λ°                   | ω°                     | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |                      |                              |
|--------------------------|---------------------|------------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------------------------------------------------|----------------------|------------------------------|
| L                        | b                   | h                | $h_1$                | l                    | l <sub>o</sub>       | $l_1$                | c                      |                                                                  |                      | teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250 | 9<br>15<br>18<br>22 | 3<br>4<br>5<br>6 | 1,5<br>2<br>2,5<br>3 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20                                       | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40         |

 Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек инпроких сторон. Другая узкая сторона напильника не имеет насечек.

Но енециальному заказу узкая сторона может изготовлиться с двойной насечкой.

2. Обозначение илоского тупоносого нацильника с длиной рабочей части 150 мм, с насечкой № 4:

Нашильи, илоск, тупон, 150 № 4 ГОСТ 1365-53,


- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.
  - 2. Designation of a hand file, 150 mm working length, No. 4 cut:
    Hand file 150 No. 4 GOST 1465-53.

напильники плоские тупоносые

с насечкой № 5 (по ГОСТ 1465-53)

HAND FILES, No. 5 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:

carbon steel

|                   |               |             | Pasmep<br>imensio |                |                |                |                 | λ°             | ω°             | Число основных<br>насечек на 10 мм<br>длины       |
|-------------------|---------------|-------------|-------------------|----------------|----------------|----------------|-----------------|----------------|----------------|---------------------------------------------------|
| L                 | ь             | h           | $h_1$             | l              | $l_0$          | $l_1$          | c               |                |                | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200 | 9<br>15<br>18 | 3<br>4<br>5 | 1,5<br>2<br>2,5   | 40<br>50<br>60 | 15<br>15<br>20 | 33<br>50<br>67 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56                                    |

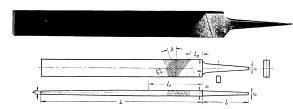
 Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. Другая узкая сторона напильника не имеет насечек.

По специальному заказу узкая сторона может быть изготовлена с двойной насечкой.

2. Обозначение илоского тупоносого напильника с длиной рабочей части 150 мм, c насечкой  $8^\circ$  5:

Нашилын, илоск, тупон, 150 № 5 ГОСТ 1465-53.

- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.
  - 2. Designation of a hand file, 150 mm working length, No. 5 cut: Hand file 150 No. 5 GOST 1465-58.




11

.

#### напильники плоские тупоносые с насечкой № 6 (по ГОСТ 1465-53)

HAND FILES, No. 6 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

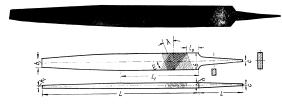
Material: carbon steel

|            |         |        | Размер<br>imensio |          |          |          |          | λ°       | ω°       | Число основных<br>насечек на 10 мм<br>длины       |
|------------|---------|--------|-------------------|----------|----------|----------|----------|----------|----------|---------------------------------------------------|
| L          | b       | h      | $h_1$             | ı        | $l_0$    | $l_1$    | c        |          |          | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150 | 9<br>15 | 3<br>4 | 1,5<br>2          | 40<br>50 | 15<br>15 | 33<br>50 | 1,5<br>2 | 20<br>20 | 55<br>55 | 80<br>71                                          |

1. Одна из узких сторов напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. Другая узкая сторона напильника не имеет насечек.

По специальному заказу узкая сторона может быть изготовлена с двойной насечкой.

2. Обозначение илоского тупоносого напильника с длиной рабочей части 150 мм, с насечкой  $\mathfrak{M}$  6:


Напильн. плоск. тупон. 150 № 6 ГОСТ 1465-53,

- Files have one single cut edge, the other being left safe (uncut). The number of teeth on edge is the same as the number of overcut teeth on the file sides. On special order files may be furnished with a double cut edge.
  - 2. Designation of a hand file, 150 mm working length, No. 6 cut: Hand file 150 No. 6 GOST 1465-53.

напильники плоские остроносые

с насечкой № 1

FLAT FILES, No. 1 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

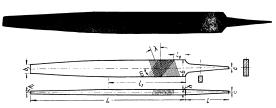
|                                                      |                                              |                                                | Разм<br>Dimen                             | еры в<br>sions in                  |                                                | λο                                           | ω <sup>0</sup>                                     | Число основных<br>насечек на 10 мм<br>длины |                                                          |                                              |                                                   |
|------------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| L                                                    | b                                            | $b_1$                                          | h                                         | $h_1$                              | l                                              | l <sub>0</sub>                               | $l_1$                                              | с                                           |                                                          |                                              | Number of overcu-<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250<br>300<br>350<br>400<br>450 | 12<br>18<br>22<br>26<br>30<br>35<br>40<br>45 | 6<br>9<br>11<br>13<br>15<br>17,5<br>20<br>22,5 | 3,5<br>5<br>6<br>8<br>9<br>10<br>11<br>12 | 2<br>3,5<br>5,5<br>6,5<br>6,5<br>7 | 40<br>50<br>60<br>70<br>80<br>90<br>100<br>100 | 15<br>15<br>20<br>20<br>20<br>25<br>25<br>30 | 50<br>75<br>100<br>125<br>150<br>175<br>200<br>225 | 1,5<br>2<br>2,5<br>2,5<br>3<br>3,5<br>3,5   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 13<br>11<br>10<br>9<br>8<br>7<br>6<br>5           |

- Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. По специальному заказу напильники могут быть изготовлены с насечкой на обеих узких
- 2. Обозначение идоского остроносого нацильника с длиной рабочей части 150 мм, с насечкой № 1:

Напильн. илоск. острон. 150 № 1 ГОСТ 1465-53.

- 1. Files have one single cut edge, the number of teeth being the same as the number of overeut teeth on the file sides. On special order files may be furnished cut on both edges.

  2. Designation of a flat file, 150 mm working length, No. 1 cut:


Flat file 150 No. 1 GOST 1465-53.



#### напильники плоские остроносые

с насечкой № 2 (по ГОСТ 1465-53)

FLAT FILES, No. 2 CUT (acc. to GOST 1465-53)



Материал: углеродистви сталь

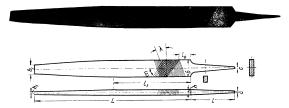
Material:

carbon steel

|                                               |                                        |                                        |                               | еры в<br>sions ir                |                                         | ۸°                                     | ພິ                                          | Число основных<br>насечек на 10 мм<br>длины |                                                    |                                        |                                                   |
|-----------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------|----------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------------------------|
| L                                             | ь                                      | $b_1$                                  | h                             | $h_1$                            | l                                       | $l_0$                                  | $l_1$                                       | c                                           |                                                    |                                        | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250<br>300<br>350<br>400 | 12<br>18<br>22<br>26<br>30<br>35<br>40 | 6<br>9<br>11<br>13<br>15<br>17,5<br>20 | 3,5<br>5<br>6<br>8<br>9<br>10 | 2<br>3,5<br>5<br>5,5<br>6<br>6,5 | 40<br>50<br>60<br>70<br>80<br>90<br>100 | 15<br>15<br>20<br>20<br>20<br>25<br>25 | 50<br>75<br>100<br>125<br>150<br>175<br>200 | 1,5<br>2<br>2,5<br>2,5<br>3<br>3,5          | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>20<br>18<br>16<br>14<br>13            |

- Одна из узких сторон напильника имеет одинарную насечку. Число насечек равио числу основных насечек широких сторон. По специальному заказу напильники могут быть наготовлены с насечкой на обеих узких
- сторонах.
  2. Обозначение илоского остроносого напильника с длиной рабочей части 150 мм, с насечкой № 2;

- Files have one single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides. On special order files may be furnished cut on both edges.
  - 2. Designation of a flat file, 150 mm working length, No. 2 cut:


Flat file 150 No. 2 GOST 1465-53.

## напильники плоские остроносые

с насечкой № 3 (по ГОСТ 1465-53)

FLAT FILES, No. 3 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                                 |                           |                       |                       | еры в<br>sions in         |                            | λ°                               | ω°                          | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |                                  |                            |                              |
|---------------------------------|---------------------------|-----------------------|-----------------------|---------------------------|----------------------------|----------------------------------|-----------------------------|------------------------------------------------------------------|----------------------------------|----------------------------|------------------------------|
| L                               | b                         | $b_1$                 | h                     | $h_1$                     | 1                          | $l_0$                            | $l_1$                       | c                                                                |                                  |                            | teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250<br>300 | 9<br>15<br>18<br>22<br>26 | 3<br>5<br>6<br>7<br>9 | 3<br>4<br>5<br>6<br>8 | 1,5<br>2<br>2,5<br>3<br>4 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20<br>20 | 33<br>50<br>67<br>83<br>100 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3                               | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25   |

- Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек липроких сторон. По специальному заказу напильники могут быть изготовлены с насечкой на обеих узких сторонах.
- 2. Обозначение плоского остроносого напильника с длиной рабочей части 150 мм, с насечкой № 3:

Нашилын, илоск, острон, 150  $\langle N\rangle 3$  ГОСТ 1765-53.

- Files have one single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides. On special order files may be furnished cut on both edges.
  - 2. Designation of a flat file, 150 mm working length, No. 3 cut:

Flat file 150 No. 3 GOST 1465-53.



#### напильники плоские остроносые

с насечкой № 4 (по ГОСТ 1465-53)

FLAT FILES, No. 4 CUT

(acc. to GOST 1465-53)



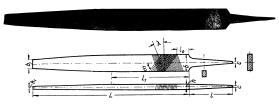
Материал: уплероднетая сталь

Material: carbon steel

|                          |                     |                  |                  | ieры в<br>sions ir   |                      | λ°                   | ω°                   | Число основных<br>насечек на 10 мм<br>длины |                            |                      |                                                   |
|--------------------------|---------------------|------------------|------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------------|----------------------------|----------------------|---------------------------------------------------|
| L                        | b                   | $b_1$            | h                | $h_1$                | ı                    | $l_0$                | $l_1$                | c                                           |                            |                      | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250 | 9<br>15<br>18<br>22 | 3<br>5<br>6<br>7 | 3<br>4<br>5<br>6 | 1,5<br>2<br>2,5<br>3 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5                      | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                              |

- 1. Одна из узких сторон напильника имеет одинарную насечку. Число насечем равно числу основных насечем широких сторон. По специальному заказу нашильники могут быть изготовлены с насечкой на обеих узких сторонах.
- Обозначение плоского остроносого напильника с длиной рабочей части 150 мм. с насечкой № 4;

- Files have one single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides. On special order files may be furnished cut on both edges.
  - 2. Designation of a flat file, 150 mm working length, No. 4 cut:


Flat file 150 No. 4 GOST 1465-53.



#### напильники плоские остроносые

с насечкой № 5 (по ГОСТ 1465-53)

FLAT FILES, No. 5 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                   |               |             | Разм<br>Dimen | еры в<br>sions in | ٦°             | ω°             | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |                 |                |                |                              |
|-------------------|---------------|-------------|---------------|-------------------|----------------|----------------|------------------------------------------------------------------|-----------------|----------------|----------------|------------------------------|
| L                 | b             | $b_1$       | h             | $h_1$             | l              | l <sub>o</sub> | $l_1$                                                            | c               |                |                | teeth per 10 mm<br>of length |
| 100<br>150<br>200 | 9<br>15<br>18 | 3<br>5<br>6 | 3<br>4<br>5   | 1,5<br>2<br>2,5   | 40<br>50<br>60 | 15<br>15<br>20 | 33<br>50<br>67                                                   | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56               |

- Одна из узких сторон напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон. По специальному заказу напильники могут быть изготовлены с насечкой на обеих узких сторонах.
- Обозначение плоского остроносого напильника с длиной рабочей части 150 мм, с насечкой № 5:

Напильн. плоек. острон. 150 № 5 ГОСТ 1465-53.

- Files have one single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides. On special order files may be furnished cut on both edges.
  - 2. Designation of a flat file, 150 mm working length, No. 5 cut:

Flat file 150 No. 5 GOST 1465-53.



#### напильники плоские остроносые.

с насечкой № 6 (по ГОСТ 1465-53)

FLAT FILES, No. 6 CUT (acc. to GOST 1465-53)



Материал: углеродистан сталь

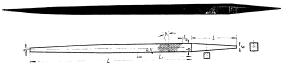
Material: carbon steel

|            |         |                | Pasm<br>Dimen | еры в<br>sions in |          | λ°             | ω°       | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |          |          |                              |
|------------|---------|----------------|---------------|-------------------|----------|----------------|----------|------------------------------------------------------------------|----------|----------|------------------------------|
| L          | ь       | b <sub>1</sub> | h             | $h_1$             | ı        | l <sub>o</sub> | $l_1$    | c                                                                |          |          | teeth per 10 mm<br>of length |
| 100<br>150 | 9<br>15 | 3<br>5         | 3<br>4        | 1,5<br>2          | 40<br>50 | 15<br>15       | 33<br>50 | 1,5<br>2                                                         | 20<br>20 | 55<br>55 | 80<br>71                     |

- Одна из узких сторон напильника имеет одинарную насечку, Число насечек равно числу основных насечек инфоких сторон. Но специальному заказу напильники могут быть изготовлены с насечкой на обсих узких

Нашилын, илоск, острон, 150 A 6 POCT 1465-53,

- Files have one single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides. On special order files may be furnished cut on both edges.
   Designation of a flat file, 150 mm working length, No. 6 cut:


Flat file 150 No. 6 GOST 1465-53.



### напильники квадратные

с насечкой № 1 (по ГОСТ 1465-53)

SQUARE FILES, No. 1 CUT (acc. to GOST 1465-53)



Материал: углероднетая сталь

Material:

carbon steel

|                                                             |                                                |                                            | меры i                                               |                                                    |                                                          |                                           | ۸°                                                             | ω°                                           | Число основных<br>насечек на 10 мм<br>длины       |
|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| L                                                           | b                                              | $b_1$                                      | l                                                    | $l_0$                                              | $l_1$                                                    | c                                         |                                                                |                                              | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400<br>450 | 4<br>5<br>6<br>8<br>10<br>13<br>16<br>19<br>22 | 2<br>2,5<br>3<br>4<br>5<br>6,5<br>8<br>9,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>25<br>25<br>30 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200<br>225 | 1,5<br>2<br>2<br>2,5<br>2,5<br>3,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 13<br>11<br>11<br>10<br>9<br>8<br>7<br>6          |

. Обозначение квадратного напильника с длиной рабочей части 150 мм, с насечкой  $\infty$  1:

Нашильн, квадрати, 150  $\sim 1$  ГОСТ 1465-53.

Designation of a square file, 150 mm working length, No. 1 cut: Square file 150 No. 1 GOST 1465-53.



# НАПИЛЬНИКИ КВАДРАТНЫЕ с насечкой № 2 (по ГОСТ 1465-53)

SQUARE FILES, No. 2 CUT (acc. to GOST 1465-53)



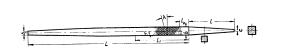
Материал: углеродистая сталь

Material:

carbon steel

|                                                      |                                          |                                            | меры<br>ensions                               |                                              | ,                                                 |                               | λ°                                                             | ω°                                     | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
| L                                                    | ь                                        | $b_1$                                      | l                                             | l <sub>0</sub>                               | $l_1$                                             | c                             |                                                                |                                        | teeth per 10 mm<br>of length                                     |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400 | 4<br>5<br>6<br>8<br>10<br>13<br>16<br>19 | 2<br>2,5<br>3<br>4<br>5<br>6,5<br>8<br>9,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>25<br>25 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200 | 1,5<br>2<br>2,5<br>2,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>22<br>20<br>18<br>16<br>14<br>13                     |

. Обозначение квадратного напильника с длиной рабочей части 150 мм, с насечкой. № 2:


Напильн. квадрати. 150 <br/>  $\sim 2 ~\Gamma OCT ~1465-53.$ 

Designation of a square file, 150 mm working length, No. 2 cut: Square file 150 No. 2 GOST 1465-53.



с насечкой № 3 (по ГОСТ 1465-53)

SQUARE FILES, No. 3 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

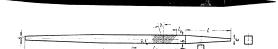
Material: carbon steel

|                                 |                        |                           | меры і<br>nsions i         |                            |                             |                                    | λ°                               | ω°                         | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|---------------------------------|------------------------|---------------------------|----------------------------|----------------------------|-----------------------------|------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------|
| L                               | b                      | $b_1$                     | 1                          | l <sub>o</sub>             | $l_1$                       | c                                  |                                  |                            | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250<br>300 | 4<br>5<br>6<br>8<br>10 | 1<br>1,5<br>2<br>3<br>3,5 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20 | 33<br>50<br>67<br>83<br>100 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25                                       |

Обозначение квадратного нацильника с длиной рабочей части 150 мм, с насечкой 38/3 :

Напильн. квадрати. 150 № 3 ГОСТ 1465-53,

Designation of a square file, 150 mm working length, No. 3 cut: Square file 150 No. 3 GOST 1465-53.






#### напильники квадратные

с насечкой № 4 (по ГОСТ 1465-53)

# SQUARE FILES, No. 4 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:

carbon steel

|                          |                  |                    | вмеры<br>ensions     |                      |                      |                        | λ°                         | ω°                   | Число основных<br>насечек на 10 мм<br>длины       |
|--------------------------|------------------|--------------------|----------------------|----------------------|----------------------|------------------------|----------------------------|----------------------|---------------------------------------------------|
| L                        | b                | $b_1$              | l                    | $l_0$                | $l_1$                | c                      |                            |                      | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250 | 4<br>5<br>6<br>8 | 1<br>1,5<br>2<br>3 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                              |

. Обозначение квадратного нацильника с длиной рабочей части 150 мм, с насечкой  $\mathcal{N}(4)$ 

Нашильн. квадрати. 150 × 4 ГОСТ 1465-53.

Designation of a square file, 150 mm working length, No. 4 cut: Square file 150 No. 4 GOST 1465-53.

#### напильники квадратные

с насечкой № 5 (по ГОСТ 1465-53)

SQUARE FILES, No. 5 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:

carbon steel

|                   |             |               | меры<br>nsions |                |                |                 | λ°             | ω°             | Число основных<br>насечек на 10 мм<br>длины       |
|-------------------|-------------|---------------|----------------|----------------|----------------|-----------------|----------------|----------------|---------------------------------------------------|
| L                 | b           | $b_1$         | ı              | l <sub>o</sub> | $l_1$          | c               |                |                | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200 | 4<br>5<br>6 | 1<br>1,5<br>2 | 40<br>50<br>60 | 15<br>15<br>20 | 33<br>50<br>67 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56                                    |

. Обозначение квадратного напильника с длиной рабочей части 150 мм, с насечкой  $N\!\!\!/\!5$  :

Нашильи, квадрати, 150 № 5 ГОСТ 1465-53,

Designation of a square file, 150 mm working length, No. 5 cut: Square file 150 No. 5 GOST 1465-53.





# НАПИЛЬНИКИ КВАДРАТНЫЕ с насечкой № 6 (по ГОСТ 1465-53)

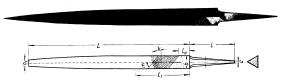
SQUARE FILES, No. 6 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:

carbon steel


|            |        |          | меры     |                |          |          | λ°       | င်       | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|------------|--------|----------|----------|----------------|----------|----------|----------|----------|------------------------------------------------------------------|
| L          | b      | $b_1$    | l        | l <sub>o</sub> | $l_1$    | с        |          |          | Number of overcut<br>teeth per 10 mm<br>of length                |
| 100<br>150 | 4<br>5 | 1<br>1,5 | 40<br>50 | 15<br>15       | 33<br>50 | 1,5<br>2 | 20<br>20 | 55<br>55 | 80<br>71                                                         |

Designation of a square file, 150 mm working length, No. 6 cut: Square file 150 No. 6 GOST 1465-53.

## НАПИЛЬНИКИ ТРЕХГРАННЫЕ

с насечкой № 1 (по ГОСТ 1465-53)

THREE-SQUARE FILES, No. 1 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

carbon steel

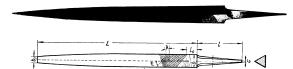
|                                                             |                                                   |                                                           | меры<br>nsions i                                     |                                                    |                                                          |                                                  | λ°                                                                   | ω°                                           | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|-------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|
| L                                                           | b                                                 | $b_1$                                                     | l                                                    | $l_0$                                              | $l_1$                                                    | с                                                |                                                                      |                                              | teeth per 10 mm<br>of length                                     |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400<br>450 | 9<br>11<br>13<br>15<br>18<br>21<br>24<br>27<br>30 | 4,5<br>5,5<br>6,5<br>7,5<br>9<br>10,5<br>12<br>13,5<br>15 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>25<br>25<br>30 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200<br>225 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3<br>3,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 13<br>11<br>11<br>10<br>9<br>8<br>7<br>6<br>5                    |

. Обозначение трехграниого напильника c длиной рабочей части 150 мм,

Наимлыг, трехгр. 150  $\, \approx 1$  ГОСТ 1465-53.

Designation of a three-square file,  $150 \ \mathrm{mm}$  working length, No. 1 cut: Three-square file 150 No. 1 GOST 1465-53.






#### НАПИЛЬНИКИ ТРЕХГРАННЫЕ

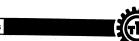
с насечкой № 2 (по ГОСТ 1465-53)

#### THREE-SQUARE FILES, No. 2 CUT

(acc. to GOST 1465-53)



Mateриал: углеродистая сталь Material: carbon steel


carbon steel

|                                                      |                                             |                                                     | вмеры<br>ensions                              |                                              |                                                   |                                           | λ°                                                 | ω°                                           | Число основных<br>насечек на 10 мм<br>длины       |
|------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| L                                                    | b                                           | <i>b</i> <sub>1</sub>                               | ı                                             | $l_0$                                        | l <sub>1</sub>                                    | c                                         |                                                    |                                              | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400 | 9<br>11<br>13<br>15<br>18<br>21<br>24<br>27 | 4,5<br>5,5<br>6,5<br>7,5<br>9<br>10,5<br>12<br>13,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100 | 15<br>15<br>15<br>20<br>20<br>20<br>25<br>25 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200 | 1,5<br>2<br>2<br>2,5<br>2,5<br>3,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>22<br>20<br>18<br>16<br>14<br>13      |

. Обозначение трехграниого напильника с длиной рабочей части 150 мм, с насечкой. № 2:

Напильн. трехгр. 150 № 2 ГОСТ 1465-53.

Designation of a three-square file, 150 mm working length, No. 2 cut: Three-square file 150 No. 2 GOST 1465-53.



НАПИЛЬНИКИ ТРЕХГРАННЫЕ с насечкой № 3 (по ГОСТ 1465-53)

# THREE-SQUARE FILES, No. 3 CUT (acc. to GOST 1465-53)



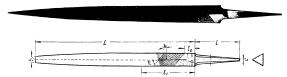
Материал: углеродистая сталь

Material: carbon steel

|                                 |                          |                       | меры<br>nsions             |                            |                             |                                    | λ°                               | ω°                         | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|---------------------------------|--------------------------|-----------------------|----------------------------|----------------------------|-----------------------------|------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------|
| L                               | b                        | $b_1$                 | ı                          | $l_0$                      | $l_1$                       | c                                  |                                  |                            | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250<br>300 | 7<br>9<br>11<br>15<br>18 | 2<br>3<br>4<br>5<br>6 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20 | 33<br>50<br>67<br>83<br>100 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25                                       |

Обозначение трехгранного напильника е длиной рабочей части 150 мм, с насечкой  $\gg 3$ :

Напильн. трехгр. 150 № 3 ГОСТ 1465-53.


Designation of a three-square file, 150 mm working length, No. 3 cut: Three-square file 150 No. 3 GOST 1465-53.



#### напильники трехгранные

с насечкой № 4 (по ГОСТ 1465-53)

THREE-SQUARE FILES, No. 4 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                          |                    |                  | меры i<br>nsions i   |                      |                      |                        | λ°                         | ω°                   | Число основных<br>насечек на 10 мм<br>длины       |  |
|--------------------------|--------------------|------------------|----------------------|----------------------|----------------------|------------------------|----------------------------|----------------------|---------------------------------------------------|--|
| L                        | b                  | $b_1$            | ı                    | $l_0$                | $l_1$                | c                      |                            |                      | Number of overcut<br>teeth per 10 mm<br>of length |  |
| 100<br>150<br>200<br>250 | 7<br>9<br>11<br>15 | 2<br>3<br>4<br>5 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                              |  |

. Обозначение трехгранного напальника с длиной рабочей части 150 мм, с насечкой N(4)

Нашильн. трехгр. 150 № 4 ГОСТ 1465-53.

Designation of a three-square file, 150 mm working length, No. 4 cut: Three-square file 150 No. 4 GOST 1465-53.



НАПИЛЬНИКИ ТРЕХГРАННЫЕ с насечкой № 5 (по ГОСТ 1465-53)

THREE-SQUARE FILES, No. 5 CUT

(acc. to GOST 1465-53)



Материал: уклеродистая сталь

Material: carbon steel

|                   |              |             | меры і<br>nsions i |                |                |                 | λ°             | ω°             | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|-------------------|--------------|-------------|--------------------|----------------|----------------|-----------------|----------------|----------------|------------------------------------------------------------------|
| L                 | b            | $b_1$       | l                  | $l_0$          | $l_1$          | c               |                |                | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200 | 7<br>9<br>11 | 2<br>3<br>4 | 40<br>50<br>60     | 15<br>15<br>20 | 33<br>50<br>67 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56                                                   |

. Обозначение трехгранного напильника с длиной рабочей части 150 мм, с насечкой  $\mathcal{N}(5)$ 

Нашилы, трехгр. 450 № 5 ГОСТ 4465-53.

Designation of a three-square file, 150 mm working length, No. 5 cut: Three-square file 150 No. 5 GOST 1465-53.





#### напильники трехгранные с насечкой № 6 (по ГОСТ 1465-53)

THREE-SQUARE FILES, No. 6 CUT

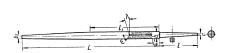
(ace, to GOST 1465-53)



**Материал:** утлеродистая сталь **Material:** carbon steel

|            |        |        | змеры<br>ensions |          |          | ٦°    | ω°       | Число основных<br>насечек на 10 мм<br>длины |                                                   |
|------------|--------|--------|------------------|----------|----------|-------|----------|---------------------------------------------|---------------------------------------------------|
| L          | b      | $b_1$  | ı                | $l_0$    | $l_1$    | c     |          |                                             | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150 | 7<br>9 | 2<br>3 | 40<br>50         | 15<br>15 | 33<br>50 | · 1,5 | 20<br>20 | 55<br>55                                    | 80<br>71                                          |

. Обозначение трехграни<br/>ото напильника с длиной рабочей части 150 мм, с насечкой <br/>  $\infty$ 6:


Напильн. трехтр. 150  $\infty$  6 ГОСТ 1465-53.

Designation of a three-square file, 150 mm working length, No. 6 cut: Three-square file 150 No. 6 GOST 1465-53.

#### НАПИЛЬНИКИ КРУГЛЫЕ

с насечкой № 1 (по ГОСТ 1465-53)

ROUND FILES, No. 1 CUT (acc. to GOST 1465-53)



Материал: углеродистан сталь

Material: carbon steel

|                                                             |                                                |                                      | меры і<br>nsions i                            |                                              |                                                          |                                                  | λ°                                                             | ω°                                                 | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |  |
|-------------------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--|
| L                                                           | b                                              | $b_1$                                | ı                                             | $l_{0}$                                      | $l_1$                                                    | с                                                |                                                                |                                                    | teeth per 10 mm<br>of length                                     |  |
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400<br>450 | 4<br>5<br>6<br>8<br>11<br>13<br>16<br>19<br>22 | 2,5<br>3,4<br>5,5<br>6,5<br>8<br>9,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100 | 10<br>10<br>10<br>10<br>15<br>15<br>15<br>15 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200<br>225 | 1,5<br>2<br>2<br>2,5<br>2,5<br>3,5<br>3,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 13<br>11<br>11<br>10<br>9<br>8<br>7<br>6<br>5                    |  |

Обозначение круглого напильника с длиной рабочей части 150 мм, с насечкой N 1:

Напильи, кругл. 150 *№* 1 ГОСТ 1465-53.

Designation of a round file, 150 mm working length, No. 1 cut: Round file 150 No. 1 GOST 1465-53.





#### напильники круглые

с насечкой № 2 (по ГОСТ 1465-53)

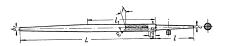
ROUND FILES, No. 2 CUT (acc. to GOST 1465-53)



Материал: углеродистан сталь

carbon steel Material:

|                                                      | <sub>b</sub>                             |                                              | меры I<br>nsions i                            |                                              | l,                                                | c                                         | λ°                                                       | ω°                                           | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut<br>teeth per 10 mm<br>of length |
|------------------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|
| 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400 | 4<br>5<br>6<br>8<br>11<br>13<br>16<br>19 | 2<br>2,5<br>3<br>4<br>5,5<br>6,5<br>8<br>9,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100 | 10<br>10<br>10<br>10<br>15<br>15<br>15<br>15 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200 | 1,5<br>2<br>2<br>2,5<br>2,5<br>2,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>22<br>20<br>18<br>16<br>14<br>13                                                     |


Обозначение круглого напильника с длиной рабочей части 150 мм, с насечкой  $N\!\!=\!2;$ 

Designation of a round file, 150 mm working length, No. 2 cut: Round file 150 No. 2 GOST 1465-53.

#### НАПИЛЬНИКИ КРУГЛЫЕ

с насечкой № 3 (по ГОСТ 1465-53)

ROUND FILES, No. 3 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                                 |                        |                         | меры<br>nsions i           |                            |                             |                                    | λ°                               | ω°                         | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|---------------------------------|------------------------|-------------------------|----------------------------|----------------------------|-----------------------------|------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------|
| L                               | ь                      | $b_1$                   | ı                          | l <sub>o</sub>             | $l_1$                       | c                                  |                                  |                            | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250<br>300 | 4<br>5<br>6<br>8<br>11 | 1<br>1,5<br>2<br>3<br>4 | 40<br>50<br>60<br>70<br>80 | 10<br>10<br>10<br>15<br>15 | 33<br>50<br>67<br>83<br>100 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25                                       |

. Обозначение круглого напильника с длиной рабочей части  $150\,\mathrm{мм},$  с насечкой  $\mathcal{N}(3)$ 

Напильн, кругл. 150 № 3 ГОСТ 1465-53.

Designation of a round file, 150 mm working length, No. 3 cut: Round file 150 No. 3 GOST 1465-53.





#### НАПИЛЬНИКИ КРУГЛЫЕ с насечкой № 4 (по ГОСТ 1465-53)

ROUND FILES, No. 4 CUT (acc. to GOST 1465-53)

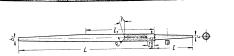


Материал: углеродистая сталь

Material: carbon steel

|                          |                  |                    | меры і<br>nsions i   |                      |                      |                               | λ°                         | ω°                   | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|--------------------------|------------------|--------------------|----------------------|----------------------|----------------------|-------------------------------|----------------------------|----------------------|------------------------------------------------------------------|
| L                        | b                | $b_1$              | l                    | $l_0$                | $l_1$                | c                             |                            |                      | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250 | 4<br>5<br>6<br>8 | 1<br>1,5<br>2<br>3 | 40<br>50<br>60<br>70 | 10<br>10<br>10<br>15 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                                             |

Обозначение круглого нацильника с длиной рабочей части 150 мм, с насечкой № 4:


Нашилын, кругл. 150 № 4 ГОСТ 4465-53,

Designation of a round file, 150 mm working length, No. 4 cut: Round file 150 No. 4 GOST 1465-53.

#### НАПИЛЬНИКИ КРУГЛЫЕ

с насечкой № 5 (по ГОСТ 1465-53)

ROUND FILES, No. 5 CUT (acc. to GOST 1465-53)



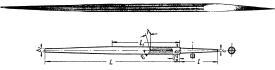
Материал: углеродистая сталь

Material: carbon steel

|                |   |             |               | меры і<br>nsions i |                |                |                 | λ°             | ω°             | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|----------------|---|-------------|---------------|--------------------|----------------|----------------|-----------------|----------------|----------------|------------------------------------------------------------------|
| L              |   | b           | $b_1$         | l                  | $l_0$          | $l_1$          | c               |                |                | teeth per 10 mm<br>of length                                     |
| 10<br>15<br>20 | 0 | 4<br>5<br>6 | 1<br>1,5<br>2 | 40<br>50<br>60     | 10<br>10<br>10 | 33<br>50<br>67 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56                                                   |

. Обозначение круглого нацильника с длиной рабочей части 150 мм, с насечкой  $N\!\!\!/\,5$  :

Пашильн, кругл. 450 № 5 ГОСТ 4465-53.


Designation of a round file, 150 mm working length, No. 5 cut: Round file 150 No. 5 GOST 1465-53.





#### НАПИЛЬНИКИ КРУГЛЫЕ с насечкой № 6 (по ГОСТ 1465-53)

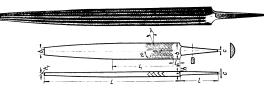
ROUND FILES, No. 6 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|            |        |          | меры<br>nsions |          |          |          | λ°.      | ω°       | Число основных<br>насечек на 10 мм<br>длины       |
|------------|--------|----------|----------------|----------|----------|----------|----------|----------|---------------------------------------------------|
| L          | b      | $b_1$    | l              | $l_0$    | $l_1$    | c        |          |          | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150 | 4<br>5 | 1<br>1,5 | 40<br>50       | 10<br>10 | 33<br>50 | 1,5<br>2 | 20<br>20 | 55<br>55 | 80<br>71                                          |


Обозначение круглого напильника с длиной рабочей части 150 мм. с насечкой № 6:

Напильи, кругл. 150 № 6 ГОСТ 4465-53,

Designation of a round file, 150 mm working length, No. 6 cut: Round file 150 No. 6 GOST 1465-53.

#### напильники полукруглые с насечкой № 1 (no FOCT 1465-53)

HALF-ROUND FILES, No. 1 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material:  ${\it carbon steel}$ 

| Вид<br>на-<br>пиль-<br>ника<br>Гуре |     |    | L     | Разм<br>Dimen | 'n٥   | ω°       | Число основных<br>насечек на 10мм<br>длины<br>Number of overcut |            |     |          |          |                              |
|-------------------------------------|-----|----|-------|---------------|-------|----------|-----------------------------------------------------------------|------------|-----|----------|----------|------------------------------|
| of<br>file                          | L   | b  | $b_1$ | h             | $h_1$ | ı        | $l_0$                                                           | $l_1$      | c   |          |          | teeth per 10 mm<br>of length |
| A                                   | 100 | 12 | 6     | 4             | 2,0   | 40       | 10                                                              | 50         | 1,5 | 20       | 55       | 13                           |
| A                                   | 125 | 15 | 7,5   | 5             | 2,5   | 50       | 10                                                              | 63         | 2   | 20       | 55       | 11                           |
| A                                   | 150 | 18 | 9     | 6             | 3     | 50       | 10                                                              | 75         | 2   | 20       | 55       | 11                           |
| A                                   | 200 | 22 | 11    | 7             | 3,5   | 60       | 10                                                              | 100        | 2,5 | 20       | 55       | 10<br>9                      |
| A                                   | 250 | 26 | 13    | 9             | 5     | 70       | 15                                                              | 125        | 2,5 | 20       | 55<br>55 |                              |
| A                                   | 300 | 30 | 15    | 10            | 5,5   | 80       | 15                                                              | 150        | 3   | 20       | 55       | 8<br>7                       |
| A                                   | 350 | 35 | 17,5  | 11            | 6     | 90       | 15                                                              | 175        |     | 20       | 55       | <u>'</u>                     |
| A                                   | 400 | 40 | 20    | 12            | 6,5   | 100      | 15<br>15                                                        | 200<br>225 | 3,5 | 20<br>20 | 55       | 6<br>5                       |
| A                                   | 450 | 45 | 22,5  | 13            | 7     | 100      | 10                                                              | 50         |     | 20       | 55       | 13                           |
| Б                                   | 100 | 12 | 8     | 4             | 2     | 40<br>50 | 10                                                              | 75         | 1,5 | 20       | 55       | 11                           |
| Б                                   | 150 | 18 | 11,5  | 6             | 3.5   | 60       | 10                                                              | 100        | 2,5 | 20       | 55       | 10                           |
| Б                                   | 200 | 22 | 14    | 9             | 5     | 70       | 15                                                              | 125        | 2,5 | 20       | 55       |                              |
| Б                                   | 250 | 26 | 16    | 10            | 5,5   | 80       | 15                                                              | 150        | 3,3 | 20       | 55       | š                            |
| Б                                   | 300 | 30 | 20    | 11            | 6     | 90       | 15                                                              | 175        | 3   | 20       | 55       | 9<br>8<br>7                  |
| Б                                   | 350 | 35 | 23    |               | 6,5   | 100      | 15                                                              | 200        | 3,5 | 20       | 55       | 6                            |
| Б                                   | 400 | 40 | 27    | 12            | 6,5   | 100      | 15                                                              | 200        | 0,0 | 20       | 1 00     | l                            |

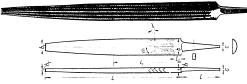
- Наинглыники вида Б изготовлиют только по специальному заказу.
   Насечка илоской стороны двойная. Насечка выпуклой стороны может быть радками, или двойная без рядков.
   Обозначение полукруглого напильника с длиной рабочей части 150 мм, с насечкой № U.
- Нашилы, полукругл, 150 № 1 ГОСТ 1465-53.
- Type B files are furnished on special order only.
   The flat side of files is double cut. The convex side is cut with teeth in rows, or
- double cut without rows.

  3. Designation of a half-round file, 150 mm working length, No. 1 cut:

  Half-round file 150 No. 1 GOST 1465-53.






#### НАПИЛЬНИКИ ПОЛУКРУГЛЫЕ

с насечкой № 2

(no POCT 1465-53)

#### HALF-ROUND FILES, No. 2 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

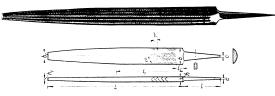
Material: carbon steel

| Mutor                                                    |                                                                                         | cu                                                                         | 10011                                                                  | Steel                                                       |                                                           |                                                                       |                                                                |                                                                                    |                                                                  |                                                                                 |                                                                            |                                                          |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| Вид<br>на-<br>пиль-<br>ника                              |                                                                                         |                                                                            |                                                                        |                                                             | еры в<br>sions i                                          |                                                                       |                                                                |                                                                                    |                                                                  | ۸°                                                                              | ω"                                                                         | Число основных<br>насечек на 10мм<br>длины               |
| Type<br>of<br>file                                       | L                                                                                       | b                                                                          | b <sub>1</sub>                                                         | h                                                           | $h_1$                                                     | 1                                                                     | $l_0$                                                          | l <sub>1</sub>                                                                     | c                                                                |                                                                                 |                                                                            | Number of overcut<br>teeth per 10 mm<br>of length        |
| A<br>A<br>A<br>A<br>A<br>A<br>A<br>B<br>B<br>B<br>B<br>B | 100<br>125<br>150<br>200<br>250<br>300<br>350<br>400<br>100<br>150<br>200<br>250<br>350 | 12<br>15<br>18<br>22<br>26<br>30<br>35<br>40<br>12<br>18<br>22<br>26<br>30 | 6<br>7,5<br>9<br>11<br>13<br>15<br>17,5<br>20<br>8<br>11,5<br>14<br>16 | 4<br>5<br>6<br>7<br>9<br>10<br>11<br>12<br>4<br>6<br>7<br>9 | 2,0<br>2,5<br>3,5<br>5,5<br>6,5<br>2<br>3,5<br>5,5<br>5,5 | 40<br>50<br>50<br>60<br>70<br>80<br>90<br>100<br>40<br>50<br>60<br>70 | 10<br>10<br>10<br>10<br>15<br>15<br>15<br>15<br>10<br>10<br>10 | 50<br>63<br>75<br>100<br>125<br>150<br>175<br>200<br>50<br>75<br>100<br>125<br>150 | 1,5<br>2<br>2,5<br>2,5<br>3,5<br>1,5<br>2,5<br>2,5<br>2,5<br>3,5 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 25<br>22<br>22<br>20<br>18<br>14<br>13<br>25<br>20<br>18 |
| Б                                                        | 400                                                                                     | 35<br>40                                                                   | 23<br>27                                                               | 11<br>12                                                    | 6<br>6,5                                                  | 90<br>100                                                             | 15<br>15                                                       | 175<br>200                                                                         | 3<br>3,5                                                         | 20<br>20                                                                        | 55<br>55                                                                   | 14<br>13                                                 |

- Наивльники вида Б изготовляют только по специальному заказу.
   Насечка илоской стороны двойнай. Насечка выпуклой стороны может быть рядками, или двойнай без рядков.
   Обозначение полукруглого наивльника с длиной рабочей части 150 мм, с насечкой м 2:

Нашильн, полукругл, 150  $\, \approx \, 2$  ГОСТ 1465-53,

- 1. Type B files are furnished on special order only. 2. The flat side of files is double cut. The convex side is cut with teeth in rows, or double cut without rows.
  - 3. Designation of a half-round file, 150 mm working length, No. 2 cut: Half-round file 150 No. 2 GOST 1465-53.




#### НАПИЛЬНИКИ ПОЛУКРУГЛЫЕ

с насечкой № 3

#### HALF-ROUND FILES, No. 3 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

carbon steel Material:

|                                 |                            |                       |                       | оывм<br>onsinn                |                            | λ°                         | ω°                          | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |                                  |                                  |                              |
|---------------------------------|----------------------------|-----------------------|-----------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------|
| L                               | b                          | $b_1$                 | h                     | h <sub>1</sub>                | 1                          | l <sub>o</sub>             | l <sub>1</sub>              | c                                                                |                                  |                                  | teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250<br>300 | 12<br>15<br>18<br>22<br>26 | 4<br>5<br>6<br>7<br>9 | 4<br>5<br>6<br>7<br>9 | 1,5<br>2,5<br>3<br>3,5<br>4,5 | 40<br>50<br>60<br>70<br>80 | 10<br>10<br>10<br>15<br>15 | 33<br>50<br>67<br>83<br>100 | 1.5<br>2<br>2,5<br>2,5<br>3                                      | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25   |

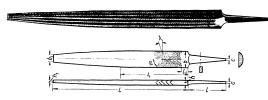
- Насечка илоской стороны двойная. Насечка выпуклой стороны может быть ридками, или двойная без рядков.
   Обозначение полукруплого напильника с длиной рабочей части 150 мм, с насечкой № 3;

Папилы, полукругд, 150  $\infty 3$  FOCT 1365-53.

- 1. The flat side of files is double cut. The convex side is cut with teeth in rows, or double cut without rows.
  - 2. Designation of a half-round file.  $150\,\mathrm{mm}$  working length, No. 3 cut:

Half-round file 150 No. 3 GOST 1465-53.




#### напильники полукруглые

с насечкой № 4

(no FOCT 4465-53)

#### HALF-ROUND FILES, No. 4 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                          |                      | 1                | Разме<br>Dimensi | ры в м<br>ions in      |                      |                      |                      |                        | 2.0                        | ω°                   | Число основных<br>насечек на 10мм<br>длины        |
|--------------------------|----------------------|------------------|------------------|------------------------|----------------------|----------------------|----------------------|------------------------|----------------------------|----------------------|---------------------------------------------------|
| L                        | b                    | $b_1$            | h                | $h_1$                  | ı                    | l <sub>o</sub>       | $l_1$                | c                      |                            |                      | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250 | 12<br>15<br>18<br>22 | 4<br>5<br>6<br>7 | 4<br>5<br>6<br>7 | 1,5<br>2,5<br>3<br>3,5 | 40<br>50<br>60<br>70 | 10<br>10<br>10<br>15 | 33<br>50<br>67<br>83 | 1,5<br>2<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                              |

- Насечка плоской стороны двойная. Насечка выпуклой стороны может быть ридками, или двойная без рядков.
- Обозначение полукруглого напильника с длиной рабочей части 150 мм, с насечкой № 4;

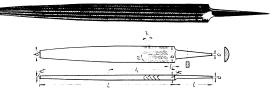
Нашылын, полукругд, 150 A/4 ГОСТ 1465-53.

1. The flat side of files is double cut.

The convex side is cut with teeth in rows, or double cut without rows.

2. Designation of a half-round file, 150 mm working length, No. 4 cut:

Half-round file 150 No. 4 GOST 1465-53.


#### напильники полукруглые

с насечкой № 5

(no POCT 1365-53)

### HALF-ROUND FILES, No. 5 CUT

(acc. to GOST 1465-53)



Материал: увлеродистви сталь

Material:

carbon steel

|                   |                |                |             | ры в м<br>ons in i |                |                |                |                 | λo             | ω0             | Число основных<br>насечек на 10мм<br>длины        |
|-------------------|----------------|----------------|-------------|--------------------|----------------|----------------|----------------|-----------------|----------------|----------------|---------------------------------------------------|
| L                 | ь              | b <sub>1</sub> | h           | $h_1$              | ı              | l <sub>o</sub> | $l_1$          | c               |                |                | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200 | 12<br>15<br>18 | 4<br>5<br>6    | 4<br>5<br>6 | 1,5<br>2,5<br>3    | 40<br>50<br>60 | 10<br>10<br>10 | 33<br>50<br>67 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 71<br>63<br>56                                    |

- Насечка илоской стороны двойнай. Насечка выпуклой стороны может быть ридками, или двойнай без рядков.
- 2. Обозначение подукруглого ванильника с длиной рабочей части 150 мм. с насочкой  $\mathcal{N}$ 5:

Напильн. полукругл. 150  $\gg$  5 ГОСТ 1465-53.

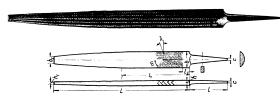
1. The flat side of files is double cut.

The convex side is cut with teeth in rows, or double cut without rows.

2. Designation of a half-round file, 150 mm working length, No. 5 cut:

Half-round file 150 No. 5 GOST 1465-53.




#### напильники полукруглые

с насечкой № 6

(по ГОСТ 1465-53)

#### HALF-ROUND FILES, No. 6 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|            |          |        |     | оыв м<br>ons in r |          |                |                |          | λ°       | ω°       | Число основных<br>насечек на 10мм<br>длины        |
|------------|----------|--------|-----|-------------------|----------|----------------|----------------|----------|----------|----------|---------------------------------------------------|
| L          | b        | $b_1$  | h   | $h_1$             | ı        | l <sub>o</sub> | l <sub>1</sub> | с        |          |          | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150 | 12<br>15 | 4<br>5 | 4 5 | 1,5<br>2,5        | 40<br>50 | 10<br>10       | 33<br>50       | 1,5<br>2 | 20<br>20 | 55<br>55 | 80<br>71                                          |

- Насечка илиской стороны двойная. Насечка выпуклой стороны может быть рядками, или двойная без рядков.
- 2. Обозначение полукруглого напильника с длиной рабочей части 150 мм, с насечкой  $\mathcal M$  6:

Напильи, полукругл. 150 № 6 ГОСТ 1465-53,

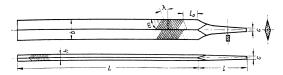
1. The flat side of files is double cut.

11. The nate side of these is double cut.

The convex side is cut with teeth in rows, or double cut without rows.

2. Designation of a half-round file, 150 mm working length, No. 6 cut:

Half-round file 150 No. 6 GOST 1465-53.


## напильники ромбические

с насечкой № 2

(no FOCT 1465-53)

LOZENGE FILES, No. 2 CUT

(acc. to GOST 1465-53)



Материал: углероднетая сталь

Material:

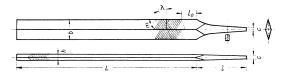
carbon steel

|                          |                      | Размер<br>Dimensio | ы в мм<br>ns in mm   |                      |                               | λ°                         | ဖ°                   | Число основных<br>насечек на 10мм<br>длины<br>Number of overcut |
|--------------------------|----------------------|--------------------|----------------------|----------------------|-------------------------------|----------------------------|----------------------|-----------------------------------------------------------------|
| L                        | ь                    | h                  | l                    | $l_0$                | ·                             |                            |                      | teeth per 10 mm<br>of length                                    |
| 100<br>150<br>200<br>250 | 12<br>18<br>22<br>26 | 3,5<br>5<br>6<br>7 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 1,5<br>2<br>2,5<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 25<br>22<br>20<br>18                                            |

Обозначение ромбического напильника с длиной рабочей части 150 мм, с насечкой  $N\!\!=\!2$  :

Нашильн. ромб. 150 ж 2 ГОСТ 1465-53.

Designation of a lozenge file,  $150\,\mathrm{mm}$  working length, No. 2 cut: Lozenge file 150 No. 2 GOST 1465-53.






#### напильники ромбические

с насечкой № 3  $(no\ \Gamma OCT\ 1465\text{-}53)$ 

# LOZENGE FILES, No. 3 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

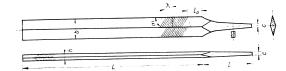
Material: carbon steel

|                          |                      |                    | ывмм<br>onsin mn     | ı                    |                               | λ°                   | ω°                   | Число основных<br>насечек на 10мм<br>длины        |
|--------------------------|----------------------|--------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|---------------------------------------------------|
| L                        | b                    | h                  | ı                    | $l_0$                | с                             |                      |                      | Number of overcut<br>teeth per 10 mm<br>of length |
| 100<br>150<br>200<br>250 | 12<br>18<br>22<br>26 | 3,5<br>5<br>6<br>7 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 1,5<br>2<br>2,5<br>2,5<br>2,5 | 20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 40<br>36<br>32<br>28                              |

. Обозначение ромбического напильника с длиной рабочей части 150 мм, с насечкой  $N\!\!/\!3$  :

Напильн. ромб. 450 № 3 ГОСТ 4465-53.

Designation of a lozenge file, 150 mm working length, No. 3 cut: Lozenge file 150 No. 3 GOST 1465-53.


#### напильники ромбические

с насечкой № 4

(no POCT 1565-53)

#### LOZENGE FILES, No. 4 CUT

(acc. to GOST 1465-53)



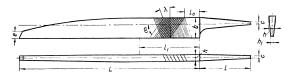
Материал: углеродистая сталь

carbon steel Material:

|                   |                | Pasmep<br>Dimensio |                | Ι,             | c               | λ°             | ω°             | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut<br>teeth per 10 mm |
|-------------------|----------------|--------------------|----------------|----------------|-----------------|----------------|----------------|-------------------------------------------------------------------------------------|
| L                 | b              | h                  | ı              | 10             | L °             |                |                | of length                                                                           |
| 100<br>150<br>200 | 12<br>18<br>22 | 3,5<br>5<br>6      | 40<br>50<br>60 | 15<br>15<br>20 | 1,5<br>2<br>2,5 | 20<br>20<br>20 | 55<br>55<br>55 | 56<br>50<br>45                                                                      |

. Обозначение ромбического напильника с длиной рабочей части  $150~{\rm мм},$  с насечкой N(4) .

Нашильн. ромб. 150 № 4 ГОСТ 1465-53.


Designation of a lozenge file, 150 mm working length, No. 4 cut: Lozenge file 150 No. 4 GOST 1465-53.





#### напильники ножовочные с насечкой № 2 (по ГОСТ 1465-53)

# KNIFE FILES, No. 2 CUT (acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

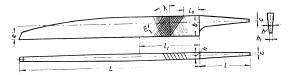
|                                 |                            |                         | Pasme<br>imensio              |                            |                            |                               |                       |                                    | λ°                               | ω°                         | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
|---------------------------------|----------------------------|-------------------------|-------------------------------|----------------------------|----------------------------|-------------------------------|-----------------------|------------------------------------|----------------------------------|----------------------------|------------------------------------------------------------------|
| L                               | b                          | h                       | $h_1$                         | l                          | $l_0$                      | l <sub>1</sub>                | e                     | c                                  |                                  |                            | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250<br>300 | 12<br>18<br>22<br>26<br>30 | 3,5<br>5<br>6<br>7<br>8 | 1<br>1,2<br>1,4<br>1,6<br>1,8 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20 | 50<br>75<br>100<br>125<br>150 | 4<br>5<br>6<br>7<br>8 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55 | 25<br>22<br>20<br>18<br>16                                       |

- Узкая сторона напильника имеет одинарную насечку. Число насечек райно числу основных насечек ингроких сторон.
- 2. Обозначение пожовочного напильника с длиной рабочей части 150 мм. e насечкой. № 2:

Нашильн, пожов, 150 № 2 ГОСТ 1465-53,

- 1. Files have a single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides.
  - 2. Designation of a knife file, 150 mm working length, No. 2  $\operatorname{cut}$  :

Knife file 150 No. 2 GOST 1465-53.


#### напильники ножовочные

с насечкой № 3

(no FOCT 1465-53)

#### KNIFE FILES, No. 3 CUT

(acc. to GOST 1465-53)



Материал: углеродистви сталь

| Materia                         | u:                         | carbo                   | n stee                        | 1                          |                            |                             |                       |                                    |                                        |                                  |                                                                  |
|---------------------------------|----------------------------|-------------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------|------------------------------------|----------------------------------------|----------------------------------|------------------------------------------------------------------|
|                                 |                            |                         | Размер<br>imensio             |                            |                            |                             |                       |                                    | λ°                                     | ω°                               | Число основных<br>насечек на 10 мм<br>длины<br>Number of overcut |
| L                               | b                          | h                       | $h_1$                         | l                          | $l_0$                      | <i>l</i> <sub>1</sub>       | e                     | ι                                  |                                        |                                  | teeth per 10 mm<br>of length                                     |
| 100<br>150<br>200<br>250<br>300 | 12<br>18<br>22<br>26<br>30 | 3,5<br>5<br>6<br>7<br>8 | 1<br>1,2<br>1,4<br>1,6<br>1,8 | 40<br>50<br>60<br>70<br>80 | 15<br>15<br>20<br>20<br>20 | 38<br>50<br>67<br>83<br>100 | 4<br>5<br>6<br>7<br>8 | 1,5<br>2<br>2,5<br>2,5<br>2,5<br>3 | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55<br>55<br>55 | 40<br>36<br>32<br>28<br>25                                       |

- Уакая сторона напильника имеет одинарную насечку. Число насечек равно числу основных насечек широких сторон.
- 2. Обозначение пожовочного напильника с длиной рабочей части 150 мм, с насечкой № 3;

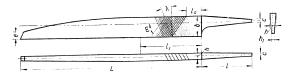
Напильи, пожов. 150 N 3 ГОСТ 1565-53.

- 1. Files have a single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides.  $\dots$ 
  - 2. Designation of a knife file, 150 mm working length, No. 3 cut:

Knife file 150 No. 3 GOST 1465-53.






#### напильники ножовочные

с насечкой № 4

(no FOCT 1465-53)

#### KNIFE FILES, No. 4 CUT

(acc. to GOST 1465-53)



Материал: углеродистая сталь

Material: carbon steel

|                          |                      | Г                  | Pasme<br>Dimensio      | ры в э<br>ons in s   |                      |                      |                  |                               | λ°                         | ω°                   | Число основных<br>насечек на 10мм<br>длины<br>Number of overcut |
|--------------------------|----------------------|--------------------|------------------------|----------------------|----------------------|----------------------|------------------|-------------------------------|----------------------------|----------------------|-----------------------------------------------------------------|
| L                        | b                    | h                  | $h_1$                  | l                    | $l_0$                | $l_1$                | e                | c                             |                            |                      | teeth per 10 mm<br>of length                                    |
| 100<br>150<br>200<br>250 | 12<br>18<br>22<br>26 | 3,5<br>5<br>6<br>7 | 1<br>1,2<br>1,4<br>1,6 | 40<br>50<br>60<br>70 | 15<br>15<br>20<br>20 | 33<br>50<br>67<br>83 | 4<br>5<br>6<br>7 | 1,5<br>2<br>2,5<br>2,5<br>2,5 | 20<br>20<br>20<br>20<br>20 | 55<br>55<br>55<br>55 | 56<br>50<br>45<br>40                                            |

- Узваи сторона напильника имеет одинарную насечку. Число насечек равно числу основных насечек интроких сторон.
- Обозначение пожовочного нашильника с дзиной рабочей части 150 мм, с насечкой № 4;

Напильи, ножов. 150  $\sim$  4 ГОСТ 1465-53.

- Files have a single cut edge, the number of teeth being the same as the number of overcut teeth on the file sides.
   Designation of a knife file, 150 mm working length, No. 4 cut:

Knife file 150 No. 4 GOST 1465-53.



# надфили

# NEEDLE FILES

#### надфили плоские тупоносые

(no FOCT 1513-53)

#### EQUALING NEEDLE FILES

(acc. to GOST 1513-53)



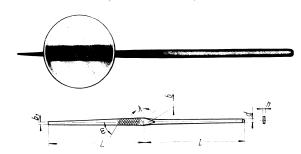
Материал: углеродистая сталь

carbon steel

|          |                                                                       | меры<br>nsions |            |          | 100      | ω°       |   | Num | о осно<br>a 10 м<br>ber of c<br>r 10 m | м длин<br>vercut | teeth   |    |
|----------|-----------------------------------------------------------------------|----------------|------------|----------|----------|----------|---|-----|----------------------------------------|------------------|---------|----|
|          | Dimensions in mm $egin{array}{ c c c c c c c c c c c c c c c c c c c$ |                |            |          | ^-       | ω        |   | I   | номер<br>cut                           | насечк<br>No.    | и       |    |
| L        |                                                                       |                |            |          |          |          | 1 | 2   | 3                                      | 4                | 5       | 6  |
| 60<br>80 | 4<br>5,5                                                              | 1<br>1,5       | 2,5<br>3,5 | 60<br>80 | 20<br>20 | 55<br>55 |   | 32  | 40<br>40                               | 50<br>—          | 63<br>— | 80 |

- Узкие стороны надфиля имеют одинарную насечку. По специальному заказу узкие стороны могут быть изготовлены с двойной насечкой.
   Обозначение илоского тупоносого надфили с длиной рабочей части 80 мм, с насечкой № 2;

Надф. илоск, тупон, 80 № 2 ГОСТ 4543-53.


- 1. Both file edges are single cut. On special order files may be furnished with double cut edges.
  - 2. Designation of a equaling needle file, 80 mm working length, No. 2 cut: Equaling needle file 80 No. 2 GOST 1513-53.

#### надфили плоские остроносые

(по ГОСТ 1513-53)

#### FLAT NEEDLE FILES

(acc. to GOST 1513-53)



Материал: углеродистая сталь

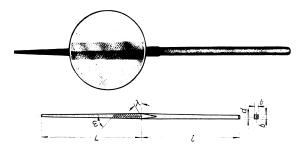
Material: carbon steel

|          |   |                | )ы в м!<br>ns in m |   |   | <b>1</b> ° | s°       |   | Num | a 10 m<br>ber of c | ных н<br>м длин<br>overcut<br>of leng | teeth |    |
|----------|---|----------------|--------------------|---|---|------------|----------|---|-----|--------------------|---------------------------------------|-------|----|
|          |   |                |                    |   |   | ^          | ω        |   | Н   |                    | асечкі<br>No.                         | 1     |    |
| L        | b | b <sub>1</sub> | h                  | d | ı |            |          | 1 | 2   | 3                  | 4                                     | 5     | 6  |
| 60<br>80 |   |                |                    |   |   |            | 55<br>55 |   | 32  | 40<br>40           | 50<br>—                               | 63    | 80 |

- 1. Узкие стороны надфили имеют одинарную насечку.
- 2. Обозначение илоского остроносого надфили с длиной рабочей части 80 мм, с насечкой N(2)

. Надф. илоск, острон, 80  $\,{\rm A\!\!\!M}$  2 ГОСТ 1543-53,

- 1. Both file edges are single cut.
- 2. Designation of a flat needle file, 80 mm working length, No. 2 cut: Flat needle file 80 No. 2 GOST 1513-53.




#### надфили квадратные

(no FOCT 4513-53)

#### SQUARE NEEDLE FILES

(acc. to GOST 1513-53)



Материал: углеродистая сталь

Material: carbon steel

| I        |                      | ъвмм<br>nsin m |  | λ°       | ω°       |                                                  | н<br>Num | a 10 mi<br>ber of c | вных на<br>м длин<br>overcut<br>n of ler | teeth   |         |
|----------|----------------------|----------------|--|----------|----------|--------------------------------------------------|----------|---------------------|------------------------------------------|---------|---------|
|          |                      |                |  |          | ω        |                                                  | 1        |                     | насечк<br><b>No.</b>                     | 11      |         |
| L        | b d l                |                |  |          |          | 1                                                | 2        | 3                   | 4                                        | 5       | 6       |
| 60<br>80 | 2 2,5 60<br>3 3,5 80 |                |  | 20<br>20 | 55<br>55 | <del>                                     </del> |          |                     |                                          | 63<br>— | 80<br>— |

. Обозначение квадратного надфили с длиной рабочей части 80 мм. с насечкой N(2) . . . . Надф. квадр. 80 № 2 ГОСТ 4543-53.

Designation of a square needle file, 80 mm working length, No. 2 cut: Square needle file 80 No. 2 GOST 1513-53.



# надфили трехгранные (по ГОСТ 1543-53)

#### THREE-SQUARE NEEDLE FILES

(acc. to GOST 1513-53)



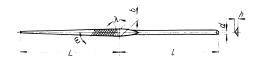
Материал: углеродистая сталь

|          | Размер   |             | B MM<br>in mm |          |          | Число основных насечек<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |    |          |         |    |    |  |
|----------|----------|-------------|---------------|----------|----------|--------------------------------------------------------------------------------------------|----|----------|---------|----|----|--|
|          | omensio: | 18 111 1111 |               | λ°       | ത്       | номер насечки<br>cut No.                                                                   |    | И        |         |    |    |  |
| L        | 3        | d           | 1             |          |          | 1                                                                                          | 2  | 3        | 4       | 5  | 6  |  |
| 60<br>80 | 2,8<br>4 | 2,5<br>3,5  | 60<br>80      | 20<br>20 | 55<br>55 |                                                                                            | 32 | 40<br>40 | 50<br>— | 63 | 80 |  |

. Обозначение трехгранного надфили с длиной рабочей части 80 мм, с насечной N(2) .

Надф. трехгран. 80 № 2 ГОСТ 4543-53.

Designation of a three-square needle file, 80 mm working length, No. 2 cut: Three-square needle file 80 No. 2 GOST 1513-53.




#### надфили трехгранные односторонние

(no FOCT 4513-53)

#### BARRETTE NEEDLE FILES

(acc. to GOST 1513-53)



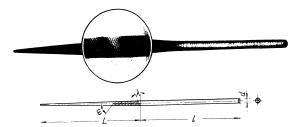
Материал: углеродистая сталь

Material: carbon steel

|                | Размеры в мм<br>Dimensions in mm |               |                 |                |                | c              | Число основных насечек<br>на 10мм длины<br>Number of overcut teeth<br>per 10mm of length |    |              |               |               |               |  |
|----------------|----------------------------------|---------------|-----------------|----------------|----------------|----------------|------------------------------------------------------------------------------------------|----|--------------|---------------|---------------|---------------|--|
|                |                                  |               |                 |                | λ°             | ø°             | номер насечки сut No.                                                                    |    |              |               |               |               |  |
| L              | b                                | h             | d               | ı              |                |                | 1 2 3 4 5                                                                                |    |              | 6             |               |               |  |
| 40<br>60<br>80 | 3<br>4<br>5,5                    | 1<br>1,4<br>2 | 2<br>2,5<br>3,5 | 80<br>60<br>80 | 20<br>20<br>20 | 55<br>55<br>55 |                                                                                          | 32 | <br>40<br>40 | 50<br>50<br>— | 63<br>63<br>— | 80<br>80<br>— |  |

. Обозначение трехгранного односторониего надфили с длиной рабочей части 80 мм, с насечкой  $\Delta\!(2)$ 

Надф. трехгр. одностор. 80 № 2 ГОСТ 4543-53.


Designation of a barrette needle file, 80 mm working length, No. 2 cut: Barrette needle file 80 No. 2 GOST 1513-53.

#### НАДФИЛИ КРУГЛЫЕ

(no FOCT 1513-53)

#### ROUND NEEDLE FILES

(acc. to GOST 1513-53)



Материал, углеродистан сталь

Material: carbon steel

| Pas   | вмеры в    | мм       |          |          | Число основных насечек<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |    |          |                |         |         |  |  |  |
|-------|------------|----------|----------|----------|--------------------------------------------------------------------------------------------|----|----------|----------------|---------|---------|--|--|--|
| Dime  | nsions ii  | n mm     | λ°       | ω°       |                                                                                            |    |          | насечкі<br>No. | 1       |         |  |  |  |
| L     | d          | ı        |          |          | 1                                                                                          | 2  | 3        | 4              | 5       | 6       |  |  |  |
| 60 80 | 2,5<br>3,5 | 60<br>80 | 20<br>20 | 55<br>55 |                                                                                            | 32 | 40<br>40 | 50<br>—        | 63<br>— | 80<br>— |  |  |  |

Обозначение круглого надфили с длиной рабочей части 80 мм, с насеч-

Надф. кр. 80 № 2 ГОСТ 1543-53.

Designation of a round needle file,  $80\,\mathrm{mm}$  working length, No. 2 cut: Round needle file 80 No. 2 GOST 1513-53.





#### надфили полукруглые

(no FOCT 1513-53)

# HALF-ROUND NEEDLE FILES (acc. to GOST 1513-53)



Материал: углеродистая сталь

Material: carbon steel

|          |        |              | ры в мм<br>ons in mm |          |          |          | Число основных насечек<br>на 10 мм длины<br>Number of overeut teeth<br>per 10 mm of length<br>номер насечки |    |          |         |    |    |  |
|----------|--------|--------------|----------------------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------|----|----------|---------|----|----|--|
|          |        | ,            |                      |          |          |          |                                                                                                             |    | cut      | No.     |    |    |  |
| L        | b      | h            | d                    | l        |          |          | 1                                                                                                           | 2  | 3        | 4       | 5  | 6  |  |
| 60<br>80 | 4<br>5 | $^{1,5}_{2}$ | 2,5<br>3,5           | 60<br>80 | 20<br>20 | 55<br>55 |                                                                                                             | 32 | 40<br>40 | 50<br>— | 63 | 80 |  |

. Обозначение полукруглого надфила с длиной рабочей части 80 мм, е насечкой № 2:

Надф. полукр. 80 № 2 ГОСТ 4543-53.

Designation of a half-round needle file, 80 mm working length, No. 2 cut: Half-round needle file 80 No. 2 GOST 1513-53.

#### надфили овальные

(no POCT 1513-53)

# CROSSING NEEDLE FILES (acc. to GOST 1513-53)



Материал: углеродистая сталь carbon steel

Material:

|          |             | меры т  |                 |                |                |                | Число основных насечек<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |    |          |                |               |               |  |
|----------|-------------|---------|-----------------|----------------|----------------|----------------|--------------------------------------------------------------------------------------------|----|----------|----------------|---------------|---------------|--|
|          | Dimer       | sions i | n mm            |                | 'n             | ω°             |                                                                                            | 11 |          | іасечкі<br>Хо. | 1             |               |  |
| L        | b           | h       | d               | 1              |                |                | 1                                                                                          | 2  | 3        | 4              | 5             | 6             |  |
| 40<br>60 | 3<br>4<br>5 | 1,5     | 2<br>2,5<br>3.5 | 80<br>60<br>80 | 20<br>20<br>20 | 55<br>55<br>55 | <br>                                                                                       | 32 | 40<br>40 | 50<br>50<br>—  | 63<br>63<br>— | 80<br>80<br>— |  |

Оболимение опального падфили с длиной рабочей части 80 мм, с насеч Надф. ов. 80  $\times$  2 ГОСТ 1513-53.

Designation of a crossing needle file, 80 mm working length, No. 2 cut: Crossing needle file 80 No. 2 GOST 1513-53.





#### надфили Ромбические

(но ГОСТ 1513-53)

#### LOZENGE NEEDLE FILES

(acc. to GOST 1513-53)



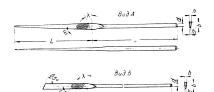
Материал: углеродистая сталь

carbon steel Material:

|          | Размеры в мм<br>Dimensions in mm |               |            |          | à°       | ω.       | Число основных насечек<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |    |          |        |        |    |  |
|----------|----------------------------------|---------------|------------|----------|----------|----------|--------------------------------------------------------------------------------------------|----|----------|--------|--------|----|--|
|          |                                  | ensions in mm |            |          |          |          | номер насечки<br>cut No.                                                                   |    |          |        |        |    |  |
| L        | b                                | h             | d          | 1        |          |          | 1                                                                                          | 2  | 3        | 4      | 5      | 6  |  |
| 60<br>80 | 3,5<br>5                         | 1,4<br>2      | 2,5<br>3,5 | 60<br>80 | 20<br>20 | 55<br>55 |                                                                                            | 32 | 40<br>40 | 50<br> | 63<br> | 80 |  |

. Обозначение ромбического надфила с длиной рабочей части 80 мм, с насечкой  $\mathcal{N}(2)$ 

Надф. ромб, 80 № 2 ГОСТ 1543-53,


Designation of a lozenge needle file,  $80 \ \mathrm{mm}$  working length, No. 2 cut: Lozenge needle file 80, No. 2 GOST 1513-53.



(no FOCT 1513-53)

#### KNIFE NEEDLE FILES

(acc. to GOST 1513-53)



Материал: углеродистая сталь

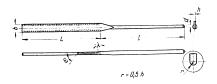
Material: carbon steel

| Вид<br>над-<br>филя |                |               | aзмері<br>nension |                   |                   |                | J°.            | ø°             | Число основных насечен<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |            |               |          |              |        |
|---------------------|----------------|---------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|--------------------------------------------------------------------------------------------|------------|---------------|----------|--------------|--------|
| Type<br>of<br>file  |                |               |                   |                   |                   |                |                | ω              | номер насечки cut No.                                                                      |            |               |          |              | 6      |
|                     | L              | h             | h <sub>1</sub>    | b                 | d                 | ı              |                |                | 1                                                                                          |            | ابً           | -        |              |        |
| A<br>A<br>B         | 60<br>80<br>40 | 1,4<br>2<br>1 | 0,3<br>0,5<br>0,1 | 4,5<br>5,5<br>4,0 | 2,5<br>3,5<br>2,0 | 60<br>80<br>80 | 20<br>20<br>20 | 55<br>55<br>55 |                                                                                            | <br>32<br> | 40<br>40<br>— | 50<br>50 | 63<br><br>63 | 80<br> |

- Боковые и верхини узкая стороны надфилей имот двойную насечку, а узкаи имании сторона надфилей вида А одинарную насечку.
   Ширина и телицина надфилей вида А уменьшаются по направлению к поску.
   Толицина надфилей вида Б по длине не изменяется.
   Обозначение пожовочного надфили с длиной рабочей части 80 мм. с насечкой № 2:
   Насиф пож. 80 № 2 ГОСТ 1512.5:
- Both sides and upper edge of files are double cut; the lower edge of type A files is single cut.
   Type A files are tapered in width and thickness to the point of file.
   Type B files are parallel in thickness the entire length.
   Designation of a knife needle file, 80 mm working length, No. 2 cut:

  - - Knife needle file 80 No. 2 GOST 1513-53.






### надфили пазовые

(по ГОСТ 1513-53)

#### CROCHET NEEDLE FILES

(acc. to GOST 1513-53)



Материал: углеродистая сталь

Material:

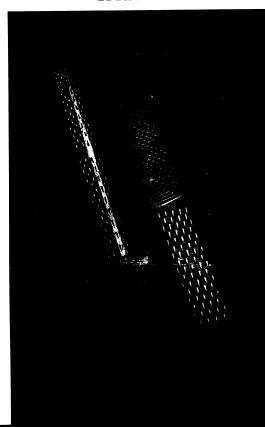
carbon steel

|          |   | змеры в :<br>ensions in |   |   | λ° | ω°       | Число основных насечек<br>на 10 мм длины<br>Number of overcut teeth<br>per 10 mm of length |          |  |  |
|----------|---|-------------------------|---|---|----|----------|--------------------------------------------------------------------------------------------|----------|--|--|
|          |   |                         |   |   |    |          | номер насечки<br>cut No.                                                                   |          |  |  |
| L        | ь | h                       | d | ı |    |          | 1                                                                                          | 2        |  |  |
| 60<br>80 |   |                         |   |   |    | 55<br>55 | 25<br>25                                                                                   | 32<br>32 |  |  |

- 1. По специальному заказу пазовые надфили могут быть изготовлены
- п. 10 специальныму заказу назовые подриги могу сыть изголожения и других размеров.
   2. Овальные стороны надфилей имеют двойную насечку. По специальному заказу надфили могут быть изготовлены с одинарной насечкой.
   3. Обозначение пазового надфили толщиной 1 мм, с насечкой № 2:

Надф. наз. 1 мм. № 2 ГОСТ 1513-53.

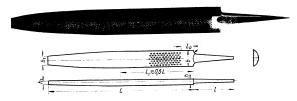
- 1. Files of other sizes may be furnished on special order.
- 2. Oval sides of files are double cut. Single cut files are special.
- 3. Designation of a crochet needle file, 1 mm thickness, No. 2 cut:


Crochet needle file 1 mm No. 2 GOST 1513-53.





## РАШПИЛИ


#### RASPS



#### РАШПИЛИ ПОЛУКРУГЛЫЕ

(по ОСТ ИКТМ 2008-39)

HALF-ROUND RASPS (acc. to OST NKTM 2008-39)



Материал: углеродистая сталь

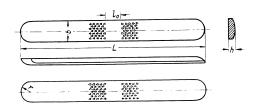
Material: carbon steel

|                          |                            |                      | ывмм<br>nsin mm          |                    | Класс<br>на-         | Число насечек на 10 мм<br>Number of teeth<br>per 10 mm |                                          |                                          |  |
|--------------------------|----------------------------|----------------------|--------------------------|--------------------|----------------------|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| L                        | $l_0$                      | b                    | $b_1$                    | h                  | $h_1$                | сечки<br>Cut No.                                       | по длине<br>рашпиля<br>of rasp<br>length | по ширине<br>рашпиля<br>of rasp<br>width |  |
| 250<br>250<br>350<br>350 | 15<br>15<br>15<br>15<br>15 | 26<br>26<br>35<br>35 | 13<br>13<br>17,5<br>17,5 | 9<br>9<br>11<br>11 | 4,8<br>4,8<br>6<br>6 | 1<br>2<br>1<br>2                                       | 3,6<br>6,0<br>2,8<br>5,2                 | 2,8<br>4<br>2,0<br>3,2                   |  |

. Обозначение разникли подукруглого с длиной рабочей части  $250~\mathrm{мм},$  с насечкой  $\mathcal{M}(2)$ 

Рашина волукруга, 250 № 2 ОСТ ИКТМ 2008-39.

Designation of a half-round rasp,  $250\;\mathrm{mm}$  working length, No. 2 cut: Half-round rasp 250 No. 2 OST NKTM 2008-39.




#### РАШПИЛИ САПОЖНЫЕ

(no OCT HETM 2010-39)

#### SHOE RASPS

(acc. to OST HKTM 2010-39)



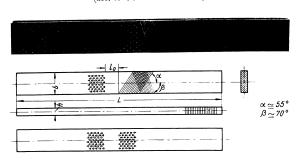
Материал: углеродистая сталь

Material: carbon steel

|            | Размер                   |          |        | Класс              | Число насеч<br>Number of tee          |                                       |
|------------|--------------------------|----------|--------|--------------------|---------------------------------------|---------------------------------------|
| L          | Dimension l <sub>0</sub> | b b      | h      | насечки<br>Cut No. | по длине<br>рашпиля<br>of rasp length | по ширине<br>рашпиля<br>of rasp width |
| 200<br>250 | 20<br>20                 | 22<br>26 | 6<br>8 | 2<br>2             | 6,4<br>6                              | 4,4<br>4                              |

Обозначение рашинля саножного длиной 200 мм, с насечкой № 2; Рашииль сапожный 200  $\,\,\mathrm{As}\,\,2\,$  ОСТ НКТМ 2010-39,

Designation of a shoe rasp, 200 mm length, No. 2 cut: Shoe rasp 200 No. 2 OST NKTM 2010-39.




#### РАШПИЛИ КОННЫЕ

(по ОСТ НКТМ 2011-39)

#### HORSE RASPS

(acc. to OST NKTM 2011-39)



Материал: углеродистан сталь

Material: carbon steel

|            | Pasmep<br>Dimension |          |        | Класс<br>насечки | Число рашпильных<br>насечек на 10 мм<br>Number of teeth per 10 mm |                                       |  |  |
|------------|---------------------|----------|--------|------------------|-------------------------------------------------------------------|---------------------------------------|--|--|
| L          | l <sub>o</sub>      | ь        | h      | Cut No.          | по длине<br>рашпиля<br>of rasp length                             | по ширине<br>рашпиля<br>of rasp width |  |  |
| 350<br>400 | 25<br>25            | 40<br>45 | 7<br>8 | 1<br>1           | 2,8<br>2,4                                                        | 2,0<br>1,6                            |  |  |

Обозначение рашинля конного длиной 400 мм, с насечкой № 1: Рашинлы конный 400 № 1 ОСТ ИКТМ 2011-39.

Designation of a horse rasp, 400 mm length, No. 1 cut:

Horse rasp 400 No. 1 OST NKTM 2011-39.



# всесоюзное экспортно-импортное объединение «СТАНКОИМПОРТ» экспортирует и импортирует:

**ЭКСПОРТИРУЕТ И ИМПОРТИРУЕ**Металлорежущие станки
Деревообрабатывающие станки

Кузнечно-прессовое оборудование Прокатное оборудование (импорт) Измерительные приборы и инструменты Приборы и машины для испытания металлов

Оптические приборы и инструменты

Ручной электрический и пневматический инструмент

Режущий инструмент по металлу и дереву

Слесарно-монтажный инструмент и зажимные патроны

Изделия из твердых сплавов

Абразивные изделия

Шариковые и роликовые подшипники

Металлографические, биологические и поляризационные микроскопы

Кинооборудование и киноаппаратуру

Геодезические приборы и инструменты

Фотоаппаратуру, бинокли, лупы, линзы

Сырое оптическое стекло

С запросами на все товары, относящиеся к номенклатуре В/О «СТАНКОИМПОРТ», и за дополнительными сведениями просим обращаться по адресу:

Москва, 200, Смоленская-Сенная пл., 32/34

Всесоюзное Экспортно-Импортное Объединение «Станкоимпорт»

> Телеграфный адрес: Москва Станкоимпорт

Конструкции и технические характеристики инструмента,приведенного в каталоге, могут быть изменены без дополнительной информации.



# vsesojuznoje exportno-importnoje objedinenije «STANKOIMPORT»

EXPORTS AND IMPORTS:

Machine Tools

Woodworking Machinery

Metal Working Machinery (Presses, Hammers, Shears, Cold Forming Machines, Punching Machines)

Rolling Mills (imports)

 ${\bf Measuring\ Instruments\ and\ Apparatus\ (for\ Metal\ Industry)}$ 

Testing Machines and Instruments (for metals)

Testing Machines and Instruments (for Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanic's Tools and Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types

Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photographic Cameras

Binoculars, Magnifiers, Lenses

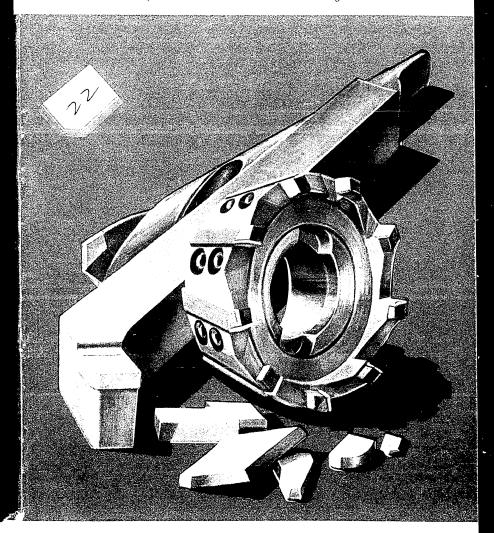
Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije

\*Stankoimport\*

32/34, Smolenskaja-Sennaja pl., Moscow, USSR


For cables:

Stankoimport Moscow

Design and specifications of the tools illustrated herein are subject to change without notice.

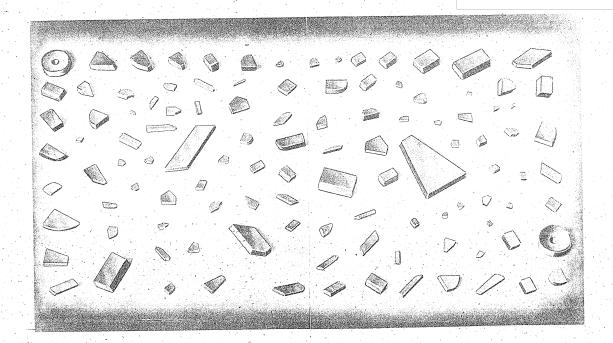
Внешторгиздат. Заказ № 2596

# for metal cutting



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE 
« STANKOIMPORT »

MOSCOW-USSR


Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0



СССР — Москва



Moscow -- USSR



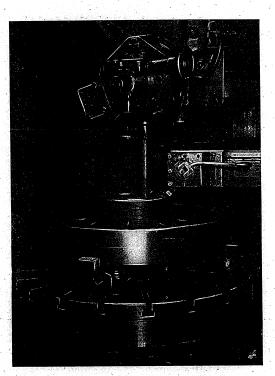
ЭКСПОРТ ЧЕРЕЗ ВО "СТАНКОИМПОРТ"

SOLE AGENTS: V/O "STANKOIMPORT" (Export Division)

Sanitized Conv. Approved for Release 2010/10/19 · CIA-RDP81-01043R0008001600002-0

# SINTERED CARBIDES

for metal cutting


CATALOGUE AND INSTRUCTIONS
JC 12



UNION TRUST OF HARD ALLOY INDUSTRY
USSR • MOSCOW







Machining of fly-wheel with carbide tipped tools

#### CONTENTS

SUPERSEDES CATALOGUE No. 03

## ATTENTION OF CARBIDE CONSUMERS

The application of hard alloys for metal drawing is described in our catalogue

No. 10

"CARBIDES FOR WIRE DRAWING AND FOR CALIBRATION OF METAL RODS"

The application of hard alloys for mining Industry is described in our catalogue

No. 11

"HARD ALLOYS FOR THE MINING INDUSTRY"

#### WHAT IS SINTERED CARBIDE?

Sintered Carbides consist of the finest grains of carbides (carbon compositions) of rare refractory metals—tungsten and titanium, cemented by a binding metal—cobalt.

Owing to a special method of manufacture—which consists in pressing the powders and sintering them without bringing the entire compound to the melting point—our alloys maintain the extremely valuable properties of the initial carbides, the hardness of which is almost identical to that of the diamond, combined with toughness resulting from the presence of cobalt.

# PROGRESS OF INDUSTRY CALLS FOR THE USE OF CARBIDES.

 $\label{limited} \mbox{Highly efficient and economical production is impossible without the use of Sintered Carbides,}$ 

This is mainly due to the fact that Sintered Carbides are far more efficient than other cutting materials: they greatly increase the productive capacity of the equipment available and reduce the cost of manufacture. Owing to their great hardness and high wear-resistance Sintered Carbides can be used for machining of almost all kinds of metals and non-metallic materials.



Due to these properties both a perfect surface finish and a high accuracy of the machined part are obtained, as Carbides can be used for a long period of time without showing any substantial wear.

Sintered Carbides do not lose their cutting ability even at high temperatures. This permits to use the Sintered Carbide with very high cutting speeds and large chip cross-sections.

High wear-resistance of the Sintered Carbides makes them an indispensable material for the production of various special tools, shaped cutters and auxiliary tools, as well as for the manufacture of machine parts subject to rapid wear.

Speedy methods of metal cutting are unobtainable without the most extensive application of high quality Sintered Carbides.

The use of Sintered Carbides makes it possible to machine such materials as haddened steel, chilled cast iron, granite, etc.

Sintered Carbides are successfully used for wheel dressing and for machining and cutting of glass; in many cases they are applied in place of diamonds.

All these advantages enable every industrial works to obtain a considerable economy and to reduce the cost of production.

#### emalizatidabilikkisse Oserguakusren-istoria

# HOW TO SELECT THE PROPER GRADE OF CARBIDE

Sintered Carbides produced by our industry are divided into two groups: Group "TK" tungsten-titanium alloys intended for steel cutting, and group "BK" tungsten-carbide and cobalt, intended for cutting of cast iron, non-ferrous metals and their alloys and non-metallic materials.

Each group is subdivided into several grades having peculiar properties, which determine the field of its application. The properties of various Carbide grades produced are combined in such a way as to meet practically any requirements which may arise in a modern industrial works.

The proper selection of Carbide Grades for any particular purpose is a very important factor which influences the effective application of the Sintered Carbides.

#### CHEMICAL COMPOSITION OF SINTERED CARBIDES

|                                  |                                                     | Approximat                       | te chemical co                  | omposition                 |
|----------------------------------|-----------------------------------------------------|----------------------------------|---------------------------------|----------------------------|
| Group of Carbides                | Grade                                               | Tungsten<br>Carbide              | Titanium<br>Carbide             | Cobalt                     |
| Tungsten-Cobalt "BK"             | BK2<br>BK3<br>BK6<br>BK8<br>BK11                    | 98<br>97<br>94<br>92<br>89       |                                 | 2<br>3<br>6<br>8<br>11     |
| Tungsten-Titanium Cobalt<br>"TK" | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4<br>T60K6 | 85<br>78<br>79<br>79<br>66<br>34 | 6<br>14<br>15<br>15<br>30<br>60 | 9<br>8<br>6<br>6<br>4<br>6 |



#### PHYSICAL AND MECHANICAL PROPERTIES OF SINTERED CARBIDES

| THURSTONE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART |                                                     |                                                         |                                                                          |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|
| Group of Carbides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grade                                               | Ultimate<br>bending<br>strength<br>kg/mm²<br>(not less) | Specific<br>Gravity                                                      | Rockwell<br>hardness<br>(not less)           |
| Tungsten-Cobalt "BK"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BK2<br>BK3<br>BK6<br>BK8<br>BK11                    | 100<br>100<br>120<br>130<br>150                         | 15,0—15,4<br>14,9—15,3<br>14,6—15,0<br>14,4—14,8<br>14,0—14,4            | 90,0<br>89,0<br>88,0<br>87,5<br>86,0         |
| Tungsten-Titanium Cobalt<br>"TK"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4<br>T60K6 | 115<br>115<br>110<br>110<br>90<br>75                    | 12,3—13,2<br>12,2—12,0<br>11,0—11,7<br>11,0—16,7<br>9,5— 9,8<br>6,5— 7,0 | 88,5<br>89,5<br>90,0<br>91,0<br>92,0<br>90,0 |

#### COMPARATIVE UTILIZATION PROPERTIES OF SINTERED CARBIDES

Group "BK"

| - Crume |                                                                                                |
|---------|------------------------------------------------------------------------------------------------|
| BK2     | The hardest, most wear-<br>and heat-resistant alloy<br>of this group                           |
| 4.4     |                                                                                                |
| 1.      | High wear-resistance and<br>hardness, but less than<br>for grade BK2                           |
| BK6     | Less toughness and wear-<br>resistance than grade BK3<br>with higher utilization<br>toughness. |

| BK8     | High utilization toughness, |
|---------|-----------------------------|
|         | high resistivity shocks and |
| r *** _ | vibrations but less hard    |
|         | and wear-resistant than     |
|         | grade BK6                   |

Group "TK"

| Grade | Utilization properties                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------|
| T5K10 | The highest utilization toughness for this group of carbides. Less hard and wear-resistant than grade T14K8. |
|       | More hard, wear- and heat-<br>resistant than grade<br>T5K10 with somewhat<br>less utilization toughness.     |

T15K6 More hard, wear- and heat-resistant than grade T14K8 with less utiliza-tion toughness.

T15K6T More hard, wear- and heatresistant than grade T15K6 with somewhat lower utilization tough-ness.

Group "BK"

Utilization properties

Group "TK"

Grade Utilization properties

BKII The most tough of above mentioned Tungsten-Car-bide hard alloys. The low-est. hardness and wear-resistance. Used when cut-ting materials difficult for machining.

T30K6 Extremely wear- and heat-resistant with lowest uti-lization toughness.

Continuation

The following principal points are to be considered when selecting the grade of Sintered Carbide:

- 1. Physical and mechanical properties of Sintered Carbides.
- 2. Characteristics of the material to be machined.
- 3. Kind and conditions of machining operation.
- 4. Required accuracy and surface finish of the surface to be machined.
- 5. Condition and kinematic and dynamical capacities of the machine tool.

The table given below contains suggestions how to select the proper grade of Sintered Carbide depending on type and conditions of operation and material to be machined.

In some cases, however, due to the specific features of the machining process, unusual conditions of application or special kind of material to be cut, this table may prove insufficient.

In such case the ALL-UNION BUREAU OF TECHNICAL AID IN THE FIELD OF CARBIDE APPLICATION should be applied to for advice.

8





# GRADE SELECTION DEPENDING ON KIND AND CONDITIONS OF MACHINING OPERATION AND MATE RIAL TO BE MACHINED

|                                               |                                                        |                                |                        |                   | Sintered carbide     | Grades suggeste                                                      | d for machining                                           |                                         |                           |
|-----------------------------------------------|--------------------------------------------------------|--------------------------------|------------------------|-------------------|----------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------|
| Kind and terms of machining operation         | Rigidity of the system<br>"Machine-tool-part-<br>tool" | Comparative grade productivity | Carbon and alloy steel | Special<br>steels | Hardened<br>steel    | $\begin{array}{c} \text{Cast Iron} \\ H_B \leqslant 240 \end{array}$ | Cast iron of<br>high hardness<br>H <sub>B</sub> = 400-700 | Non-ferrous<br>metals and<br>alloys     | Non-metallic<br>materials |
|                                               |                                                        | TURNING OF EX                  | TERNAL AND             | FACE SURFA        | CES AND BO           | RING                                                                 |                                                           |                                         |                           |
| Rough turning of forg-                        | High                                                   | Highest                        | T5K10                  | вк8               | _ 1                  | BK6                                                                  |                                                           | BK6                                     | -                         |
| ings and castings<br>of scale surfaces with   | Normal                                                 | Middle                         | вк8                    | BK11              | ,                    | вк6                                                                  |                                                           | ВК6                                     | 19. <del>–</del> 2. 11    |
| varying depth of cut<br>and interrupted cuts  | Insufficient                                           | Reduced                        | ВК11                   | -                 | <u> </u>             | BK8                                                                  | , <del>-</del> '                                          | вк8                                     |                           |
|                                               |                                                        |                                | *                      |                   |                      |                                                                      |                                                           |                                         |                           |
| Rough turning of scale surfaces with vary-    | High                                                   | Highest                        | T15K6                  | T5K10             | -                    | вк6                                                                  | BK6                                                       | BK6                                     | BK2<br>BK3                |
| ing depth of cut and                          | Normal                                                 | Middle                         | T14K8                  | BK8               | -                    | BK6                                                                  | BK6                                                       | BK6                                     | BK6                       |
| uninterrupted cuts                            | Insufficient                                           | Reduced                        | T5K10                  | BK11              | _                    | вк8                                                                  | вк8                                                       | BK8                                     | BK8                       |
| Semi-finish and finish<br>turning with inter- | High                                                   | Highest                        | T15K6                  | T5K10             | T14K8                | ВК6                                                                  | _                                                         | ВК6                                     | BK2<br>BK3                |
| rupted cut                                    | Normal                                                 | Middle                         | T14K8                  | вк8               | T5K10                | вк6                                                                  | -                                                         | вк6                                     | ВК6                       |
|                                               | Insufficient                                           | Reduced                        | T5K10                  | BK11              | . ВК8                | вк8                                                                  | _                                                         | ВК6                                     | BK6                       |
| Semi-finish and finish                        | High                                                   | Highest                        | T30K4                  | T15K6             | T15K6                | BK2<br>BK3                                                           | BK2                                                       | BK2<br>BK3                              | BK2<br>BK3                |
| turning with uninter-<br>rupted cut           | Normal                                                 | Middle:                        | T15K6T                 | T14K8             | T14K8                | BK6                                                                  | ВК6                                                       | BK3                                     | BK2<br>BK3                |
|                                               | . Insufficient                                         | Reduced                        | T15K6                  | T5K10             | T5K10                | ВК6                                                                  | ВК6                                                       | вк6                                     | BK6                       |
| Fine turning                                  | High                                                   | Highest                        | T60K6                  |                   | T30K4                | BK2<br>BK3                                                           | BK2                                                       | BK2<br>BK3                              | BK2<br>BK3                |
|                                               | Normal                                                 | Middle                         | T30K4                  |                   | T15K6T               | BK2<br>BK3                                                           | BK2                                                       | BK2<br>BK3                              | BK2<br>BK3                |
|                                               | Insufficient                                           | Reduced                        | T15K6T                 | _                 | T15K6                | BK6                                                                  | ВК6                                                       | BK6                                     | BK6                       |
|                                               |                                                        |                                | MIL                    | LING              |                      |                                                                      |                                                           | 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 |                           |
| Rough milling                                 | High                                                   | Highest                        | T15K6                  | T5K10             | " - " <sub>-</sub> " | BK6                                                                  | ВК6                                                       | BK2<br>BK3                              | BK2<br>BK3                |
|                                               | Normal                                                 | Middle                         | T14K8                  | BK8               |                      | вк6                                                                  | ВК6                                                       | BK2                                     | BK2<br>BK3                |
|                                               | Insufficient                                           | Reduced                        | T5K10                  | BK8               | j= -                 | вк8                                                                  | ВК8                                                       | BK3<br>BK6                              | BK3<br>BK6                |
|                                               | <u> </u>                                               | 1                              | <u> </u>               | 1                 | <u> </u>             |                                                                      | 1 1                                                       |                                         |                           |



12



#### Continuation

|                                       |                                                 |                                |                                | <del></del>              | <del></del>                           |                                      |                                                           |                                     | Continuum                                                                                                            |
|---------------------------------------|-------------------------------------------------|--------------------------------|--------------------------------|--------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                       |                                                 |                                |                                | Si                       | intered carbide Gr                    | ades suggested                       | for machining                                             |                                     | <u> 1985 - 1984 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 198</u> |
| Kind and terms of machining operation | Rigidity of the system "Machine-tool-part-tool" | Comparative grade productivity | Carbon and alloy steel         | Special<br>steels        | Hardened<br>steel                     | Cast iron H $_{\rm B} \leqslant$ 240 | Cast iron of<br>high hardness<br>H <sub>B</sub> = 400-700 | Non-ferrous<br>metals and<br>alloys | Non-metallic<br>materials                                                                                            |
| Finish milling                        | High<br>Normal<br>Insufficient                  | Highest<br>Middle<br>Reduced   | T30K4<br>T15K6<br>T14K8        | T15K6<br>T14K8<br>T5K10  | T30K4<br>T15K6<br>T14K8               | BK2<br>BK3<br>BK6                    | BK2<br>BK3<br>BK6<br>BK6                                  | BK2<br>BK3<br>BK2<br>BK3<br>BK6     | BK2<br>BK3<br>BK2<br>BK3<br>BK6                                                                                      |
| Drilling                              | High<br>Normal<br>Insufficient                  | Highest<br>Middle              | T14K8<br>T5K10                 | BK8<br>BK8               | BK6<br>BK8                            | ВK6<br>ВK6<br>ВK8                    | <u>-</u>                                                  | BK2<br>BK3<br>BK6                   | BK2<br>BK3<br>BK6                                                                                                    |
| Boring                                | High Normal Insufficient                        | Reduced Highest Middle Reduced | BK8<br>T15K6<br>T15K6<br>T14K8 | T5K10<br>BK6<br>BK8      | BK2<br>BK3<br>BK6<br>BK8              | BK2<br>BK3<br>BK6<br>BK8             | _                                                         | BK2<br>BK3<br>BK6<br>BK6            | BK2<br>BK3<br>BK6<br>BK6                                                                                             |
| Rough counter-boring                  | High                                            | = COUNT                        | TER-BORING                     | T5K10                    | · · · · · · · · · · · · · · · · · · · | BK2<br>BK3                           | BK2<br>BK3                                                | BK2<br>BK3                          | BK2<br>BK3                                                                                                           |
|                                       | Normal<br>Insufficient                          | Middle<br>Reduced              | T5K10<br>BK8 -                 | BK6<br>BK8               |                                       | BK6<br>BK8                           | BK6<br>BK8                                                | BK6<br>BK8                          | BK6<br>BK6                                                                                                           |
| Finish counter-boring                 | High<br>Normal<br>Insufficient                  | Highest Middle Reduced         | T30K4<br>T15K6                 | T15K6<br>T14K8<br>T5K10  | T15K6<br>T14K8<br>T14K8               | BK2<br>BK3<br>BK6                    |                                                           | BK2<br>BK3<br>BK6<br>BK6            | BK2<br>BK3<br>BK6<br>BK6                                                                                             |
|                                       | This direction of the second                    | Keduced                        | T15K6  REAMING                 | F HOLES                  | TOOLEA                                | pro I                                |                                                           | nuo I                               |                                                                                                                      |
| Hole reaming                          | High<br>Normal<br>Insufficient                  | Highest* Middle Reduced        | T60K6<br>T30K4<br>T15K6T       | T30K4<br>T15K6T<br>T15K6 | T30K4<br>T15K6T<br>T15K6              | BK2<br>BK3<br>BK6<br>BK6             | -<br>-<br>-                                               | BK2<br>BK3<br>BK6<br>BK6            | BK2<br>BK3<br>BK6<br>BK6                                                                                             |



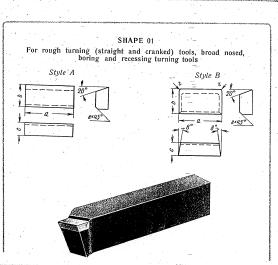
## Donn

#### STANDARD PRODUCTS OF SINTERED CARBIDES

As a result of an extensive and thorough investigation of the demands of the industry there were designed and standardized the most rational shapes and sizes of Carbide Tips for tipping of metal cutting tools.

In accordance with the State Standards for Sintered Carbides applied for cutting metal and non-metallic materials (GOST 2209-55) our industry produces 38 various shapes of Sintered Carbide Tips including 351 different sizes, out of which 62 sizes are both right- and left-hand.

Thus the above mentioned Standards provide for 24 tip sizes more than the previous standards No. 2209-49 contained in our catalogue No. 08 and it is intended for meeting maximal requirements of the metal working industry.


For a number of shapes having same length and width the above Standards provides two thicknesses (size c). The tip thickness is taken depending on the wear of cutters.

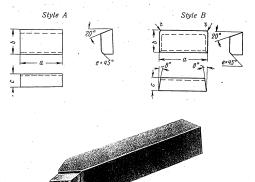
For tools subjected to wear both along top and relief surfaces should be used thick carbide tips while for tools subjected to wear along relief surface only thin carbide tips should be used.

In the following tables each tip is marked with a number consisting of four figures, the first two indicating the number of tip shape and the last two—the ordinal number of tip according to its size.

Both right-hand and two-way tool tips (not subdivided into right-hand and left-hand) have uneven numbers, while left-hand tips have even numbers.

SHAPES AND DIMENSIONS OF STANDARD CARBIDE TIPS



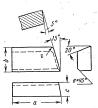



| Tri- Nr.                     |                    | Dime             | nsions in                | mm .              |                          |
|------------------------------|--------------------|------------------|--------------------------|-------------------|--------------------------|
| Tip No.                      | а                  | b                | - c                      | e                 | 7                        |
| 0101<br>0103<br>0105<br>0107 | 6<br>8<br>10<br>12 | 5<br>6<br>6<br>8 | 2,5<br>3,0<br>3,5<br>4,5 | 1,0<br>1,0<br>1,0 | 0,5<br>0,5<br>0,5<br>0,5 |
| 0109                         | 14                 | 10               | - 5,5                    | 1,5               | 0,5                      |
| 0111                         | 16                 | 10               | - 5,5                    | 1,5               | 0,5                      |
| 0113                         | 18                 | 12               | 7,0                      | 1,5               | 1                        |
| 0115                         | 20                 | 12               | 7,0                      | 1,5               | 1                        |
| 0117                         | 22                 | 15               | 8,5                      | 1,5               | 1                        |
| 0119                         | 25                 | 15               | 8,5                      | 1,5               | 1                        |
| 0121                         | 30                 | 16               | - 9,5                    | 1,5               | 1                        |
| 0123                         | 40                 | 18               | 10,5                     | 2,0               | 1,5                      |
| 0125                         | 50                 | 20               | 12,0                     | 2,0               | 1,5                      |
| 0127                         | 60                 | 22               | -12,0                    | 2,0               | 1,5                      |

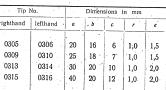


SHAPE 02

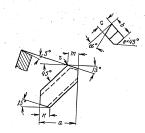
For rough turning (straight and bent), broad nosed finishing, boring and recessing tools mostly subject to wear along the side relief




| Tip No.                      | w." "                | Dime                 | isions in          | mm .                 |                   |
|------------------------------|----------------------|----------------------|--------------------|----------------------|-------------------|
| 110 100.                     | a                    | ь                    | c                  | e                    |                   |
| 0201<br>0203<br>0205         | 8<br>10<br>12        | 7<br>8<br>10         | 2,5<br>3<br>4      |                      | 0,5<br>0,5<br>0,5 |
| 0223<br>0225<br>0227         | 14<br>14<br>18       | 12<br>12<br>16       | 4,5<br>6<br>6      | 1<br>1,5<br>1,5      | 0,5<br>0,5<br>0,5 |
| 0229<br>0231<br>0235<br>0237 | 18<br>22<br>25<br>35 | 16<br>18<br>20<br>20 | 8<br>7<br>10<br>10 | 1,5<br>1,5<br>2<br>2 | 1<br>1<br>1       |



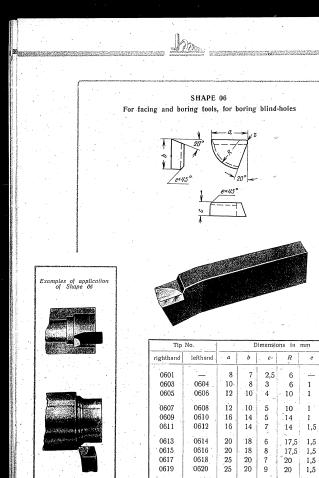


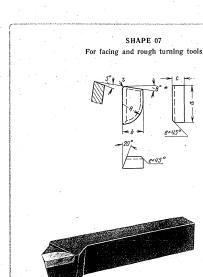


SHAPE 03 For rough turning cranked tools. Heavy duty type









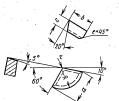



| Tip       | No.      |    |    | Din  | nension | s in r | nm · |      |     |
|-----------|----------|----|----|------|---------|--------|------|------|-----|
| righthand | lefthand | а  | b  | c    | m       | е      | · r  | k    | α°  |
|           |          |    |    |      |         |        |      |      | 1.1 |
| 0413      | 0414     | 20 | 16 | 7,0  | 5,5     | 1,5    | 1,0  | 9,0  | 20  |
| 0417      | 0418     | 25 | 18 | 8,0  | , 7,0   | 1,5    | 1,0  | 11,0 | 20  |
| 0421      | 0422     | 25 | 14 | -8,0 | 7,0     | 1,5    | 2,5  | 8,0  | 15  |
| 0423      | 0424     | 30 | 15 | 10,0 | 8,0     | 2,0    | 2,5  | 8.0  | 15  |

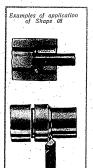






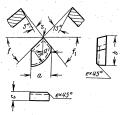

|          |                      | Dimensions in mm                      |                                                |                                                                                                                   |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |  |
|----------|----------------------|---------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| lefthand | а                    | b                                     | c ·                                            | R                                                                                                                 | j ,                                                                                                                                                                                                                    | e                                                                                                                                                                                                                                                              |  |
|          |                      | I .                                   | -                                              |                                                                                                                   | 1: "                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                |  |
|          | 10                   | 6                                     | 2,5                                            | 6                                                                                                                 | 1                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                              |  |
| 0704     | 12                   | -7                                    | 3                                              | 7                                                                                                                 | 1                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                              |  |
| 0726     | 15                   | 9                                     | .5                                             | - 9                                                                                                               | 1                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                              |  |
| 0730     | 20                   | 11                                    | 6                                              | 11.                                                                                                               | 1                                                                                                                                                                                                                      | 1,5                                                                                                                                                                                                                                                            |  |
| 0734     | 25                   | 14                                    | 8                                              | 14                                                                                                                | 1                                                                                                                                                                                                                      | 1,5                                                                                                                                                                                                                                                            |  |
|          | 0704<br>0726<br>0730 | - 10<br>0704 12<br>0726 15<br>0730 20 | - 10 6<br>0704 12 7<br>0726 15 9<br>0730 20 11 | -     10     6     2,5       0704     12     7     3       0726     15     9     5       0730     20     11     6 | -         10         6         2,5         6           0704         12         7         3         7           0726         15         9         5         9           0730         20         11         6         11 | -         10         6         2,5         6         1           0704         12         7         3         7         1           0726         15         9         5         9         1           0730         20         11         6         11         1 |  |




0,5 



SHAPE 08 For boring and rough turning tools with  $\phi\!=\!60^{\circ};$  for Milling Head Blades

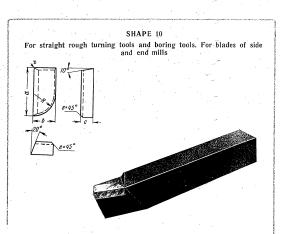






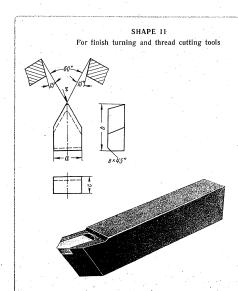

| in mm |     |      | Dimensions in mm |     |    |          |           |  |
|-------|-----|------|------------------|-----|----|----------|-----------|--|
| ,     | е.  | R    | c -              | b . | a  | letthand | righthand |  |
|       |     |      | -                |     |    |          |           |  |
| 1,0   | 1,0 | 8    | 3,0              | - 8 | 12 | 0818     | 0817      |  |
| 1,0   | 1,0 | 8    | 4,5              | 8 . | 12 | 0820     | 0819      |  |
| 1,0   | 1,0 | 10   | 4,0              | 10  | 15 | 0822     | .0821     |  |
| 1,0   | 1,5 | 10   | 5,5              | 10  | 15 | 0824     | 0823      |  |
| 1,0   | 1,5 | 12,5 | 4,5              | 12  | 18 | 0826     | 0825      |  |
| 1,0   | 1,5 | 12,5 | 6,0              | 12  | 18 | 0828     | 0827      |  |
|       |     |      |                  | 100 |    |          |           |  |

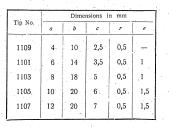


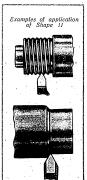


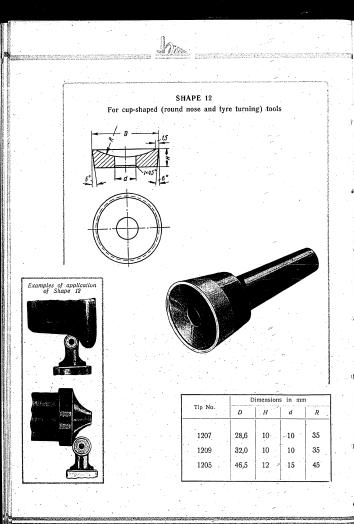


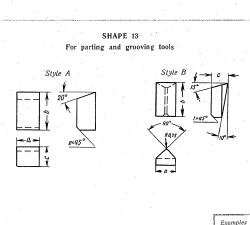

| . Tip     | No.      |     | D  | mens | ions i | n mm |    | `. | angles |                  |
|-----------|----------|-----|----|------|--------|------|----|----|--------|------------------|
| righthand | lefthand | а   | b  | ċ.   | d      | ,R   | r' | e  | φ°     | $\phi_1^{\circ}$ |
| 0909      | 0910     | 6   | 10 | 3    | 2      | 6    | 1  |    | 45     | 50               |
| 0903      | 0912     | 10  | 15 | 4    | 5      | 10   | 1  | 1  | 45     | 40               |
| 0913      | 0914     | 12  | 18 | 5    | 4      | 12,5 | 1  | 1  | 45     | 50               |
| 0915      | 0916     | 1.0 | 15 | 4    | 5      | 10   | 1  | 1  | 60     | 20               |
| 0917      | 0918     | 10  | 18 | 4    | 5,5    | 10   | 1  | 1  | 75     | 60               |





23

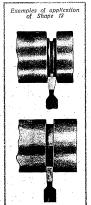




| Tip                          | No.                          | -                    | D                    | imensio                | ns in                    | mm                   |                          |
|------------------------------|------------------------------|----------------------|----------------------|------------------------|--------------------------|----------------------|--------------------------|
| righthand                    | lefthand                     | а                    | b                    | c                      | R                        | , r                  | e                        |
| 1001<br>1003<br>1005<br>1007 | 1004<br>1006<br>1008         | 6<br>8<br>10<br>12   | 5<br>6<br>6<br>8     | 2,5<br>3<br>3,5<br>4,5 | 5<br>6<br>6<br>8         | 0,5<br>0,5<br>1<br>1 | 1<br>1<br>1              |
| 1011<br>1015<br>1019<br>1021 | 1012<br>1016<br>1020<br>1022 | 16<br>20<br>25<br>30 | 10<br>12<br>15<br>16 | 5,5<br>7<br>8,5<br>9,5 | 10<br>12,5<br>15<br>15   | 1<br>1<br>1<br>1     | 1,5<br>1,5<br>1,5<br>1,5 |
| 1023<br>1025<br>1027<br>1029 | 1024<br>1026<br>1028<br>1030 | 40<br>50<br>12<br>16 | 18<br>20<br>8<br>10  | 10,5<br>12<br>3<br>4   | 17,5<br>20<br>8<br>10    | 1<br>1,5<br>1        | 2<br>2<br>1<br>1         |
| 1031<br>1033<br>1035<br>1037 | 1032<br>1034<br>1036<br>1038 | 18<br>30<br>40<br>50 | 12<br>16<br>18<br>20 | 4,5<br>6<br>8<br>8     | 12,5<br>15<br>17,5<br>20 | 1<br>1<br>1<br>1,5   | 1<br>1,5<br>1,5<br>1,5   |







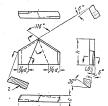




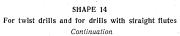



|         | I    | imension | s in mr | n   |
|---------|------|----------|---------|-----|
| Tip No. | a    | ь        | С.      | `е. |
| 1321    | 3    | 10       | 3       | 1.  |
| 1323    | 4    | 12       | . 4     | . 1 |
| 1325.   | 5    | 15       | 5       | 1   |
| 1307    | 6.   | 15       | 6       | 1,5 |
| 1309    | 8    | 18       | . 7     | 1,5 |
| 1311    | - 10 | 20       | 8       | 1,5 |
| 1319    | 12   | 20       | 10      | 2   |






SHAPE 14
For twist drills and for drills with straight flutes


Style B

Style A

116°



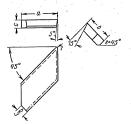
| Tip No.                      | Style          |                        | Dimension            | s in mm                         |                                         |
|------------------------------|----------------|------------------------|----------------------|---------------------------------|-----------------------------------------|
| TIP NO.                      | Style          | d <sub>1</sub>         | h                    | c                               | r                                       |
| 1401<br>1403<br>1405<br>1407 | A              | 3<br>3,5<br>4<br>4,5   | 4<br>4,5<br>4,5<br>5 | 0,6<br>0,7<br>0,8<br>0,9        |                                         |
| 1409<br>1411<br>1413<br>1415 | Б<br>,         | 5<br>5,5<br>6<br>6,5   | 5<br>5,5<br>6        | 0,9<br>1,0<br>1,5<br>1,5        | - T - T - T - T - T - T - T - T - T - T |
| 1417<br>1419<br>1421<br>1423 | 29<br>21<br>21 | 7<br>7,5<br>8<br>8,5   | 6,5<br>6,5<br>7<br>7 | 1,6<br>1,6<br>1,8<br>1,8        |                                         |
| 1425<br>1427<br>1429<br>1431 | "<br>B         | 9<br>9,5<br>10<br>10,8 | 8<br>8<br>9<br>9     | 2<br>2<br>2<br>2                | _<br>_<br>1                             |
| 1433<br>1435<br>1437<br>1439 | 11<br>12<br>21 | 11,8<br>13<br>14<br>15 | 10<br>11<br>12<br>13 | 2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 1<br>1<br>1                             |
| 1441<br>1443                 | ,,             | 16                     | 14                   | 3                               | 1                                       |





Continuation

| Tip No.                      | Style          |                              | Dimension                  | s in mm                |                          |
|------------------------------|----------------|------------------------------|----------------------------|------------------------|--------------------------|
| 11p 100,                     | 31310          | d <sub>1</sub>               | h                          | с                      | r                        |
| 1445<br>1447                 | В              | 18<br>19                     | 16<br>17                   | 3<br>3                 | 1,5<br>1,5               |
| 1449<br>1451<br>1453<br>1455 | n<br>n         | 20<br>21<br>22<br>23         | 18<br>18<br>18<br>18       | 3,5<br>3,5<br>3,5<br>4 | 1,5<br>1,5<br>1,5<br>1,5 |
| 1457<br>1459<br>1461<br>1463 | 33<br>33<br>33 | 24<br>25<br>26<br>27,5       | 18<br>20<br>20<br>20       | 4<br>4,5<br>4,5<br>4,5 | 1,5<br>2<br>2<br>2<br>2  |
| 1465<br>1467<br>1469<br>1471 | 33<br>11<br>11 | 28,5<br>29,5<br>30,5<br>31,5 | 20<br>22<br>22<br>22<br>22 | 4,5<br>5<br>5<br>5     | 2<br>2<br>2<br>2         |
| 1473<br>1475<br>1477<br>1479 | 29<br>29<br>20 | 33,5<br>36,5<br>39,5<br>42   | 24<br>24<br>24<br>26       | 5<br>5<br>5<br>6       | 2<br>2<br>2<br>2         |
| 1481<br>1483<br>1485<br>1487 | 29<br>29<br>29 | 44<br>47<br>50<br>52         | 26<br>26<br>28<br>28       | 6<br>6<br>6            | 2<br>2<br>2<br>2         |




29

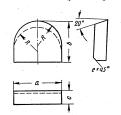
Examples of application of Shape 14



SHAPE 15
For chamfering tools and for tools used for machining dovetail slots



Examples of application of Shape 15



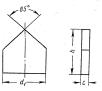





| Tij       |          |    |    |     |   |     |
|-----------|----------|----|----|-----|---|-----|
| righthand | lefthand | a  | b  | с   | r | e   |
| 1501      | 1502     | 12 | 8  | 3   | 1 | 1   |
| 1503      | 1504     | 16 | 10 | 4   | 1 | 1   |
| 1509      | 1510     | 20 | 16 | 5   | 1 | 1   |
| 1511      | 1512     | 25 | 18 | 6 - | 1 | 1,5 |
| 1513      | 1514     | 30 | 20 | 6   | 1 | 1,5 |
|           |          |    | 1  |     |   |     |

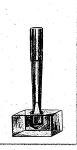
SHAPE 16
For round nose and tyre turning tools



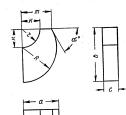

|         | 1  | Dimensions in mm |     |      |     |  |  |  |  |  |
|---------|----|------------------|-----|------|-----|--|--|--|--|--|
| Tip No. | a  | ь                | С   | R    | e   |  |  |  |  |  |
| 1601    | 8  | 8                | 3   | 4.   | 1   |  |  |  |  |  |
| 1603    | 10 | 10               | 3,5 | 5    | 1   |  |  |  |  |  |
| 1605    | 12 | 12               | 4,5 | 6    | 1   |  |  |  |  |  |
| 1621    | 16 | 14               | 5   | 8    | 1   |  |  |  |  |  |
| 1625    | 20 | 16               | 6   | 10   | 1,5 |  |  |  |  |  |
| 1629    | 25 | -20 .            | 7   | 12,5 | 1,5 |  |  |  |  |  |
| 1635    | 30 | 25               | 8   | -15  | 1,5 |  |  |  |  |  |
|         | 1  |                  |     |      |     |  |  |  |  |  |




31









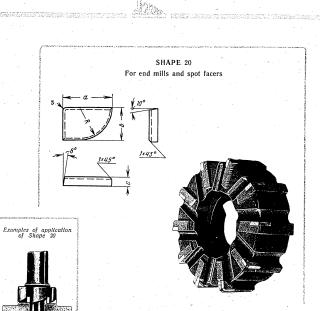




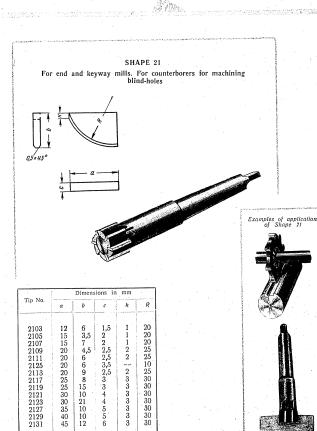
| . ] | Tip No. | Dimen          | sions i  | n mm      | Tip No.       | Dimensions in mn |          |       |
|-----|---------|----------------|----------|-----------|---------------|------------------|----------|-------|
|     | TIP NO. | d <sub>1</sub> | h.       | c         | TIP NO.       | d <sub>1</sub>   | h        | с     |
|     | 1701    | 5,5            | 8        | 0,8       | 1727          | 19               | 18       | 2,5   |
|     | 1703    | 6,5            | 8        | 1,0       | 1729          | 20               | 20       | 2,5   |
|     | 1705    | 7,5            | 9        | 1,2       | 1731          | 21               | 20       | 3,0   |
|     | 1707    | 8,5            | 10       | 1,5       | 1733          | 22               | 22       | 3,0   |
|     | 1709    | 9,5            | 10       | 1,5       | 1735          | 23               | 24       | 3,0   |
|     | 1711    | 10,8           | 12       | 1,8       | 1737          | 24               | 24       | 3,5   |
|     | 1713    | 11,8           | 12       | 1,8       | 1739          | 25               | 26       | 3,5   |
|     | 1715    | 13             | 14       | 2,0       | 1741          | 26               | 26       | 3,5   |
|     | 1717    | 14             | 14       | 2,0       | 1743          | 27,5             | 26       | 4,0   |
|     | 1719    | 15             | 15       | 2,2       | 1745          | 28,5             | 28       | 4,0   |
|     | 1721    | 16             | 15       | 2,2       | 1747          | 29,5             | 28       | 4,5   |
|     | 1723    | 17             | 16       | 2,5       | 1749          | 30,5             | 30       | 4,5   |
|     | 1725    | 18             | 18       | 2,5       | 1751          | 31,5             | 30       | 5,0   |
| l   | Note    | : Tips No      | s. 1701- | –1709 inc | lud, are mañu | factured         | rectangu | ılar. |

SHAPE 18 For round-nosed chamfering tools

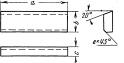





| Tip  |    |    | Dimens | sions in | n mm |    |    | Angle<br>α° |
|------|----|----|--------|----------|------|----|----|-------------|
| No.  | а  | b  | с      | m        | k    | R  | r  | αυ          |
| 1805 | 8  | 12 | 3      | 6        | 3    | 8  | 3  | 60          |
| 1807 | 10 | 15 | 4      | 8        | 5    | 10 | 5  | 60          |
| 1809 | 12 | 18 | 5      | 10       | 6    | 12 | 6  | 60          |
| 1811 | 16 | 22 | 5      | -        | 10   | 15 | 10 | -           |
|      | 1  | 1  |        |          |      |    |    | <u> </u>    |




33

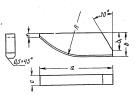

-32



| Tip       | No.      |     | Dime | nsions i | n mm |     |
|-----------|----------|-----|------|----------|------|-----|
| righthand | lefthand | а   | ь    | с        | R    | r   |
|           |          |     | - 1  |          | -    | -   |
| 2001      |          | 10  | 8    | 2,5      | 8    | 0,5 |
| 2003      | _        | 12  | 10   | 2,5      | 10   | 0,5 |
| 2005      | 2006     | 15  | 12   | 3        | 12,5 | 0,5 |
| 2007      | 2008     | 20  | 16   | 3,5      | 15   | 1   |
| 2009      | 2010     | 25  | 20   | 4        | 20   | 1   |
| 2011      | 2012     | 30  | 20   | 5        | 20   | . 1 |
|           |          | 2.4 | 1    |          |      |     |



SHAPE 24
For side milling cutters, end mills and T-slot cutters. For face-plain milling cutters

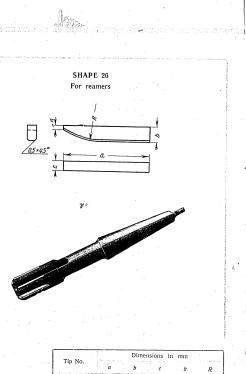





| Evample of application             |  |
|------------------------------------|--|
| Example of application of Shape 24 |  |
|                                    |  |
| A                                  |  |
|                                    |  |
| Andrew Carpeter                    |  |
|                                    |  |
|                                    |  |

| Tip No.  | Dim | ensior | s in | mm |          | Dim | ensior | ıs in | mm  |
|----------|-----|--------|------|----|----------|-----|--------|-------|-----|
| 11p (vo. | а   | b      | c    | e  | Tip No.  | a   | b      | с     | e   |
|          |     | } .    |      |    | 1 2      |     |        | -     |     |
| 2401     | 6   | 7      | 3    | 1  | 2427     | 20  | 10     | 4     | .1  |
| 2403     | 8   | 4      | 3    | 1  | 2447     | 22  | 14     | 4     | 1   |
| 2405     | 8   | .7     | 3    | 1  | 2449     | 24  | 14     | 4     | 1   |
| 2407     | 10  | 5      | 3    | 1  | 2451     | 26  | 14     | 5     | 1   |
| 2437     | 10  | 10     | 3    | 1  | 2453     | 30  | 14     | 5     | . 1 |
| 2411     | 12  | 6      | 3    | 1  | 2455     | 28  | 14     | 4     | 1   |
| 2439     | 12  | 12     | 3,5  | 1  | 2457     | 32  | 14     | 4     | 1   |
| 2415     | 14  | 7      | 3,5  | 1  | 2459     | .36 | 14     | 4     | 1   |
| 2441     | 14  | 12     | 3,5  | 1  | 2461     | 40  | 14     | 4     | 1 1 |
| 2419     | 16  | 7      | 3,5  | 1  | 2463     | 34  | 14     | 5     | 1   |
| 2443     | 16  | 12     | 3,5  | 1  | 2465     | 40  | 14     | 5     | 1   |
| 2423     | 18  | 7      | 3,5  | 1  | 2467     | 46  | 14     | 5     | 1   |
| 2445     | 18  | 12     | 3,5  | 1  |          |     |        | Ü     | 1   |
|          | 1   |        |      |    | 11.33.34 |     | 1 .:   |       |     |

SHAPE 25 For counterborers for machining blind-holes

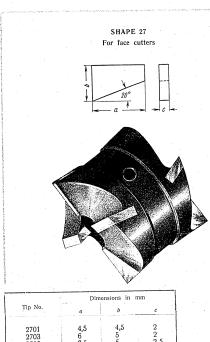


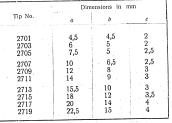



| Tip No. | Dimensions in mm |    |     |                       |     |    |
|---------|------------------|----|-----|-----------------------|-----|----|
|         | а                | b  | с   | <i>b</i> <sub>1</sub> | k   | R. |
| 2501    | 15               | 4  | 2   | 2,5                   | 1   | 15 |
| 2503    | 18               | 5  | 2,5 | 3,5                   | 1   | 20 |
| 2505    | - 20             | 6  | 3   | 5                     | 1 . | 25 |
| 2507    | 25               | 8  | 3,5 | 6                     | 1,5 | 25 |
| 2509    | 30               | 10 | 4   | 8                     | 1,5 | 30 |



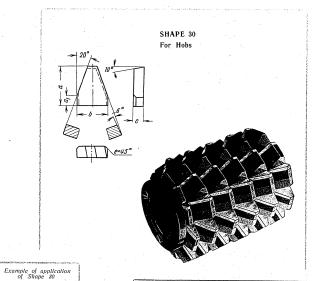
36



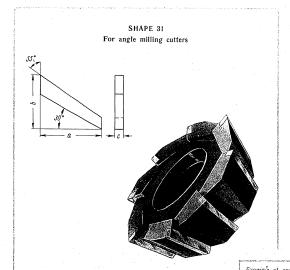


15 2,5

1,3

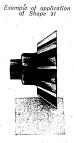
2,5 1,5

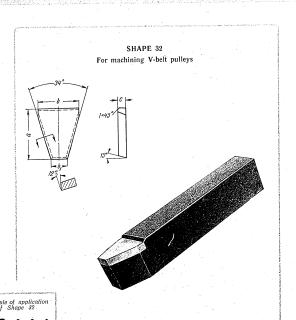

1,5



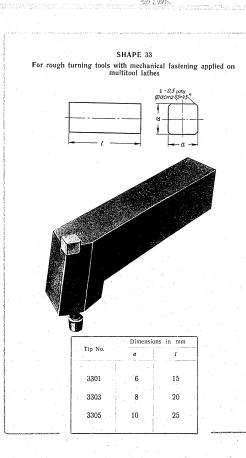




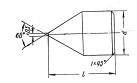


Example of application of Shape 26




| m: 31   |      | Dime | nsions in | mm             |     |
|---------|------|------|-----------|----------------|-----|
| Tip No. | а    | ь    | c         | a <sub>1</sub> | е   |
| 3001    | 13,5 | 11   | 4         | 3              | 1   |
| 3003    | 14,5 | 12   | 4,5       | 3              | 1   |
| 3005    | 16,5 | 13,5 | 5,0       | 4              | 1   |
| 3007    | 18,0 | 14,5 | 5,5       | 4              | 1   |
| 3009    | 21   | 17   | 6         | 5              | - 1 |
| 3011    | 24   | 18,5 | 7         | 6              | 1,5 |
| 3013    | 26   | 21   | 7         | 6              | 1,5 |

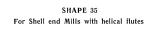


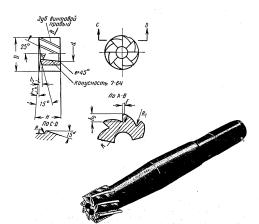

| Din | nensions in                      | mm                                                   |
|-----|----------------------------------|------------------------------------------------------|
| а   | b                                | с                                                    |
|     |                                  |                                                      |
| 13  | 12,5                             | 2,5                                                  |
| 15  | 14,5                             | 3                                                    |
| 18  | 17,5                             | 3                                                    |
| 20  | 19,5                             | 3,5                                                  |
| 25  | 24,5                             | 4                                                    |
| 34  | 31,5                             | 5                                                    |
| 50  | 44                               | 7                                                    |
|     | 13<br>15<br>18<br>20<br>25<br>34 | a b  13 12,5 15 14,5 18 17,5 20 19,5 25 24,5 34 31,5 |



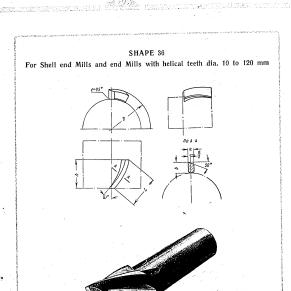



|                                              | Dimensions in mm                 |                                  |                                          |                       |  |  |  |
|----------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------|--|--|--|
| Tip No.                                      | а                                | b                                | <i>b</i> <sub>1</sub>                    | с                     |  |  |  |
| 3207<br>3209<br>3211<br>3213<br>3215<br>3217 | 20<br>25<br>30<br>35<br>42<br>50 | 12<br>16<br>20<br>25<br>35<br>42 | 4,0<br>5,0<br>6,5<br>8,5<br>13,5<br>16,0 | 5<br>6<br>6<br>8<br>8 |  |  |  |

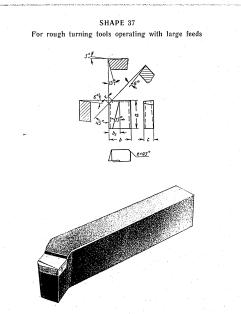




SHAPE 34
For centres for lathes and plain cilindrical Grinding Machines

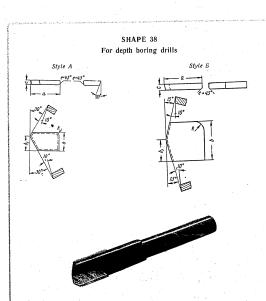




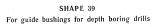

|         | Dimensio | ns in mm |
|---------|----------|----------|
| Tip No. | а .      | ı        |
| 3401    | 8        | 15       |
| 3403    | 12       | 20       |
| 3405    | 15       | 24       |
| 3407    | 18       | 28       |
|         |          | h        |

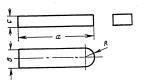






| Tip  | Dimensions in mm |    |      |                |                |      |                | Number<br>of teeth |     |     |   |
|------|------------------|----|------|----------------|----------------|------|----------------|--------------------|-----|-----|---|
| No.  | D                | Н  | d    | h <sub>1</sub> | h <sub>2</sub> | R    | R <sub>1</sub> | R <sub>2</sub>     | 1   | e   | z |
| 3501 | 10,5             | 10 | 4,3  | 1,3            | 2,1            | 7,5  | 0,3            | 0,3                | 0,4 | 0,8 | 6 |
| 3503 | 12,5             | 12 | 5,5  | 1,5            | 2,3            | 9,0  | 0,4            | 0,3                | 0,4 | 0,8 | 6 |
| 3505 | 14,5             | 8  | 6,5  | 1,5            | 2,5            | 11,0 | 0,5            | 0,3                | 0,5 | 0,8 | 6 |
| 3507 | 14,5             | 18 | 6,5  | 1,5            | 2,5            | 9,5  | 0,5            | 0,3                | 0,5 | 0,8 | 6 |
| 3509 | 16,5             | 10 | 7,8  | 1,8            | 2,7            | 11,5 | 0,5            | 0,3                | 0,6 | 1,0 | 6 |
| 3511 | 16,5             | 20 | 7,8  | 1,8            | 2,7            | 11,5 | 0,5            | 0,3                | 0,6 | 1,0 | 6 |
| 3513 | 19,0             | 10 | 9,2  | 2,0            | 3,0            | 12,8 | 0,8            | 0,3                | 0,6 | 1,1 | 8 |
| 3515 | 19,0             | 20 | 9,2  | 2,0            | 3,0            | 12,8 | 0,8            | 0,3                | 0,6 | 1,1 | 8 |
| 3517 | 21,0             | 15 | 10,5 | 2,0            | 3,2            | 14,4 | 0,8            | 0,4                | 0,8 | 1,3 | 8 |
| 3519 | 23,0             | 15 | 11,8 | 2,0            | 3,5            | 16,0 | 0,8            | 0,4                | 0,8 | 1,3 | 8 |




|                              | Nominal<br>outside                |                        |                          | Dimensions in mm           |                      |                              |                          |  |
|------------------------------|-----------------------------------|------------------------|--------------------------|----------------------------|----------------------|------------------------------|--------------------------|--|
| Tip No.                      | diameter<br>of helical<br>tip, mm | Tip spiral<br>angle w° | а                        | b                          | 1                    | h                            | e                        |  |
| 3601<br>3603<br>3605<br>3607 | 30<br>50<br>75<br>100             | 40<br>40<br>28<br>25   | 3,5<br>4,3<br>5,0<br>5,0 | 8,0<br>8,5<br>10,0<br>10,0 | 26<br>28<br>30<br>30 | 19,2<br>21,5<br>26,5<br>27,0 | 0,3<br>0,5<br>0,5<br>0,8 |  |




| Tip I     | No.      |    | Di  | nensior | ıs in mr | n , |     |
|-----------|----------|----|-----|---------|----------|-----|-----|
| righthand | lefthand | a  | b   | $b_1$   | c        | k   | e   |
| 3701      | 3702     | 10 | 8   | 4       | 4        | 2   | 1,0 |
| 3703      | 3704     | 12 | 10  | 5       | 5        | 2   | 1,0 |
| 3705      | 3706     | 14 | 12. | 6       | 7        | 3   | 1,5 |
| 3707      | 3708     | 18 | 14  | 6       | 9        | 3   | 1,5 |
| 3709      | 3710     | 22 | 15  | 6       | 10       | 3   | 1,5 |
| 3711      | 3712     | 25 | 16  | 8.      | 12       | 4   | 2,0 |



|              | _ | 1. | Dimensions in mm |      |     |      |     |  |
|--------------|---|----|------------------|------|-----|------|-----|--|
| Tip No. Type | a | b  | b <sub>1</sub>   | c    | R   | e    |     |  |
| 3801         | A | 16 | 7                | 6,3  | 2,0 | 3,0  | 0,4 |  |
| 3803         | Α | 20 | 10,6             | 9,5  | 3,0 | 4,0  | 0,5 |  |
| 3805         | Α | 25 | 14,5             | 12,9 | 4,5 | 4,0  | 0,5 |  |
| 3807         | A | 30 | 18               | 16,0 | 4,5 | 4,0  | 0,5 |  |
| 3809         | Б | 25 | 22 .             | 14,0 | 4,5 | 8,0  | 0,8 |  |
| 3811         | Б | 30 | 28               | 17,0 | 5,0 | 8,0  | 0,8 |  |
| 3813         | Б | 35 | 33               | 20,0 | 6,0 | 10,0 | 0,8 |  |
| 3815         | Б | 40 | 40               | 23,0 | 6,0 | 10,0 | 0,8 |  |







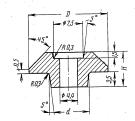
|         |    | Dimension | s in mm |      |
|---------|----|-----------|---------|------|
| Tip No. | a  | b         | c       | - R  |
| 3901    | 18 | 2,5       | 2,5     | 1,25 |
| 3903    | 20 | 3,0       | 3,0     | 1,5  |
| 3905    | 25 | 5,0       | 4,0     | 2,5  |
| 3907    | 30 | 6,0       | 5,0     | 3,0  |
| 3909    | 35 | 8,0       | 5,0     | 4,0  |
| 3911    | 40 | 10,0      | 5,0     | 5,0  |

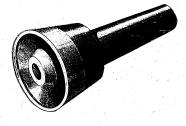






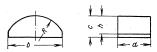

|         | . I | imensions in | mm   |
|---------|-----|--------------|------|
| Tip No. | D   | Н            | ď    |
| 4001    | 35  | 6            | 15,5 |
| 4003    | 45  | 7            | 15,5 |


SHAPE 41
For fine boring tools





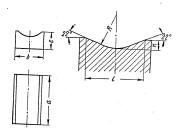

| Dimensions in mm |          |  |  |  |
|------------------|----------|--|--|--|
| đ                | t        |  |  |  |
| 3                | 10       |  |  |  |
| 4                | 12       |  |  |  |
| 5                | 15       |  |  |  |
|                  | <b>d</b> |  |  |  |








|         | Dir | Dimensions in mm |     |  |  |  |  |
|---------|-----|------------------|-----|--|--|--|--|
| Tip No. | D   | H                | ⇔ d |  |  |  |  |
|         | 1   |                  |     |  |  |  |  |
| 4201    | 16  | 7,0              | 10  |  |  |  |  |
| 4203    | 18  | 8,0              | 10  |  |  |  |  |
| 4205    | 20  | 8,5              | 10  |  |  |  |  |
|         |     | 1                |     |  |  |  |  |


SHAPE 43 For round faced tools





|         | Dimensions in mm |      |      |      |    |  |  |  |  |  |  |
|---------|------------------|------|------|------|----|--|--|--|--|--|--|
| Tip No. | a                | b    | _ c  | . h  | R  |  |  |  |  |  |  |
| 4301    | 12               | 7,8  | 3,5  | 3,0  | 4  |  |  |  |  |  |  |
| 4303    | 16               | 11,0 | 5,0  | 4,0  | 6  |  |  |  |  |  |  |
| 4305    | 16               | 15,0 | 5,5  | 4,5  | 8  |  |  |  |  |  |  |
| 4307    | 16               | 19,0 | 7,5  | 6,5  | 10 |  |  |  |  |  |  |
| 4309    | 18               | 22,5 | 9,0  | 8,0  | 12 |  |  |  |  |  |  |
| 4311    | 18               | 26,0 | 10,5 | 9,0  | 14 |  |  |  |  |  |  |
| 4313    | 18               | 30,0 | 12,0 | 10,0 | 16 |  |  |  |  |  |  |







| Dimensions in mm |                |                       |                                                                                                                                 |                                                                                                                                                                         |                                                        |  |  |  |  |
|------------------|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| а                | b              | c                     | 1                                                                                                                               | κ<br>≈                                                                                                                                                                  | R                                                      |  |  |  |  |
| 12               | 6              | 4,5                   | 5                                                                                                                               | 0,9                                                                                                                                                                     | 2                                                      |  |  |  |  |
| 15               | 8              | 4,5                   | 7                                                                                                                               | 1,0                                                                                                                                                                     | 4                                                      |  |  |  |  |
| 18               | 10             | 5,5                   | 9                                                                                                                               | 1,4                                                                                                                                                                     | . 5                                                    |  |  |  |  |
| 20               | 12             | 7,0                   | 10                                                                                                                              | 1,6                                                                                                                                                                     | 6                                                      |  |  |  |  |
|                  | 12<br>15<br>18 | 12 6<br>15 8<br>18 10 | a         b         c           12         6         4,5           15         8         4,5           18         10         5,5 | a         b         c         I           12         6         4,5         5           15         8         4,5         7           18         10         5,5         9 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |

Approximate weight of tips acc. GOST 2209-55

|                              | Tool sizes                                                           |                              |                              | Approxi                      | mate ti                      | weigh                        | t in gr.                     | of grad                      | e                           |                           |
|------------------------------|----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|---------------------------|
| Tip<br>No.                   | (suggested)<br>mm                                                    | BK2                          | вкз                          | вк6                          | вк8                          | T5K10                        | T14K8                        | T15K6,<br>T15K6T             | T30K4                       | T60K6                     |
|                              |                                                                      | W                            | eigh                         | toft                         | ips                          | style                        | Α.                           |                              |                             |                           |
| 0101<br>0103<br>0105<br>0107 | Shank<br>section<br>8×12<br>10×16<br>12×20<br>16×16                  | 1,1<br>1,9<br>2,7<br>5,8     | 1,1<br>1,9<br>2,7<br>5,8     | 1,0<br>1,8<br>2,6<br>5,7     | 1,0<br>1,8<br>2,6<br>5,6     | 0,9<br>1,6<br>2,3<br>4,8     | 0,8<br>1,4<br>2,1<br>4,4     |                              | 0,7<br>1,2<br>1,7<br>3,8    | 0,5<br>0,8<br>1,2<br>3,1  |
| 0109<br>0111<br>0113<br>0115 | $16 \times 25$<br>$20 \times 20$<br>$20 \times 30$<br>$25 \times 25$ | 10,2<br><br>20,3<br>         | 10,0<br>                     | 9,9<br>11,3<br>19,7<br>21,5  | 9,8<br>11,2<br>19,5<br>21,3  |                              | 7,8<br>8,8<br>15,5<br>16,6   | 7,6<br>8,6<br>15,0<br>16,0   | 6,5<br>7,5<br>12,9<br>14,3  | 4,5<br>5,5<br>9,0<br>10,4 |
| 0117<br>0119<br>0121<br>0123 | 25×40<br>30×45<br>40×60<br>50×80                                     | 37,0<br>43,0<br>—            | 36,5<br>42,5<br>—            | 36,0<br>41,5<br>60,0<br>99,0 | 35,5<br>41,0<br>59,0<br>98,0 | 31,5<br>36,0<br>52,0<br>87,0 | 28,0<br>32,5<br>47,0<br>78,0 | 27,5<br>32,0<br>45,5<br>76,0 | 23,5<br>27,5<br>—           |                           |
| 0125<br>0127                 | 60×100<br>65×100                                                     | _                            | =                            | 156<br>213                   | 154<br>210                   | 136<br>186                   | 122<br>167                   | 119<br>163                   | _                           | =                         |
|                              |                                                                      | w                            | eight                        | t of t                       | ips                          | style                        | . A.                         |                              |                             |                           |
| 0201<br>0203<br>0205<br>0223 | 8×12<br>10×16<br>12×20<br>16×25                                      | 2,0<br>3,2<br>6,5<br>10,4    | 2,0<br>3,2<br>6,4<br>10,3    | 1,9<br>3,1<br>6,3<br>10,1    | 1,9<br>3,1<br>6,2<br>10,0    | 2,7                          | 1,5<br>2,5<br>4,9<br>7,9     | 2,4<br>4,8                   |                             | 0,9<br>1,5<br>2,8<br>4,6  |
| 0225<br>0227<br>0229<br>0231 | 16×25<br>20×30<br>20×30<br>25×40                                     | 13,6<br>24,0<br>31,5<br>38,5 | 13,5<br>23,7<br>31,0<br>38,0 | 13,2<br>23,3<br>30,5<br>37,5 | 13,0<br>23,0<br>30,0<br>37,0 | 11,5<br>20,5<br>26,5<br>32,5 | 10,5<br>18,5<br>24,0<br>29,5 | 10,0<br>18,0<br>23,0<br>28,5 | 8,6<br>15,3<br>20,0<br>24,5 | 6,0<br>10,6<br>—          |
| 0235<br>0237                 | 30×45<br>40×60                                                       | 68,0<br>—                    | 67,0<br>—                    | 66,0<br>92,0                 | 65,0<br>91,0                 |                              |                              | 50,0<br>70,0                 | =                           | _                         |
| 0305<br>0306                 | 20×30                                                                |                              | _                            | _                            | 22,5                         | 20,0                         | 18,0                         | 17,5                         | _                           | _                         |
| 0309<br>0310                 | 25×40                                                                | <u> </u>                     | -                            | -                            | 37,5                         | 33,0                         | 30,0                         | 29,0                         | - <u>-</u>                  | -                         |

|                |                   |     |          |        |         | 5        |          |                  | Conn    | nuatio |
|----------------|-------------------|-----|----------|--------|---------|----------|----------|------------------|---------|--------|
| Tri-           | Tool sizes        |     |          | Approx | imate t | ip weigh | nt in gr | of grac          | le      |        |
| Tip<br>No.     | (suggested)<br>mm | ВК2 | ВК3      | BK6    | вк8     | T5K10    | T14K8    | T15K6,<br>T15K6T | T30K4   | T60K6  |
|                | Shank<br>section  |     |          |        |         |          |          |                  |         |        |
| 0313<br>0314   | 30×45             | -   | _        | -      | 70      | 62       | 56       | 54               | -       | _      |
| 0315<br>0316   | 40×60             | -   | _        | _      | 112     | 99       | 89       | 87               | -       | _      |
| 0413<br>0414   | 25×40             | _   | -        | 36,0   | 35,5    | 31,5     | 28,0     | 27,5             | _       |        |
| 0417<br>0418   | 30×45             | -   | _        | 57,0   | 56,0    | 49,5     | 44,5     | 43,5             | _       |        |
| $0421 \\ 0422$ | 25×40             | -   | _        | 45,0   | 44,5    | 39,5     | 35,5     | 34,5             | <u></u> | _      |
| 0423<br>0424   | 30×45             | -   | _        | 73,0   | 72,0    | 64,0     | 57,0     | 56,0             | _       | _      |
| 0601           | 10×16             | _   |          | 1,0    | 1,0     | 0,9      | 0,8      | 0,7              | _       |        |
| 0603<br>0604   | 12×20             | -   | <u>-</u> | 2,2    | 2,2     | 1,9      | 1,7      | 1,5              | _       | -      |
| 0605<br>0606   | 16×25             | -   |          | 4,0    | 3,9     | 3,3      | 3,0      | 2,6              | _ '     |        |
| 0607<br>0608   | 16×25             |     |          | 5,1    | 5,0     | 4,3      | 3,9      | 3,3              | _       | _      |
| 0609<br>0610   | 20×30             | -   | _        | 9,3    | 9,2     | 7,9      | 7,2      | 6,1              | _       | _      |
| 0611<br>0612   | 20×30             | -   |          | 12,0   | 11,8    | 10,2     | 9,2      | 7,8              | -       | _      |
| 0613<br>0614   | 25×40             | -   | -        | 17,3   | 17,1    | 14,6     | 13,3     | 11,3             | _       | -      |
| 0615<br>0616   | 25×40             | -   | _        | 22,2   | 22,0    | 18,8     | 17,1     | 14,5             | -       | -      |
| 0617<br>0618   | 30×45             | _   |          | 31,2   | 29,9    | 25,6     | 23,3     | 19,7             | _       | _      |
| 0619<br>0620   | 30×45             | -   | -        | 37,4   | 36,9    | 31,6     | 28,7     | 24,4             |         |        |
|                |                   |     |          |        |         |          |          |                  |         |        |

| Tool sizes<br>(suggested)    |                                                                                                                                                |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                |                                                                                                                                                                        | Approx                                                                                                                                                                                                                                                                                                                                                                              | imate ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t in gr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of grad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (suggested)<br>mm            | BK2                                                                                                                                            | вкз                                                                                                                                                                    | ВК6                                                                                                                                                                                                                                                                                                                                                                                 | ВК8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T5K10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T14K8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TI5K6,<br>TI5K6T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T30K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т60К6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Shank<br>section             |                                                                                                                                                |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10×16                        | 1,3                                                                                                                                            | 1,3                                                                                                                                                                    | 1,3                                                                                                                                                                                                                                                                                                                                                                                 | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12×20                        | 2,7                                                                                                                                            | 2,7                                                                                                                                                                    | 2,6                                                                                                                                                                                                                                                                                                                                                                                 | 2,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $_{20\times30}^{16\times25}$ | 7,1                                                                                                                                            | 7,0                                                                                                                                                                    | 6,8                                                                                                                                                                                                                                                                                                                                                                                 | 6,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25×40                        | 13,9                                                                                                                                           | 13,8                                                                                                                                                                   | 13,5                                                                                                                                                                                                                                                                                                                                                                                | 13,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30×45                        | 28,8                                                                                                                                           | 28,6                                                                                                                                                                   | 28,0                                                                                                                                                                                                                                                                                                                                                                                | 27,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16×25                        | -                                                                                                                                              | _                                                                                                                                                                      | 2,6                                                                                                                                                                                                                                                                                                                                                                                 | 2,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16×25                        | -                                                                                                                                              | _                                                                                                                                                                      | 3,9                                                                                                                                                                                                                                                                                                                                                                                 | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20×30                        | -                                                                                                                                              | -                                                                                                                                                                      | 5,6                                                                                                                                                                                                                                                                                                                                                                                 | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20×30                        | -                                                                                                                                              | -                                                                                                                                                                      | 7,1                                                                                                                                                                                                                                                                                                                                                                                 | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25×40                        |                                                                                                                                                | -                                                                                                                                                                      | 9,1                                                                                                                                                                                                                                                                                                                                                                                 | 9,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25×40                        | -                                                                                                                                              | -                                                                                                                                                                      | 10,6                                                                                                                                                                                                                                                                                                                                                                                | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10×16                        | 2,1                                                                                                                                            | 2,1                                                                                                                                                                    | 2,0                                                                                                                                                                                                                                                                                                                                                                                 | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12×20<br>16×16               | 7,3                                                                                                                                            | 7,2                                                                                                                                                                    | 7,1                                                                                                                                                                                                                                                                                                                                                                                 | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,<br>,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12×20<br>16×16               | 11,9                                                                                                                                           | 11,8                                                                                                                                                                   | 11,6                                                                                                                                                                                                                                                                                                                                                                                | 11,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | section<br>10×16<br>12×20<br>16×25<br>20×30<br>25×40<br>30×45<br>16×25<br>10×25<br>20×30<br>20×30<br>25×40<br>10×16<br>12×20<br>16×16<br>12×20 | Shank section 10×16 1,3 12×20 2,7 16×25 20×30 7,1 25×40 13,9 30×45 28,8  16×25 — 16×25 — 20×30 — 20×30 — 25×40 —  25×40 —  10×16 2,1 12×20 110×16 7,3 12×20 110×16 7,3 | Shank section       10×16     1,3     1,3       12×20     2,7     2,7       16×25 20×30     7,1     7,0       25×40     13,9     13,8       30×45     28,8     28,6       16×25     —     —       20×30     —     —       20×30     —     —       25×40     —     —       25×40     —     —       10×16     2,1     2,1       12×20     15,0     11,0       12×20     11,0     11,0 | Shank section         1,3         1,3         1,3         1,3           10×16         1,3         1,3         1,3         1,3           12×20         2,7         2,7         2,6         6,8           20×30         7,1         7,0         6,8           25×40         13,9         13,8         13,5           30×45         28,8         28,6         28,0           16×25         —         —         2,6           16×25         —         —         3,9           20×30         —         —         5,6           20×30         —         —         7,1           25×40         —         —         9,1           25×40         —         —         10,6           10×16         2,1         2,1         2,0           16×16         7,3         7,2         7,1           12×20         15,6         10,0         11,0         11,0 | Shank section         10×16         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3         1,3 | Shank section         1,3         1,3         1,3         1,3         1,1           10×16         1,3         1,3         1,3         1,3         1,1           12×20         2,7         2,7         2,6         2,6         2,2           16×25         7,1         7,0         6,8         6,7         5,7           25×40         13,9         13,8         13,5         13,3         11,4           30×45         28,8         28,6         28,0         27,6         23,6           16×25         —         —         2,6         2,2         1,4           20×30         —         —         3,9         3,8         3,3           20×30         —         —         7,1         7,0         6,0           25×40         —         —         9,1         9,0         7,7           25×40         —         —         10,6         10,5         9,1           10×16         2,1         2,1         2,0         2,0         1,7           12×20         7,3         7,2         7,1         7,0         6,1           12×20         1,0         1,0         1,0         1,0         1,0 </td <td>Shank section         10×16         1,3         1,3         1,3         1,3         1,3         1,1         1,0           12×20         2,7         2,7         2,6         2,6         2,2         2,0           16×25         7,1         7,0         6,8         6,7         5,7         5,2           25×40         13,9         13,8         13,5         13,3         11,4         10,4           30×45         28,8         28,6         28,0         27,6         23,6         21,5           16×25         —         —         2,6         2,6         2,2         2,0           16×25         —         —         3,9         3,8         3,3         3,0           20×30         —         —         5,6         5,5         4,7         4,3           20×30         —         —         7,1         7,0         6,0         5,4           25×40         —         —         9,1         9,0         7,7         7,0           25×40         —         —         10,6         10,5         9,1         8,3           10×16         2,1         2,1         2,0         2,0         1,7         1,6<!--</td--><td>Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0           10×16         1,3         1,3         1,3         1,3         1,1         1,0         1,0           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0           16×25         7,1         7,0         6,8         6,7         5,7         5,2         5,2           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1           16×25         —         —         2,6         2,6         2,2         2,0         2,0           16×25         —         —         3,9         3,8         3,3         3,0         2,9           20×30         —         —         5,6         5,5         4,7         4,3         4,2           20×30         —         —         7,1         7,0         6,0         5,4         5,3           25×40         —         —         9,1         9,0         7,7         7,0</td><td>Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0         0,9           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0         1,7           16×25<br/>20×30         7,1         7,0         6,8         6,7         5,7         5,2         5,2         4,5           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2         8,8           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1         —           16×25         —         —         2,6         2,6         2,2         2,0         2,0         —           20×30         —         —         5,6         5,5         4,7         4,3         4,2         —           20×30         —         —         7,1         7,0         6,0         5,4         5,3         —           25×40         —         —         9,1         9,0         7,7         7,0         6,9         —           25×40         —         —         10,6         10,5         9,1         8</td></td> | Shank section         10×16         1,3         1,3         1,3         1,3         1,3         1,1         1,0           12×20         2,7         2,7         2,6         2,6         2,2         2,0           16×25         7,1         7,0         6,8         6,7         5,7         5,2           25×40         13,9         13,8         13,5         13,3         11,4         10,4           30×45         28,8         28,6         28,0         27,6         23,6         21,5           16×25         —         —         2,6         2,6         2,2         2,0           16×25         —         —         3,9         3,8         3,3         3,0           20×30         —         —         5,6         5,5         4,7         4,3           20×30         —         —         7,1         7,0         6,0         5,4           25×40         —         —         9,1         9,0         7,7         7,0           25×40         —         —         10,6         10,5         9,1         8,3           10×16         2,1         2,1         2,0         2,0         1,7         1,6 </td <td>Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0           10×16         1,3         1,3         1,3         1,3         1,1         1,0         1,0           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0           16×25         7,1         7,0         6,8         6,7         5,7         5,2         5,2           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1           16×25         —         —         2,6         2,6         2,2         2,0         2,0           16×25         —         —         3,9         3,8         3,3         3,0         2,9           20×30         —         —         5,6         5,5         4,7         4,3         4,2           20×30         —         —         7,1         7,0         6,0         5,4         5,3           25×40         —         —         9,1         9,0         7,7         7,0</td> <td>Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0         0,9           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0         1,7           16×25<br/>20×30         7,1         7,0         6,8         6,7         5,7         5,2         5,2         4,5           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2         8,8           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1         —           16×25         —         —         2,6         2,6         2,2         2,0         2,0         —           20×30         —         —         5,6         5,5         4,7         4,3         4,2         —           20×30         —         —         7,1         7,0         6,0         5,4         5,3         —           25×40         —         —         9,1         9,0         7,7         7,0         6,9         —           25×40         —         —         10,6         10,5         9,1         8</td> | Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0           10×16         1,3         1,3         1,3         1,3         1,1         1,0         1,0           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0           16×25         7,1         7,0         6,8         6,7         5,7         5,2         5,2           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1           16×25         —         —         2,6         2,6         2,2         2,0         2,0           16×25         —         —         3,9         3,8         3,3         3,0         2,9           20×30         —         —         5,6         5,5         4,7         4,3         4,2           20×30         —         —         7,1         7,0         6,0         5,4         5,3           25×40         —         —         9,1         9,0         7,7         7,0 | Shank section         1,3         1,3         1,3         1,3         1,1         1,0         1,0         0,9           12×20         2,7         2,7         2,6         2,6         2,2         2,0         2,0         1,7           16×25<br>20×30         7,1         7,0         6,8         6,7         5,7         5,2         5,2         4,5           25×40         13,9         13,8         13,5         13,3         11,4         10,4         10,2         8,8           30×45         28,8         28,6         28,0         27,6         23,6         21,5         21,1         —           16×25         —         —         2,6         2,6         2,2         2,0         2,0         —           20×30         —         —         5,6         5,5         4,7         4,3         4,2         —           20×30         —         —         7,1         7,0         6,0         5,4         5,3         —           25×40         —         —         9,1         9,0         7,7         7,0         6,9         —           25×40         —         —         10,6         10,5         9,1         8 |

|                     | Tool sizes        |       |      | Approxi | mate ti | p weigh | t in gr. | of grad          | e     |       |
|---------------------|-------------------|-------|------|---------|---------|---------|----------|------------------|-------|-------|
| Tip<br>No.          | (suggested)<br>mm | BK2   | вқз  | вқ6     | вк8     | T5K10   | T14K8    | T15K6,<br>T15K6T | T30K4 | T60K6 |
|                     | Shank<br>section  |       |      |         |         |         |          |                  |       |       |
| 0915<br>0916        | 12×20<br>16×16    | 5,0   | 5,0  | 4,9     | 4,8     | 4,2     | 3,7      | 3,6              | 3,2   | _     |
| 0917<br>0918        | 16×25             | 6,7   | 6,6  | 6,5     | 6,4     | 5,6     | 5,1      | 5,0              | 4,2   |       |
| 1001                | 6×10<br>8×12      | 0,8   | 0,8  | 0,8     | 0,8     | 0,7     | 0,6      | 0,6              | 0,5   | 0,4   |
| 1003<br>1004        | 8×12<br>10×16     | 1,5   | 1,5  | 1,4     | 1,4     | 1,2     | 1,1      | 1,1              | 0,9   | 0,6   |
| 1005<br>1006        | 10×16<br>12×20    | 2,0   | 2,0  | 1,9     | 1,9     | 1,6     | 1,5      | 1,5              | 1,3   | 0,9   |
| 1007<br>1008        | 16×25             | 4,7   | 4,7  | 4,6     | 4,5     | 3,9     | 3,6      | 3,5              | 3,1   | 2,1   |
| 1011<br>1012        | 20×30             | . 9,4 | 9,3  | 9,2     | 9,1     | 7,8     | 7,2      | 7,0              | - ,.  |       |
| 1015<br>1016        | 25×40             | 17,8  | 17,7 | 17,5    | 17,3    | 14,8    | 13,6     | 13,3             | _     |       |
| 1019<br>1020        | 30×45             | 33,6  | 33,4 | 32,8    | 33,3    | 27,6    | 25,1     | 24,7             | _     |       |
| $\frac{1021}{1022}$ | 40×60             | -     | -    | 48,5    | 47,8    | 40,8    | 37,2     | 36,6             | _     |       |
| 1023<br>1024        | 50×80             | -     |      | 85      | 83      | 79      | 65       | . 64             | -     |       |
| 1025<br>1026        | 60×100            | -     | -    | 135     | 133     | 113     | 106      | 102              |       | _     |
| 1027<br>1028        |                   | _     | _    | 3,1     | 3,0     | 2,6     | 2,3      | 2,3              | _     |       |
| 1029<br>1030        |                   | _     | -    | 6,8     | 6,7     | 5,7     | 5,2      | 5,1              |       |       |
| 1031<br>1032        | _                 | -     |      | 9,8     | 9,7     | 8,3     | 7,5      | 7,4              | -     | _     |
|                     |                   |       | 1    |         |         |         |          | ,                |       |       |

| Tip<br>No.   | Tool sizes        |      |      | Арргох | imate ti  | p weigh   | it in gr. | of grad          | e     |       |
|--------------|-------------------|------|------|--------|-----------|-----------|-----------|------------------|-------|-------|
| Nó.          | (suggested)<br>mm | ВК2  | ВК3  | ВК6    | вк8       | T5K10     | T14K8     | T15K6,<br>T15K6T | T30K4 | T60K6 |
|              | Shank<br>section  |      |      |        |           |           |           |                  |       |       |
| 1033<br>1034 | _                 | -    | _    | 30,8   | 30,4      | 26,0      | 23,7      | 23,2             | _     | -     |
| 1035<br>1036 | _                 | -    | -    | 64     | 64        | 54        | 49,5      | 48,5             | -     | _     |
| 1037<br>1038 |                   | -    | -    | 86     | 89        | 76        | 69        | 68               | _     | 1     |
| 1109         | 8×12<br>10×16     | 1,3  | 1,3  | 1,2    |           | _         | 1,0       | 0,9              | 0,8   | 0,6   |
| 1101         | 10×16<br>12×20    | 3,3  | 3,2  | 3,1    | _         | -         | 2,6       | 2,4              | 2,1   | 1,4   |
| 1103         | 12×20<br>16×25    | 7,9  | 7,8  | 7,6    | _         | -         | 6,0       | 5,8              | 5,0   | 3,5   |
| 1105         | 16×25<br>20×30    | 2,7  | 12,5 | 12,3   | . —       | _         | 9,5       | 9,2              | 8,0   | 5,5   |
| 1107         | 20×30<br>25×40    | 16,5 | 16,3 | 16,0   | _         | -         | 12,5      | 12,0             | 10,5  | 7,2   |
| 1207         | _                 |      | _    | _      | 53        | 46,0      | 42,0      | 21,0             | _     | _     |
| 1209<br>1205 | _                 | =    | _    | _ 1    | 82<br>212 | 72<br>184 | 66<br>168 | 65<br>165        | -     | -     |
|              |                   |      |      |        | 212       | 101       | 100       | 100              |       | _     |
|              |                   | . W  | eigh | t of t | ips       | style     | A.        | 2                |       | -     |
| 1321         | 10×16             | -    | _    | 1,2    | 1,2       | 1,1       | 1,0       | 0,9              |       | -     |
| 1323         | 10×16<br>12×20    | 1    |      | 2,6    | 2,5       | 2,2       | 2,0       | 1,9              | . –   | -     |
| 1325         | 12×20<br>16×25    | -    | _    | 5,0    | 4,9       | 4,3       | 3,9       | 3,8              | _ = 1 | -     |
| 1307         | 16×25<br>20×30    | -    |      | 7,2    | 7,0       | 6,2       | 5,6       | 5,4              | -     | -     |

|                      |                   |       |     |                     |                     |                    |                   |                   |             | -     |
|----------------------|-------------------|-------|-----|---------------------|---------------------|--------------------|-------------------|-------------------|-------------|-------|
| Tip                  | Tool sizes        |       |     | Approx              | imate ti            | p weigh            | t in gr.          | of grad           | le          |       |
| No.                  | (suggested)<br>mm | ВК2   | вкз | вк6                 | вк8                 | T5K10              | Т14Қ8             | T15K6,<br>T15K6T  | T30K4       | Т60К6 |
|                      | Shank<br>section  |       |     |                     |                     |                    |                   |                   |             |       |
| 1309                 | 20×30<br>25×40    | _     | _   | 13,5                | 13,0                | 11,5               | 10,5              | 10,0              | -           | -     |
| 1311                 | 25×40<br>30×45    | _     | -   | 21,5                | 21,0                | 19,0               | 17,0              | 16,5              | _           | _     |
| 1319                 | 25×40<br>30×45    | -     |     | 31,0                | 30,5                | 27,0               | 28,0              | 24,0              | _           | _     |
|                      | Drill<br>diameter |       |     |                     |                     |                    |                   |                   |             |       |
| 1401<br>1403<br>1405 | 2,5<br>3<br>3,5   | _     |     | 0,1<br>0,2<br>0,2   | 0,1<br>0,2<br>0,2   | 0,1<br>0,2<br>0,2  | 0,1<br>0,1<br>0,2 | 0,1<br>0,1<br>0,2 | _<br>_<br>_ | _     |
| 1407<br>1409         | 4<br>4,5          | =     | =   | 0,3<br>0,4          | 0,3<br>0,4          | 0,3<br>0,4         | 0,3<br>0,3        | 0,3<br>0,3        | =           | =     |
| 1411<br>1413         | 5<br>5,5          | =     | =   | 0,4<br>0,7          | 0,4<br>0,7          | 0,4<br>0,6         | 0,3<br>0,5        | 0,3<br>0,5        | _           | _     |
| 1415<br>1417         | 6<br>6,5          | _     | _   | 0,8<br>0,9          | 0,8<br>0,9          | 0,7<br>0,8         | 0,6<br>0,7        | 0,6<br>0,7        | =           | =     |
| 1419<br>1421         | 7<br>7,5          | =     | =   | 1,0<br>1,3          | 1,0<br>1,3          | 0,9<br>1,1         | 0,8               | 0,8<br>1,0        | =           | =     |
| 1423<br>1425         | 8<br>8,5          | =     | =   | 1,4<br>1,7          | 1,4<br>1,7          | 1,2<br>1,5         | 1,1<br>1,3        | 1,1<br>1,3        | = 1         | = 1   |
| 1427<br>1429         | 9<br>9,5          | =     | =   | 1,8<br>2,1          | 1,8<br>2,1          | 1,6<br>1,9         | 1,4<br>1,7        | 1,4<br>1,6        | _           | _     |
| 1431<br>1433<br>1435 | 10<br>11<br>12    | =     | = - | 2,3<br>3,5<br>4,3   | 2,3<br>3,5<br>4,2   | 2,0<br>3,1<br>3,7  | 1,8<br>2,7<br>3,3 | 1,7<br>2,6<br>3,2 | =           |       |
| 1437<br>1439<br>1441 | 13<br>14<br>15    | =     | =   | 4,9<br>5,9<br>8,0   | 4,8<br>5,8<br>7,9   | 4,2<br>5,1<br>7,0  | 3,8<br>4,6<br>6,3 | 3,7<br>4,5<br>6,1 | =           |       |
| 1443<br>1445<br>1447 | 16<br>17<br>18    | 1 = 1 | = 1 | 9,2<br>10,5<br>12,0 | 9,1<br>10,2<br>11,5 | 8,0<br>9,0<br>10,2 | 7,2<br>8,1<br>9,1 | 7,0<br>7,9<br>8,9 |             | =     |
|                      |                   |       |     |                     |                     | 1                  |                   |                   | - 1         |       |

|                                      |                            |     |            | -                          |                            |                            |                            |                            | Contu | ıuation      |
|--------------------------------------|----------------------------|-----|------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------|--------------|
|                                      | Tool sizes                 |     |            | Approxi                    | nate tij                   | weight                     | in gr.                     | oî grad                    | e .   |              |
| Tip<br>No.                           | (suggested)                | BK2 | вкз        | ВК6                        | вк8                        | T5K10                      | T14K8                      | T15K6,<br>T15K6T           | T30K4 | T60K6        |
|                                      | Drill                      |     |            |                            |                            |                            |                            |                            |       |              |
| 1449<br>1451<br>1453                 | diameter<br>19<br>20<br>21 | _   | =          | 15,5<br>16,0<br>16,5       | 15,0<br>15,5<br>16,0       | 13,3<br>13,8<br>14,2       | 12,0<br>12,5<br>13,0       | 11,5<br>12,0<br>12,5       |       |              |
| 1455<br>1457<br>1459                 | 22<br>23<br>24             | =   | =          | 19,5<br>20,5<br>26,5       | 19,0<br>20,0<br>26,0       | 17,0<br>17,5<br>23,0       | 15,0<br>16,0<br>21,0       | 14,5<br>15,5<br>20,5       | =     | <del>-</del> |
| 1461<br>1463<br>1465                 | 25<br>26<br>27             | =   | =          | 27,5<br>28,5<br>30,5       | 27,0<br>28,0<br>30,0       | 24,0<br>24,5<br>26,5       | 21,5<br>22,0<br>24,1       | 21,0<br>21,5<br>23,0       | =     | =            |
| 1467<br>1469<br>1471                 | 28<br>29<br>30             | =   | =          | 37,5<br>38,5<br>39,5       | 37,0<br>38,0<br>38,5       | 32,5<br>33,5<br>34,0       | 30,0<br>30,5<br>31,0       | 28,5<br>29,0<br>29,5       | =     | =            |
| 1473<br>1475<br>1477                 | 32<br>35<br>38             | =   | -<br>-     | 45,5<br>49,8<br>52         | 44,8<br>49,1<br>51         | 38,3<br>42,0<br>43,4       | 34,9<br>38,3<br>39,5       | 34,3<br>37,5<br>38,8       | _     | =            |
| 1479<br>1481<br>1483<br>1485<br>1487 | 40<br>42<br>45<br>48<br>50 | _   | = 1        | 71<br>74<br>77<br>88<br>90 | 70<br>73<br>76<br>87<br>89 | 60<br>62<br>65<br>74<br>76 | 55<br>57<br>59<br>68<br>69 | 54<br>56<br>58<br>67<br>68 | =     |              |
|                                      | Shank                      |     |            |                            |                            |                            |                            |                            |       |              |
| 1501<br>1502                         | section<br>12×20           | -   | -          | 5,4                        | . 5,3                      | 4,7                        | 4,2                        | 4,1                        | -     | -            |
| 1503<br>1504                         | 16×25                      | -   | -          | 12,5                       | 12,0                       | 11,0                       | 9,5                        | 9,3                        | -     | -            |
| 1509<br>1510                         | 20×30                      | -   | ı <u>-</u> | 28,5                       | 28,0                       | 25,0                       | 22,5                       | 22,0                       | -     | -            |
| 1511<br>1512                         | 25×40                      | ,-  | _          | 49,5                       | 48,6                       | 43,0                       | 38,5                       | 38,0                       | -     | -            |
| 1513<br>1514                         | 30×45                      | -   | _          | 68,0                       | 67,2                       | 58,7                       | 53,4                       | 52,2                       | _     | _            |

| Tip                          | Tool sizes                       | -   |                  | Арргох               | imate ti             | p weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | it in gr.           | of grad            | e     |       |
|------------------------------|----------------------------------|-----|------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------|-------|
| No.                          | (suggested)<br>mm                | BK2 | вкз              | BK6                  | вк8                  | T5K10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T14K8               | T15K6,<br>T15K6T   | T30K4 | T60K6 |
|                              | Shank<br>section                 |     |                  |                      |                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |                    |       |       |
| 1601<br>1603                 | 8×12<br>10×16                    | _   | =                | 2,1<br>4,2           | 2,1<br>4,1           | 1,9<br>3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,7<br>3,3          | 1,6<br>3,2         | _     | =     |
| 1605<br>1621<br>1625         | 12×20<br>16×25<br>20×30          | =   | =                | 7,6<br>13,0<br>22,5  | 7,5<br>12,5<br>22,0  | 6,6<br>11,5<br>19,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,0<br>10,0<br>17,5 | 5,8<br>9,7<br>17,0 | =     | _     |
| 1629<br>1635                 | 25×40<br>30×45                   | =   | =                | 41,5<br>72           | 41,0<br>71           | 36,5<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32,5<br>55          | 32,0<br>54         | _     | _     |
| 1701<br>1703<br>1705         | Drill<br>diameter<br>5<br>6<br>7 | _   |                  | 0,5<br>0,8<br>1,3    | 0,5<br>0,8<br>1,3    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | _                  | = .   | _     |
| 1707<br>1709<br>1711         | 8<br>9<br>10                     | = 1 | =                | 1,9<br>2,1<br>2,6    | 1,9<br>2,1<br>2,6    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | _                  |       | = ;   |
| 1713<br>1715<br>1717         | 11<br>12<br>13                   |     | -<br>-<br>-<br>- | 2,7<br>4,1<br>4,2    | 2,7<br>4,0<br>4,1    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                    | _     | =     |
| 1719<br>1721<br>1723         | 14<br>15<br>16                   | =   | =                | 5,3<br>5,6<br>7,1    | 5,2<br>5,5<br>7,0    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                   | =                  |       | _     |
| 1725<br>1727<br>1729         | 17<br>18<br>19                   |     | =                | 8,6<br>8,9<br>10,6   | 8,5<br>8,8<br>10,5   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                   | Ξ                  | _     | =     |
| 1731<br>1 <b>733</b><br>1735 | 20<br>21<br>22                   | =   | =                | 13,3<br>15,5<br>17,9 | 13,1<br>15,3<br>17,6 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                   |                    | -     | =     |
| 1737<br>1739<br>1741         | 23<br>24<br>25                   | =   | =                | 21,5<br>24,5<br>25,2 | 21,2<br>24,1<br>24,8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | =                  | _     |       |

| T:-                  | Tool sizes                            |     |          | Approxi              | mate ti              | p weigh           | t in gr.          | of grad           | e        |          |
|----------------------|---------------------------------------|-----|----------|----------------------|----------------------|-------------------|-------------------|-------------------|----------|----------|
| Tip<br>No.           | (suggested)<br>mm                     | BK2 | вкз      | вк6                  | вк8                  | T5K10             | T14K8             | T15K6,<br>T15K6T  | T30K4    | T60K6    |
|                      | Drill<br>diameter                     |     |          |                      |                      |                   |                   |                   |          |          |
| 1743<br>1745<br>1747 | 26<br>27<br>28                        | =   | =        | 30,0<br>33,8<br>38,7 | 29,6<br>33,3<br>38,1 | =                 | =                 | =                 | _        | <u>-</u> |
| 1749<br>1751         | 29<br>30                              | =.  | =        | 43,3<br>49,7         | 42,7<br>49,0         | _                 | _                 | _                 | -        | =        |
| 1805<br>1807         | =                                     | =   | =        | 3,3<br>6,8           | 3,2<br>6,7           | -2,8<br>5,9       | 2,6<br>5,3        | 2,5<br>5,2        | _        | _        |
| 1809<br>1811         | _                                     | =   | _        | 12,6<br>19,2         | 12,4<br>19,0         | 10,8<br>16,6      | 9,9<br>15,1       | 9,6<br>14,8       | = 1      | _        |
| 2001<br>2003         | _                                     | =   | =        | 1,8<br>2,8           | 1,8<br>2,8           | 1,5<br>2,4        | 1,4<br>2,2        | 1,4<br>2,1        | =        | _        |
| 2005<br>2006         | · , — , ,                             | -   | <u>-</u> | 5,8                  | 5,7                  | 4,9               | 4,4               | 4,3               | -        | _        |
| 2007<br>2008         | _                                     | -   | -        | 12,6                 | 12,4                 | 10,6              | 9,6               | 9,5               | _        | _        |
| 2009<br>2010         |                                       | -   | _        | 22,8                 | 22,5                 | 19,2              | 17,5              | 17,2              |          | _        |
| 2011<br>2012         |                                       | -   | _        | 35,2                 | 33,7                 | 28,8              | 26,2              | 25,7              | -        | -        |
| 2103<br>2105<br>2107 |                                       | _   | =        | 1,1<br>1,3<br>2,3    | 1,1<br>1,3<br>2,3    | 0,9<br>1,1<br>2,0 | 0,8<br>1,0<br>1,8 | 0,8<br>1,0<br>1,8 | = .      |          |
| 2109<br>2111<br>2125 | ·<br>· · · <u>=</u>                   | - = | =        | 3,2<br>3,7<br>5,6    | 3,2<br>3,6<br>5,5    | 2,7<br>3,1<br>4,8 | 2,5<br>2,8<br>4,4 | 2,4<br>2,7<br>4,3 |          | = 1      |
| 2113<br>2115<br>2117 | · · · · · · · · · · · · · · · · · · · | = 1 | 111      | 5,2<br>6,0<br>7,6    | 5,1<br>5,8<br>7,5    | 4,4<br>5,0<br>6,4 | 4,0<br>4,6<br>5,8 | 3,9<br>4,5<br>5,7 | <u>-</u> | -<br>-   |

|   |                      |                   |     |      |                      |                      |                      | . 4                  |                      | Conti   | mumon       |
|---|----------------------|-------------------|-----|------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|-------------|
|   | Tip                  | Tool sizes        |     |      | Approx               | imate t              | ip weigl             | ht in gr             | of grac              | le      |             |
|   | Tip<br>No.           | (suggested)<br>mm | ВК2 | ВКЗ  | ВҚ6                  | вк8                  | T5K10                | T14K8                | T15K6,<br>T15K6T     | T30K4   | T60K6       |
|   | 2119<br>2121<br>2123 | <del>-</del>      | =   |      | 12,8<br>15,3<br>29,6 |                      | 10,8<br>12,9<br>25,0 |                      | 9,6<br>11,5<br>22,3  |         | _           |
|   | 2127<br>2129<br>2131 |                   | _   | =    | 17,7<br>25,2<br>38,5 | 17,2<br>24,8<br>37,9 | 14,7<br>21,2<br>32,4 | 13,4<br>19,3<br>29,5 | 13,1<br>18,9<br>28,9 | _       | _<br>_<br>_ |
|   | 2401<br>2403<br>2405 |                   | _   | =    | 1,7<br>1,1<br>2,2    | 1,7<br>1,1<br>2,2    | 1,5<br>1,0<br>1,9    | 1,3<br>0,9<br>1,7    | 1,3<br>0,9<br>1,7    | =       | _           |
|   | 2407<br>2437<br>2411 |                   | _   | =    | 1,8<br>4,1<br>2,8    | 1,8<br>4,0<br>2,7    | 1,6<br>3,6<br>2,5    | 1,4<br>3,3<br>2,2    | 1,4<br>3,1<br>2,2    | _       | _           |
|   | 2439<br>2415<br>2441 | = ,               |     |      | 6,9<br>4,7<br>8,2    | 6,8<br>4,6<br>8,1    | 6,0<br>4,1<br>7,2    | 5,4<br>3,6<br>6,4    | 5,3<br>3,6<br>6,3    | _       | _           |
|   | 2419<br>2443<br>2428 | =                 | =   | =    | 5,1<br>9,1<br>5,9    | 5,0<br>9,0<br>5,8    | 4,4<br>8,0<br>5,1    | 4,0<br>7,1<br>4,6    | 3,9<br>6,9<br>4,5    | = '     | = 1         |
|   | 2445<br>2427<br>2447 | =                 | =   | =    | 10,6<br>11,0<br>16,5 | 10,4<br>10,8<br>16,2 | 9,3<br>9,6<br>14,5   | 8,3<br>8,6<br>13,0   | 8,1<br>8,4<br>12,5   | <u></u> | = 1         |
| - | 2449<br>2451<br>2453 | = 100             | =   | =    | 19,0<br>25,0<br>29,0 | 18,5<br>24,5<br>28,5 | 16,5<br>21,5<br>25,0 | 14,5<br>19,5<br>22,5 | 14,0<br>19,0<br>22,0 | = 1     |             |
|   | 2455<br>2457<br>2459 | = 1               | =   | =    | 22,2<br>25,4<br>28,6 | 21,6<br>24,7<br>27,8 | 19,4<br>22,0<br>24,7 | 16,9<br>19,4<br>21,8 | 16,4<br>18,7<br>21,0 | =       | =           |
|   | 2461<br>2468         | =                 | =   | =    | 31,7<br>32,9         | 30,8<br>32,3         | 27,5<br>28,4         | 24,2<br>25,6         | 23,4<br>25,0         | _       | =           |
|   | 2465<br>2467         | =                 | -   | 1= 1 | 38,8<br>44,5         | 38,0<br>43,6         | 33,4<br>38,4         | 30,1<br>34,6         | 29,4<br>33,8         | =       | =           |
|   |                      |                   |     |      |                      |                      |                      |                      |                      |         |             |

| Tip                                  | Tool sizes                                                               |                                 |                                 | Approxi                         | nate tip           | weigh              | in gr.             | of grad                         | e                               |                                 |
|--------------------------------------|--------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------|--------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|
| No.                                  | (suggested)<br>mm                                                        | вк2                             | В Қ3                            | BK6                             | вк8                | T5K10              | T14K8              | T15K6,<br>T15K6T                | T30K4                           | T60K6                           |
| 2501<br>2503                         | Counterborer<br>diameter<br>18<br>18—25                                  | 1,5<br>2,5                      | 1,5<br>2,5                      | 1,4<br>2,4                      | 1,4<br>2,4         | 1,2<br>2,1         | 1,1<br>1,9         | 1,1<br>1,8                      | _                               | _                               |
| 2505<br>2507<br>2509                 | 25—50<br>50—75<br>over 75                                                | 4,0<br>8,1<br>13,5              | 4,0<br>8,0<br>13,4              | 3,9<br>7,9<br>13,2              | 3,8<br>7,8<br>13,0 | 3,4<br>6,9<br>11,5 | 3,0<br>6,2<br>10,5 | 2,9<br>6,0<br>10,0              | =                               | =                               |
| 2601<br>2603<br>2605<br>2607<br>2609 | Reamer<br>diameter<br>10<br>10—15<br>15—20<br>20—25<br>over 25           | 0,7<br>1,1<br>2,3<br>3,7<br>6,7 | 0,7<br>1,1<br>2,2<br>3,6<br>6,6 | 0,6<br>1,0<br>2,0<br>3,1<br>6,1 | _<br>_<br>_<br>_   |                    |                    | 0,5<br>0,8<br>1,5<br>2,4<br>4,6 | 0,4<br>0,7<br>1,3<br>2,1<br>4,0 | 0.3<br>0,5<br>0,9<br>1,5<br>2,8 |
| 2701                                 | Counterborer diameter D=14 d= 5.5                                        | <u></u>                         | _                               | 0,5                             | 0,5                | 0,4                | 0,4                | 0,4                             | · —                             | _                               |
| 2703                                 | D=17<br>d=5,5 & 7                                                        | _                               | -                               | 0,7                             | 0,7                | 0,6                | 0,5                | 0,5                             | -                               | -                               |
| 2705                                 | $     \begin{array}{ccc}       D = 20 \\       d = & 7     \end{array} $ | _                               | _                               | 1,0                             | 1,0                | 0,9                | 0,8                | .0,8                            |                                 | -                               |
| 2707                                 | D=24 & 26<br>d=8                                                         | _                               | -                               | 1,7                             | 1,7                | 1,6                | 1,3                | 1,3                             | _                               | _                               |
| 2709                                 | D=30, 32&35<br>d=10 & 14                                                 | -                               | · -                             | 3,0                             | 3,0                | 2,6                | 2,3                | 2,2                             |                                 | _                               |
| 2711                                 | D=38 & 42<br>d=14 & 16                                                   | -                               | _                               | 4,0                             | 3,9                | 3,3                | 3,0                | 2,9                             | _                               | -                               |
| 2713                                 | D = 45<br>d = 15                                                         |                                 | _                               | 4,9                             | 4,8                | 4,1                | 3,7                | 3,6                             |                                 |                                 |
| 2715                                 | D = 52<br>d = 18                                                         | _                               | , -                             | 8,0                             | 7,9                | 6,8                | 6,1                | 6,0                             | -                               |                                 |
| 2717                                 | D = 60,65 & 70<br>d = 22,27 & 32                                         | -                               | -                               | 12,2                            | 12,0               | 10,5               | 9,3                | 9,1                             | -                               |                                 |
| 2719                                 | D = 75<br>d = 32                                                         | -                               | _                               | 14,4                            | 14,2               | -11,1              | 11,1               | 10,8                            | _                               | -                               |

| Continu | ıatioı |
|---------|--------|
|         |        |

|                      | Tool sizes                                   |                     |                     | Approxi              | mate ti              | p weigh              | t in gr.             | of grad              | e     |             |
|----------------------|----------------------------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------|-------------|
| No.                  | (suggested)<br>mm                            | ВҚ2                 | ВК3                 | BK6                  | вк8                  | T5K10                | T14K8                | T15K6,<br>T15K6T     | T30K4 | T60K6       |
|                      | Milling Cutter<br>Module                     |                     |                     |                      |                      |                      |                      |                      |       |             |
| 3001<br>3003         | 4<br>4, 46 & 4, 5                            | =                   | _                   | 6,1<br>7,9           | 6,0<br>7,8           | 5,3<br>6,9           | 4,8<br>6,2           | 4,6<br>6,0           | =     | _           |
| 3005<br>3007         | 5<br>5, 5                                    | =                   | _                   | 11,6<br>14,6         | 11,4<br>14,4         | 9,7<br>12,3          | 8,9<br>11,2          | 8,7<br>11,0          | _     | _           |
| 3009<br>3011<br>3013 | 6 & 6,5<br>7<br>8                            | _                   | · <u> </u>          | 22,5<br>32,0<br>39,0 | 22,0<br>31,5<br>38,5 | 19,5<br>28,0<br>34,0 | 17,5<br>25.0<br>30,5 | 17,0<br>24,5<br>30,0 | =     | =           |
| 3101<br>3103<br>3105 | Milling Cutter<br>diameter<br>40<br>50<br>65 | =                   | =                   | 3,7<br>5,5<br>7,2    | 3,6<br>5,4<br>7,1    | _                    | Ξ                    | _                    |       | _           |
| 3107<br>3109         | 80<br>100                                    | =                   | = 1                 | 12,1<br>21,1         | 11,9<br>20,8         | =                    | =                    | =                    | =     | =           |
| 3111<br>3113         | 130<br>160                                   | _                   | =                   | 43,4<br>114,0        | 42,8<br>113,0        | =                    | =                    | =                    | =     | =           |
| 3207<br>3209<br>3211 | Form 0<br>,, A<br>,, B                       | =                   |                     | 9,2<br>14,0<br>29,0  | 9,1<br>13,5<br>28,5  |                      |                      | _                    | _     | -<br>-<br>- |
| 3213<br>3215<br>3217 | "В<br>"Г<br>"Д                               | =                   | _                   | 41,5<br>110<br>153   | 40,5<br>108<br>151   | 1 = 1                | -                    | =                    | =     | =           |
| 3301<br>3303<br>3305 |                                              | 8,2<br>19,8<br>37,5 | 8,1<br>19,4<br>37,0 | 7,9<br>19,0<br>36,5  | 7,8<br>18,5<br>36,0  | 6,9<br>16,5<br>32,0  | 6,2<br>15,0<br>28,5  | 6,0<br>14,5<br>28,0  | =     | -<br>-      |
| 3401<br>3403         | Morse Taper 1&2<br>Morse Taper 3             | =                   | _                   | 7,6<br>21,5          | 7,5<br>21,0          | 6,5<br>18,5          | _                    |                      | =     | =           |
| 3405<br>3407         | Morse Taper 4<br>Morse Taper 5&6             | =                   | -                   | 37,5<br>66           | 37,0<br>65           | 33;0<br>58           |                      | =                    | =     | =           |

| Tip<br>No.           | Tool sizes<br>(suggested)                      |     |     | Approxi              | maté ti <sub>l</sub> | weigh                | t in gr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of grad              | e     |       |
|----------------------|------------------------------------------------|-----|-----|----------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|
| No.                  | mm (suggested)                                 | BK2 | вкз | BK6                  | вк8                  | T5K10                | T14K8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T15K6,<br>T15K6T     | T30K4 | T60K6 |
|                      | Milling Cutter<br>diameter                     |     |     |                      |                      |                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 4.                   |       |       |
| 3501<br>3503         | 10<br>12                                       | _   | =   | 6,3<br>11,5          | 6,2<br>11,0          | 5,5<br>9,7           | 4,9<br>8,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,8<br>8,5           | =     | _     |
| 3505<br>3507         | 14<br>14                                       | _   | _   | 11,0<br>24,5         | 10,5<br>24,0         | 9,8<br>21,0          | 8,3<br>19,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,1<br>18,5          | _     | _     |
| 3509<br>3511<br>3513 | 16<br>16<br>18                                 | =   | =   | 15,5<br>32,5<br>17,5 | 15,0<br>32,0<br>17,0 | 13,5<br>28,5<br>15,0 | 12,0<br>25,5<br>13,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,5<br>24,5<br>13,0 | =     | _     |
| 3515<br>3517<br>3519 | 18<br>20<br>22                                 | =   | =   | 36,5<br>39,5<br>43,0 | 36,0<br>39,0<br>42,5 | 32,0<br>34,5<br>37,5 | 28,5<br>31,0<br>33,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28,0<br>30,0<br>32,5 | =     | =     |
| 3601<br>3603         | 20—40<br>40—60                                 | _   | _   | _                    | 9,6<br>12,5          | 8,5<br>11,0          | 7,6<br>9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,4<br>9,6           |       | _     |
| 3605<br>3607         | 60—90<br>90—120                                | =   | _   | =                    | 17,5<br>17,5         | 15,5<br>15,5         | 14,0<br>14,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13,5<br>13,5         | =     | =     |
| 3701                 | Shank<br>section                               |     |     | ÷                    |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |       |
| 3702                 | 10×16                                          | 1-  | -   |                      | _                    | 2,3                  | 2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,2                  | -     | -     |
| 3703<br>3704         | 12×20                                          |     | -   |                      | _                    | 5,0                  | 4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,5                  | _     | -     |
| 3705<br>3706         | 16×25                                          | -   | -   | -                    | _                    | 10,5                 | 9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,5                  | -     | _     |
| 3707<br>3708         | 20×30                                          | -   | -   | -                    |                      | 21,0                 | 19,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18,9                 | _     | -     |
| 3709<br>3710         | 25×40                                          | -   | -   | -                    |                      | 30,5                 | 27,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27,4                 | -     | -     |
| 3711<br>3712         | 30×45                                          | . — | -   |                      | _                    | 42,0                 | 38,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37,8                 | -     | -     |
|                      | Drill                                          |     |     |                      |                      | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |       |
| 3801<br>3803<br>3805 | diameter<br>7,0—12,7<br>12,5—20,0<br>20,0—27,0 | =   | = : | =                    | 2,7<br>10,0<br>20,2  | 2,3<br>8,6<br>17,6   | 2,1<br>6,2<br>15,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,1<br>6,2<br>15,7   | _     | =     |

|                                      | Tool sizes                                                                         |                      | . A                  | .pproxin             | ıale tip                        | weight                            | in gr.                           | of grade          | 2                                       |                   |
|--------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|---------------------------------|-----------------------------------|----------------------------------|-------------------|-----------------------------------------|-------------------|
| Tip<br>No.                           | (suggested)                                                                        | вк2                  | вкз                  | вк6                  | ВК8                             | T5K10                             | T14K8                            | T15K6,<br>T15K6T  | T30K4                                   | T60K6             |
| 3807<br>3809<br>3811<br>3813<br>3815 | Drill<br>diameter<br>27,0—34,0<br>33,0—40,0<br>41,0—52,0<br>53,0—64,0<br>65,0—75,0 |                      |                      |                      | 37,1<br>32,6<br>56<br>97<br>127 | 32,1<br>28,2<br>48,1<br>84<br>110 | 28,7<br>25,3<br>43,1<br>75<br>99 |                   |                                         |                   |
| 3901<br>3903<br>3905                 | =                                                                                  | 1,7<br>2,7<br>7,4    | 1,7<br>2,7<br>7,3    | 1,7<br>2,6<br>7,2    | 1,6<br>2,6<br>7,1               | _                                 | _                                | =                 | _                                       | _                 |
| 3907<br>3909<br>3911                 | _                                                                                  | 13,3<br>20,6<br>29,2 | 13,2<br>20,4<br>29,1 | 12,9<br>20,0<br>28,6 | 12,8<br>19,8<br>28,1            | _                                 | _                                | =                 | =                                       | =                 |
| 4001<br>4003                         | =                                                                                  | _                    | =                    | _                    | 68<br>143                       | 59<br>124                         | 54<br>113                        | 53<br>112         | _                                       |                   |
| 4101<br>4103<br>4105                 | =                                                                                  | 1,1<br>2,3<br>4,5    | 1,1<br>2,3<br>4,5    | 1,1<br>2,3<br>4,5    | =                               | _                                 | =                                | 0,8<br>1,7<br>3,4 | 0,7<br>1,5<br>2,9                       | 0,5<br>1,0<br>2,1 |
| 4201<br>4203<br>4205                 | =                                                                                  | =                    | _                    | =                    | 9,8<br>13,6<br>18,5             | 8,5<br>11,8<br>16,2               | =                                | =                 | ======================================= | _                 |
| 4301<br>4303<br>4305                 | =                                                                                  | =                    | _                    | - 1                  | 3,5<br>9,8<br>15,5              | 3,1<br>8,5<br>13,5                | =                                | · =               | =                                       | -                 |
| 4307<br>4309                         | _                                                                                  | =                    | <u>-</u>             | =                    | 26,0<br>40,0                    | 22,5<br>35,0                      | _                                | -                 | _                                       | _                 |
| 4311<br>4313                         |                                                                                    | =                    |                      | =                    | 55,0<br>74,0                    | 47,5<br>64,0                      | =                                | _                 |                                         | =                 |
| 4401<br>4403                         | = 2                                                                                | =                    | , <u>=</u> 1         | =                    | 4,3<br>7,0                      | 3,8<br>6,1                        | , =                              | _                 | _                                       | -                 |
| 4405<br>4407                         | =                                                                                  | =                    | =                    | =                    | 12,5<br>21,5                    | 11,0<br>19,0                      |                                  | -                 |                                         | -                 |

# SPECIAL TIPS AND OTHER SINTERED CARBIDE PRODUCTS

In addition to Standard Carbide tips, the enterprises of the Union State Carbide Trust produce special tips of various shapes for diverse special and shaped tools.

Sintered carbides are remarkable for their hardness, wear- and carrosion resistance, stability at high temperatures and great compressive strength.

Owing to these outstanding properties sintered carbides are now extensively used in such branches of machine building industry where the machines operate under unfavourable conditions, i. e. where the machine parts are exposed to high temperatures and are subject to great abrasion and compression.

All parts made of sintered carbides receive high resistance for operation under heavy conditions and application of such parts ensures to the plants great economy and minimizes the idle time of machines, caused by replacement of machine parts.

Our plants successfully produce special tools and parts for various branches of industry, particularly for the watch, automobile, tractor and textile industries.

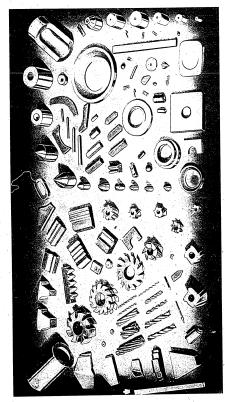
When ordering shaped tips or other special parts made of carbides, drawings of the required parts must be submitted.

The numerous remarkable properties of the carbides offer great opportunities to engineers and rationalization experts who are endeavouring to improve the designs of the machines and devices and to increase their efficiency and stability.

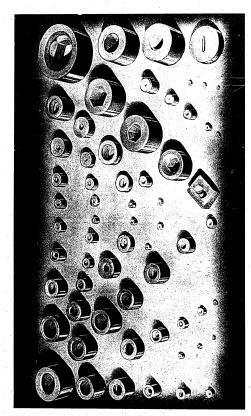
# SINTERED CARBIDES USED IN OTHER BRANCHES OF INDUSTRY

Carbide products for other branches of Industry can be supplied both as standard products and as shaped and special products, manufactured in accordance with the drawings submitted by the customers.

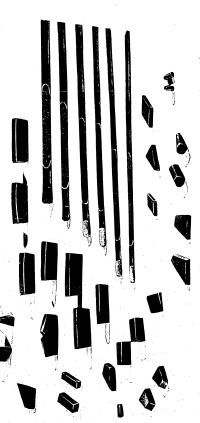
#### DIE BLANKS


Carbide blanks intended for drawing and calibration of round and shaped metal bars and for upsetting bolts, screws and rivets are made of carbide grades mostly suitable for these purposes.

Standard blanks are manufactured in wide range according to the State Standards 3919-47, 2330-49, 5426-50, 6230-52 and 6231-52. Shapes and sizes of carbide products for metal drawing and calibration as well as the necessary instructions are given in our catalogue No. 10 "Hard alloys for metal drawing".


# PRODUCTS FOR THE MINING INDUSTRY

Tips for tipping percussion rock bits, electrical and pneumatic drills for coal boring and rock drilling, coal cutter picks and bits of coal combines as well as for tipping of chisels of oil well drilling are made of Sintered Carbides grades having high hardness, wear-resistance and ability to resist against heavy impacts.


Shapes and sizes of carbide products for the mining industry according to the State Standard 880-53 and the necessary instructions are given in our catalogue No. 11.



ese carbide products, as well as other shaped products are produced in accordance with the drawings

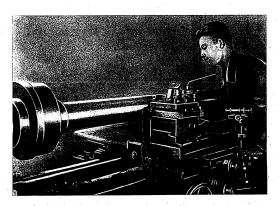


Blanks of Carbide Drawing Dies are produced in a wide range in accordance with the State Standards and buyer's drawings.



Carbide Blanks for tipping rock-boring bits, and tube hard-facing alloy "Relit-13" for hard-facing of oil-boring tools.

# TUBE HARD-FACING ALLOYS FOR BORING TOOLS


Tube Hard-facing alloys "Relit T3" are manufactured of special  $\ensuremath{\mathsf{T}}$ grades of cast alloys and are supplied in particles of different sizes.

Hard-facing alloys "Relit" are intended for facing of oil boring chisels (reed-rollers, fish-tails, etc.).

Grades of Tube Hard-Facing alloys and instruction of chisel

tipping are given in our Catalogue No. 11.

INSTRUCTIONS



# HOW TO MAKE CARBIDE TIPPED TOOLS

The process of manufacture of carbide tipped tools is divided in three stages:

Stage I.

. Manufacturing of steel shank.

Stage II.

Preparation of both shank and carbide tip for brazing.  $Stage\ III.$ 

Brazing carbide tip to the steel shank.

To obtain good results with the carbide tipped cutting tool correct performance of the above operations is essential. It is recommended to make shanks of carbon tool steel or alloy steel in dependance of tool design and conditions of its application.

For making shanks of rough turning and facing tools it is suggested to use carbon steel grade 45 & 50 having tensile strength 65—75 kg/mm².

For shanks of light duty design (parting, slotting, boring etc.) it is recommended to use steel grade 40X or 45X with subsequent heat treatment till hardness  $H_{R_{\rm c}}\!=\!40\!-\!45.$ 

For shanks subjected to low loads (thread cutting and finish turning tools) it is admitted to use steel grades 35 or 40.

The sizes of the shanks are to be chosen depending on the dimensions of the equipment and conditions of operation.

It is recommended to use the most great sizes of tools admitted by the machine-tool.

Length of the shank depends on the method of tool fastening and the work to be done.

Length of the shank for carbide tipped tools is same for tools tipped with high speed steel.

See below the main recommendations for manufacturing carbide tipped tools.

#### STAGE I — FORMING OF SHANK.

#### 1. Preparation of material for shank.



A cold-drawn steel bar of the desired section is cut into blanks having length provided by the drawing. The cutting of the bar is most effectively performed by means of a press shearing machine.

This operation can be also accomplished:

- a) with circular metal cutting saws;
- b) with hacksaw machines;
- c) with horizontal milling machines;
- d) by forging method.

### 2. Forging of the shank.



Forging of the shank end is accomplished either by means of forging dies or by hand forging using gauges and special devices. The forging in dies is the most effective of the two procedures as the front and side reliefs of the tool are formed simultaneously with the tool end, which greatly reduces subsequent machining.


#### 3. Tempering after forging.

To facilitate machining the forged shanks should be annealed. Shanks made of steels grade 45 or 50 are tempered at the temperature of 800°—850° and made of chromium steels grade 40X or 45X at the temperature of 840°—870°.

#### 4. Machining of the shank base surface.

This operation is necessary for proper setup of the tool in the tool block of the machine and to obtain a base for subsequent machining of the shank grinding and lapping as well as for checking of the tool angles.

The best results are obtained with powerful surface-grinding machine having a magnetic chuck to which the shanks are rigidly clamped.



This operation can also be carried out:

- a) On vertical milling machines by means of a face milling head.
- b) On horizontal milling machines by means of plain milling cutters with bevelled teeth.
- c) On shapers by means of cutters.

#### 5. Machining of the end and side of shank.

This operation consists in machining the end and side of the shank to obtain the required side and front reliefs.

Machining is most effectively accomplished on the milling machines with the aid of special multipoint swivelling devices which permit to machine several shanks simultaneously.

This operation can also be performed:

- a) on horizontal milling machine with angular cutter. In this case the setting of the tool for obtaining the required angles is accomplished by using special wedge type shims or an adjustable vice.
- b) On vertical milling machine, using an adjustable milling head or a wedge type shim.



#### 6. Machining the tip seat.



Tip seats of the open type are most effectively machined on milling machines with the use of a swivelling multipoint fixture.

Tip seats of semi-closed type should be machined on vertical milling machines by means of an end mill, using a swivelling device.

Tip seats of closed type (cut-in) are produced by means of a side mill. The bearing surface of the tip seat should be neither convex nor concave, and should be free of burrs.

# STAGE II. PREPARATION OF TIP FOR BRAZING.

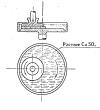
# 1. Grinding of the tip bearing surfaces.



Grinding of the tip bearing surface is not necessary unless there is some warping of the surface which prevents a close fit of the tip to the tip-seat.

Most effective is the chemical-mechanical method based on combined princip of destruction of the surface tip layer (fusing the cobalt bound) µnder the chemical action of copper vitriol solution with process of grinding (removing fused surface layer)

The chemical-mechanical process of grinding is carried out on a special machine, by rotation of two discs (upper and lower) as it is shown on the plan.


Sticking of the tips to the upper disc is

made by glue, the latter consists of wax (one share) and rosin (three shares).

For chemical-mechanical grinding is supplied suspension of the following composition: water — 1 l.

copper vitriol (sulphuric copper)  $-0.25\,\mathrm{kg}$ . abrasive powder (corundum, emery) grain  $120-170\,-1\,\mathrm{kg}$ .

When grinding each tip separately it is possible to clean the tips by green silicon carbide wheels.



#### 2. Tool marking.

Tool marking is produced on left side of the shank by stamp or electric etching.



It is admitted to point the tool shank face, depending on grade of sintered carbides, on the following colours:

| Hard alloy<br>grade | Marking colour          | Hard alloy<br>grade | Marking colour         |
|---------------------|-------------------------|---------------------|------------------------|
| BK2                 | Black with white streak | T14K8               | Grey                   |
| вк3                 | Black                   | T15K6               | Green                  |
| BK6                 | Dark blue               | T15K6T              | Brown                  |
| BK8                 | Red                     | T30K4               | Blue                   |
| T5K10               | Yellow                  | T60K6               | Blue with white streat |



#### STAGE III. TIP BRAZING

Proper performance of this operation is absolutely essential as otherwise the tips, due to the cracks generating during brazing, will break while the tool is in operation.

### SOLDER

Solder applied for tip brazing should have melting point  $\sim 300^\circ$  higher of that appearing during metal cutting, secure durability and plasticity, possess well fluidity and provide rapid transference of heat from carbide tip to the shank.

### Following Solders are recommended:

| Solder                                 | Composition                                                                                                                                                                   | Melting<br>point | Application                                                                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------|
| Copper-<br>nickel                      | $\begin{array}{ccc} \text{Copper} & -68,7^0/_0 \\ \text{Nickel} & -27,5^0/_0 \\ \text{Alumin} & -0,8^0/_0 \\ \text{Zinc} & -3,0^0/_0 \end{array}$                             | 1170°            | For heavy duty operations with heating the tool cutting part up to 900°     |
| Electrolitic<br>copper<br>Brass-Nickel | $\begin{array}{lll} \text{Copper} & -99.9^0/_0\\ \text{impurity} & -0.1^0/_0\\ \text{Copper} & -68.0^0/_0\\ \text{Zinc} & -27.0^0/_0\\ \text{Nickel} & -5.0^0/_0 \end{array}$ | 1083°            | Ditto but heating up to 700°                                                |
| Brass L-62                             | Copper — 62,0%<br>Zinc — 38,0%                                                                                                                                                | 900°             | For light duty operations and with heating the tool cutting part up to 600° |
| Silver<br>PCR-45<br>(OST-2982)         | Silver $-10^{0}/_{0}$<br>Copper $-53^{0}/_{0}$<br>Zinc $-37^{0}/_{0}$                                                                                                         | 720°             | For brazing tips of grades<br>T60K6 and T30K4                               |

#### FLUX

To protect the carbide tip and the shank tip seat from oxidation and to facilitate the removal of oxides as well as for better brazing of the tip to the shank it is necessary to use flux during brazing process.

Borax is the best flux material. Prior to use it must be melted, crushed and screened through a fine screen. Borax should be kept in closed receptacles to protect it from dirt and mixture.

Borax is applied either in powder or on paste, consisting of three shares of borax and two shares of vaseline.

When brazing carbide tips with brass solder it is recommended to use flux consisting of 50% borax and 50% of boric acid. Melting point of this flux is  $750^\circ$ .

When using silver solder should be applied flux consisting of  $43\,\%$  fluorine calcium and  $57\,\%$  of boric acid.

#### GAUZE CUSHION

To reduce thermal stress when brazing thin and long tips as well as large tips intended for heavy duty work it is recommended to insert Gauzes between the shank and tip. These gauzes are made of carbon steel or permalloy.

It is necessary to use gauzes especially when brazing tips of high titanium content.

Gauzes are manufactured of tinfoil or steel wire-net having thickness of 0.2-0.5 mm with holes 1-2 mm dia.

Gauze Cuchions increase the toughness of brazing and prevent carbide tips from cracking which may occur during cooling of the brazed tools.

#### BRAZING METHODS

Heating of shanks and tips and melting of solder can be performed in the following manner:

- a) in a gas or oil fired furnace or in an electric muffle furnace;
- b) by high frequency currents;
- c) by contact method in an electric arc welding machine;
- d) by oxyacetylene torch.

To facilitate the tensions which arise in hard alloys during cooling, it is recommended to braze Sintered Carbides T60K6 and T30K4, especially inclined to chilling cracks, only along one side; the tip side surfaces are to be protected from brazing by graphite or micaceous washers.

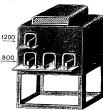
#### BRAZING IN GAS, OIL-FIRED OR ELECTRIC FURNACES

#### 1. Shank preheating

Shank recess should be thoroughly preheated up to a temperature of  $800^\circ$  which is the melting point of borax.

### 2. Preparation of tool for brazing




The preheated tip seat is sprinkled with borax and the shank is removed from the furnace and brushed clean from scale with a wire brush.

The tip seat is then again coated with strip of copper cut to size laid on top of the tip, whereupon the whole is sprinkled with borax in such a way as to cover the solder and the entire tip with a solid layer of borax.

This operation must be done quickly to prevent the cooling of the shank.

#### 3. Solder melting

The end of the shank prepared for brazing is placed in the furnace muffle at the
temperature of 1200° and is kept there until
the solder has melted.



#### 4. Pressing the tip to the shank

As soon as the solder has melted and flows under the tip, the tool is quickly removed from the furnace and placed on a special stand; the tip is then firmly pressed in correct position with a pointed rod.

Pressure is applied for a few seconds until the braze hardens and a firm joint has developed.



#### 5. Tool cooling

In order to avoid quick cooling which may cause cracking of the tip, the heated tool should be placed into a box filled with pulverized charcoal or with dry warmed sand for slow cooling.

More better to place the tools immediately after brazing in a chamber furnace heated up to 250°. Tools should be kept there within 5-6 hours, afterwards they should be cooled together with the furnace.



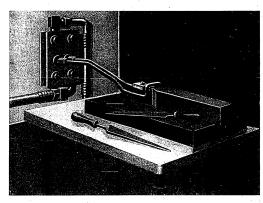


#### 6. Tool cleaning

After cooling the tool is cleaned from scale in a sand blast machine.

#### HIGH FREQUENCY INDUCTION BRAZING

This method is most efficient, convenient and economical and ensures high quality of brazing.


Any available equipment for producing high frequency currents may be used for this purpose.

Heating of the shank and tip as well as melting of the solder are accomplished in an inductor, the shape of which must be similar to the shape of the tool end.

The size of the working space of the inductor must be at 20-30~mm more than the shank size.

#### Brazing procedure

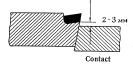
- 1. The tip seat is sprinkled with a pulverized mixture of solder and flux; the tip coated with the same mixture is then placed in the tip seat.
- 2. The tool so prepared for brazing is placed in the inductor where the tool end is heated to a temperature corresponding to the melting point of solder.
- 3. When the solder has melted, the tool is removed from the inductor, the tip is pressed into the tip seat with a metallic pointed rod and the whole is placed into a box filled with pulverized charcoal or with dry warmed sand for slow cooling.



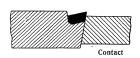
High frequency tip brazing

#### BRAZING BY CONTACT METHOD IN ELECTRIC WELDING MACHINES

The contact brazing is performed in electric welding machines which are equipped with a simple device, consisting of two flat contact carriers, a set of contact bars, a block with a load and a push button.


Contact brazing is similar to furnace brazing and is performed in the following way:

- 1. The shank is firmly held in the contact carriers and is so positioned as to produce the greatest possible contact surface between the face of the shank and the contact bar.
- 2. The contact bar is put close to the shank and then pressed to it


R

3. The tip seat is sprinkled with borax and the end of the tool is then preheated to about 800° (the melting point of borax) by alternatively switching on and off the electric current. When borax has melted, the tip seat is cleaned from scale and oxides with a wire brush and then again coated with borax.

The carbide tip is placed in the tip seat, solder is laid on top of it and the whole is again liberally sprinkled with borax.



"Correct". The contact point does not touch the carbide tip.



"Wrong". The contact point touches the carbide tip.

- 4. The current is switched on for melting the solder, then it is switched off again and the tip is pressed into the tip seat with a metallic pointed rod.
- 5. The tool is removed from the contact clamps and placed into a box filled with pulverized charcoal or with dry warmed sand for slow cooling.
- 6. After cooling the tool is cleaned from scale in a sand-blast machine.

#### TORCH BRAZING

When this method is applied, an oxyacetylene torch serves as the source of heat. It should be noted that this method is used only when other heat sources like those described above are not available or when only a relatively small number of tools is to be brazed.

A torch with a non-oxidizing flame must be used (with surplus of acetylene), the flame being directed at the shank, from which the tip gets its heat.

The brazing process is identical to that used when brazing in furnaces. Torch brazing must be performed by a skilled operator having great experience in this kind of work.

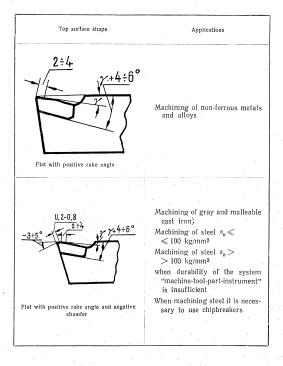


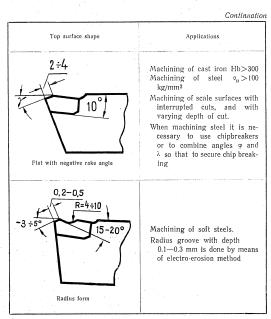

Carbide tip brazing by means of an oxyacetylene torch.

All methods of brazing must produce a thin solid joint firmly connecting the contact surfaces of tip and recess.

The tip should not be displaced in the tip seat.

# GEOMETRY AND SHAPE OF TIPPED TOOL


#### I. SYMBOLS OF TOOL GEOMETRY



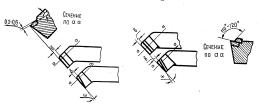

- α Clearance angle
- $\alpha_I$  Side relief angle
- γ Rake angle
- $\lambda$  Front clearance angle
- $\phi$  Cutting edge angle
- φ<sub>1</sub> End cutting edge angle
- r Relief surfaces conjugate radius

#### II. SELECTION OF TOP SURFACE SHAPE

Depending upon the tool type, material to be machined and conditions of operation the following main tool Shapes are recommended.

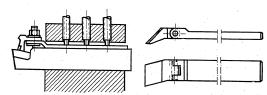





III. CHIP CONTROL

Chip control is necessary when machining steel with very rapid speeds.

Radius form of rake angle, shown above, secures safe removal and breaking of the chip.


When using flat form of rake angle chip curling and breaking are secured by:

- a) Chip breaking rebates grinded along the cutting edge of the tool or under small angle.
- b) Brazed tips-chipbreakers.
- c) Plated chipbreakers of various design.



Chip breaking groove.

Chipbreaker brazed to the tool



Mechanic chipbreaker

Basic dimensions of chip breaking rebates and brazed chip-breakers.

| Depth of cut | Feed mm/per rev. | Size "e"<br>mm | ωο |
|--------------|------------------|----------------|----|
| to 4         | 0,2—0,7          | 1,5—6          | 20 |
| 4—8          | 0,2—1,0          | 3—8            | 15 |
| 8—15         | 0,4—2,0          | 4—10           | 10 |

#### IV. RECOMMENDED GEOMETRIC SIZES

When machining steel with ultimate strength up to  $100\ kg/mm^2$  and cast iron with Brinell hardness up to  $300\ it$  is recommended to use positive rake angles.

Negative rake angles should be used only in case when necessary maximum possible increase of utilization toughness of tool cutting part.

Smooth operation with negative rake angles can be secured only when the required rigidity of the system "machine-tool-part-instrument" is available.

#### SELECTION OF CLEARANCE ANGLES

Clearance angle  $\boldsymbol{\alpha}$  must be selected in the following ranges:

| Tool Type                             | Clearance angle α° |                     |  |  |  |
|---------------------------------------|--------------------|---------------------|--|--|--|
| 1001 Type                             | Steel machining    | Cast iron machining |  |  |  |
| Turning and turret lathe tools of all |                    | 1.                  |  |  |  |
|                                       | 0 1 10             | C . 10              |  |  |  |
| types                                 | 8 + 12             | 6 + 10              |  |  |  |
| types<br>Boring tools                 | 0 + 12<br>10 + 14  | 0 + 10<br>10 + 14   |  |  |  |

Smaller value of angles are recommended for feeds  $> 0.3 \ \text{mm/per}$  revol.

Larger value of angles are recommended for feeds  ${\leqslant}0.3~\text{mm/per}$  revol.

The side relief angle  $\alpha_1$  is taken equal to clearance angle  $\alpha$  for all types of tool except parting and slitting tools having  $\alpha_1{=}1{-}2^\circ$ .

#### SELECTION OF RAKE ANGLE

Rake angle  $\gamma$  depending on material to be cut and type of machining is recommended to select in the following range:

| Material to be machined                          | Ra   | Rake angle |    |  |  |
|--------------------------------------------------|------|------------|----|--|--|
| Steel o <sub>B</sub> up to 80 kg/mm <sup>2</sup> | from | 16 to 1    | 10 |  |  |
| " σ <sub>B</sub> up to 80—100 kg/mm²             |      | 12 to      | 6  |  |  |
| " o <sub>B</sub> above 100 kg/mm²                |      | 6 to —     | -5 |  |  |
| Cast iron H <sub>B</sub> to 200                  |      | 12 to      | 8  |  |  |
| " " Н <sub>в</sub> 200—300                       | ,    | 8 to       | 4  |  |  |
| " " H <sub>B</sub> above 300                     | ,    | 0 to —     | -6 |  |  |
| Copper                                           | . ,  | 25 to 2    | 20 |  |  |
| Bronze and brass                                 | , ,  | 12 to      | 6  |  |  |
| Pure aluminium                                   |      | 35 to 2    | 25 |  |  |
| Tough aluminium alloys                           |      | 14 to 1    | 0  |  |  |
| Aluminium alloys containing silicon              | ,    | 10 to      | 6  |  |  |
| Magnesium alloys                                 |      | 12 to      | 8  |  |  |

#### SELECTION OF CUTTING EDGE ANGLE

Cutting edge angle of must be selected within 30—45°. In case the system "machine-tool-part-instrument" possess insufficient rigidity the cutting edge angle of must be taken within 60—90°.

### SELECTION OF THE INCLINE OF CUTTING EDGE

Positive angle incline of the cutting edge  $\lambda$  is recommended within  $10\!-\!15^\circ$  for shaping tools as well as for turning tools with interrupted cutting.

For all other conditions of operations the incline angle of cutting edge of turning tools is recommended to take equal 0°.

# CARBIDE TOOL LIFE DEPENDS ON THE PROPER TOOL SHARPENING

Life of the tools and consequently their efficiency depends on the quality of sharpening.

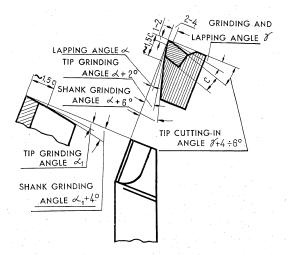
High sensitivity of sintered carbides to impacts and temperature influence requires great care in the process of sharpening.

According to the increase in difficulties of sharpening (to obtain keen and smooth cutting edges) the Grades of Sintered Carbides may be put into the following order:

BK15, BK11, BK10, BK8, T5K10, T14K8, BK6,

T15K6, T15K6T, BK3, T30K4 and T60K6.

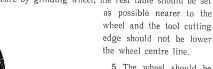
Well sharpened tipped tools can be obtained:

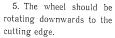

- 1) when the suitable grinding wheel is used,
- 2) when the basic rules of tool grinding is strictly observed,
- 3) the grinding machine is kept in good conditions and the operator is a high scilled worker.

### RULES OF GRINDING AND LAPPING CARBIDE TOOLS

To get proper tool angles, reduce time for grinding and lapping and to obtain economy in Carbides, and abrasive materials it is recommended:

a) for the top surface—principle of double angles;


- b) for clearance angle—principle of triple angles;
- c) for side relief angle-principle of double angles.




#### BASIC RECOMMENDATIONS FOR GRINDING

- 1. The grinding of tipped tools should be performed by specially trained operators.
- 2. Grinding the tools can be performed on grinding machines of any design by hand, without rigid clamping the tool to be grinded.

- 3. The design of the grinding machine should be rigid. The spindle must be free from vibrations and play.
- 4. For grinding the tool should be set on the grinding machine at the desired angles, using an adjustable table rest. In order to avoid seizure by grinding wheel, the rest table should be set





6. While grinding it is necessary to use coolant (a 3—5 per cent emulsol

solution) which must be supplied continuously at the rate of not less than 6 litres per minute. This will increase output of grinding by  $50\,\%$  .

Under no circumstances should the coolant be supplied dropwise or in the form of spray as it may cause cracks in the tips. When the tool is grinded dry cooling in water is prohibited.

- 7. Tools grinding should be done by slightly pressing the tool against the wheel, and at the same time keeping the tool continuously moving across the wheel. Excessive pressure on the wheel will not increase the grinding but will lead to tip cracking and increase expenditure of grinding wheels.
- 8. Grind the tools only with well dressed wheel otherwise it will cause cracks in the tips.

The grinding wheels should be dressed periodically.

- 9. The sharpening of tipped tools is performed in the following manner:
  - Rough grinding of tool shank along back surfaces by silicon carbide wheel grain 46—60, bond hardness C1-CM1 at a surface speed of 25 m/per second.
  - b) Rough grinding of carbides grades BK15, BK11, BK10, BK8, BK6, T5K10, T14K8 & T15K6 with green silicon carbide wheels of 60—46 grain, soft bond M3-CM2.
  - Finish grinding of same carbide grades with green silicon carbide wheels of 80—60 grain, bond hardness M2-M3.
  - d) Preliminary grinding of carbides grades BK2, BK3, T15K6T, T30K4 and T60K6—with green silicon carbide wheels of 60 grain and hardness M2-CM1.
  - e) Fine grinding for same carbide grades with green silicon carbide wheels of grain 80-100 and hardness M1-M2.
- 10. For rough and finish grinding a surface speed of the wheel ranging from 12 to 18 m. per second is recommended.

#### GRINDING PROCEDURE

The technological process of the tipped tool grinding consists of the three following operations:

- I. Grinding of shank side secondary reliefs,
- II. Rough tip grinding,
- III. Finish tip grinding.

### I. Grinding of shank side secondary relief:



- a) Roughing of the side secondary
- relief at an angle α+6°;
  b) Roughing of the front secondary relief at an angle α<sub>1</sub>+4°.

### II. Rough tip grinding



- a) Side relief grinding at the angle of α + 2°;
   b) Front relief grinding at the
- angle of  $\alpha_i$ ;

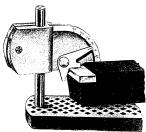


c) Top face grinding at the angle

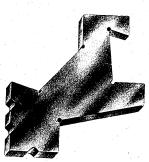
#### III. Finish tip grinding

a) Top face grinding at the angle of γ;



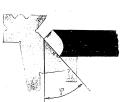

- b) Side relief grinding at the angle of  $\alpha + 2^{\circ}$ ;
- c) Front relief grinding at the angle of  $\alpha_1$ ;




d) Tool nose radius grinding at the angle of  $\alpha+2^{\circ}$ .



It is recommended to do rough grinding with the periphery of a straight wheel, and finish grinding with the face of a cup type wheel. After grinding, cutting edges should have neither roundings nor nicks. Cutting edges should be keen and rectilinear. The angles are to be checked with templates or with universal protractors.



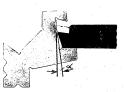

Universal Bevel Protractor



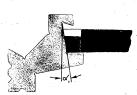
Template for checking tool angles

# EXAMPLES OF TEMPLATE APPLICATIONS FOR CHECKING TOOL ANGLES

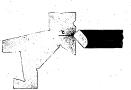



Checking of cutting-edge angles




Checking of the end cutting edge angle




Checking of the true rake angle



Checking of clearance angle



Checking of the side relief angle



Checking of the nose radius

102.

# LAPPING INCREASES TOOL LIFE TWOFOLD

Lapping of carbide tipped tools is aimed to remove from tool cutting edges different irregularities and jags appearing during grinding.

To obtain a more accurate finish and a keener cutting edge the tool must be lapped after grinding.

Tool lapping is performed on special lapping machines. These machines are of simple design and they can be produced by any metalworking plant.

The lapping disc is made of cast iron of  $H_{\text{b}}{=}120{-}160$  hardness. The lapping machine should have a rigid construction (to avoid vibrations).

#### COMPOSITION OF PASTES FOR CARBIDE TIP LAPPING

| Paste<br>No. | Paste<br>characteristic   | Composition mass per cent in weight |                             |                | t of<br>ty                  |                        |
|--------------|---------------------------|-------------------------------------|-----------------------------|----------------|-----------------------------|------------------------|
|              |                           | Boron                               | Silicon<br>carbide<br>green | Paraf-<br>fine | Coefficient or productivity | Application            |
| 1            | High produc-<br>tivity    | 85                                  |                             | 15             | 1,0                         | For tools of all kinds |
| 2            | Middle pro-<br>ductivity  | 70                                  | -                           | 30             | 0,8                         | ditto                  |
| 3            | Reduced pro-<br>ductivity | 25                                  | 55                          | 20             | 0,7                         | XI.                    |
| 4            | Low produc-<br>tivity     | <u>-</u>                            | 80                          | 20             | 0,6                         | ,,                     |

The run-out of the disc face surface must not exceed  $0.05~\mathrm{mm}$ . The disc must have peripheral speed from 1 to  $1.5~\mathrm{m/sec}$ .

The table rests of the machine should be swivelling and provided with special devices—protractors allowing to adjust tools at the required angles during lapping.



Tool cutting edge after grinding



Tool cutting edge after lapping

Suggested grit of lapping material:

- a) for rough tools—Nos. 325—270,
- b) for finish tools-M28-M20,
- c) for tools intended for extra precise operations M10-M14.

Paste coating should be applied while the disc is rotating; prior to this the working surface of the disc should be dipped in kerosene

The disc should rotate in the opposite direction to the grinding wheel: it should "run-away" from the tool cutting edge, as otherwise the cutting edge will scratch the paste off the disc and will damage it, while no lapping will ensue.

The tool should be smoothly moved towards the lapping disc and slightly pressed against it.

Hard pressure while not accelerating the lapping operation increases the consumption of lapping materials. When lapping, the tool should be kept moving across the disc to the right and to the left

The lapping process applied to the tipped tool is the same as the grinding process and consists of the following three operations:

- 1) lapping the side of tool;
- 2) lapping the top surface;
- 3) lapping of the nose radius.

After lapping, the cutting edges of the tipped tool must be keen, free of jags and must have no scratches left by the grinding wheels. The curve of the nose radius must be even and smooth.

After lapping the side and top surfaces must be slightly dulled by a fine green silicon carbide stone.

# HOW TO SELECT PROPER SPEED, FEED AND DEPTH OF CUT

When selecting speed, feed and the depth of cut it is necessary to take into account the grade of carbide, the material to be machined as well as the capacity of the machine tool and the period of tool resistance.

### I. DEFINITION OF DEPTH OF CUT

The depth of cut is determined by the allowance provided for machining. Rough and semi-finish machining it is recommended to perform in one pass, leaving only a small allowance for subsequent finish operations.

#### II. FEED SELECTION

To obtain minimum possible cutting time it is necessary to use the maximum feeds permissible.

Average feeds recommended for rough machining of soft steels, steel casting and cast-iron are given below.

|                                     | Depth of cut, mm          |                  |                   |  |  |
|-------------------------------------|---------------------------|------------------|-------------------|--|--|
| Diameter of the part to be machined | Up to 5                   | Above 5 up to 10 | Above 10 up to 15 |  |  |
|                                     | Rate of feed, mm/per rev. |                  |                   |  |  |
| to 30                               | 0,2—0,5                   | _                |                   |  |  |
| ,, 50                               | 0,40,8                    |                  |                   |  |  |
| ,, 80                               | 0,6-1,2                   | 0,5—1,0          |                   |  |  |
| ,, 120                              | 1,0-1,6                   | 0,7—1,3          | _                 |  |  |
| ,, 180                              | 1,4-2,0                   | 1,1—1,8          | 0,8—1,5           |  |  |
| ,, 260                              | 1,8—2,6                   | 1,5—2,0          | 1,1—2,0           |  |  |

For finish turning, the feed is selected depending on the required smoothness of the surface to be machined.

#### III. SELECTING OF CUTTING SPEED

The cutting speeds recommended for several materials widely used in industry (external turning) without cooling are given in the table below.

Under normal conditions the cutting speeds shown on the table will secure tool resistance of about 60 min. of cutting time.

| Material to be machined                              |                                    | Carbide<br>grade                           | Depth of<br>cut in<br>mm             | Feed<br>mm/per<br>revol.                            | Cutting<br>speed<br>m/min.                          |
|------------------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Carbon<br>Steels                                     | σ <sub>B</sub> = 65kg/mm²          | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4 | 4—15<br>3—10<br>1— 8<br>1— 8<br>1— 4 | 0,5—2,0<br>0,3—1,6<br>0,2—1,4<br>0,2—1,4<br>0,1—0,3 | 105— 50<br>150— 70<br>315—120<br>380—140<br>500—320 |
| Carbon-alloy<br>steels con-<br>structional<br>steels | σ <sub>в</sub> == 75 kg/mm²        | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4 | 4—15<br>3—10<br>1— 8<br>1— 8<br>1— 4 | 0,5—2,0<br>0,3—1,6<br>0,2—1,4<br>0,2—1,4<br>0,1—0,3 | 85— 40<br>120— 55<br>250— 95<br>300—115<br>400—255  |
|                                                      | $\sigma_{\rm B} = 85  \rm kg/mm^2$ | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4 | 4—15<br>3—10<br>1— 8<br>1— 8<br>1— 4 | 0,5—2,0<br>0,3—1,6<br>0,2—1,4<br>0,2—1,4<br>0,1—0,3 | 70— 35<br>105— 50<br>210— 80<br>255— 95<br>340—215  |
|                                                      | σ <sub>в</sub> =100 kg/mm²         | T5K10<br>T14K8<br>T15K6<br>T15K6T<br>T30K4 | 4—15<br>3—10<br>1— 8<br>1— 8<br>1— 4 | 0,5—2,0<br>0,3—1,6<br>0,2—1,4<br>0,2—1,4<br>0,1—0,3 | 55— 25<br>80— 35<br>165— 65<br>200— 75<br>265—170   |

|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                              |                                          | Continuation                            |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------------------|-----------------------------------------|
| Material to                                 | be machined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbide<br>grade         | Depth of<br>cut in<br>mm     | Feed<br>mm/per<br>revol,                 | Cutting<br>speed<br>m/min.              |
| Hardened<br>steel                           | $\sigma_B = 125  kg/mm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T5K10<br>T15K6           | 0,2—2,0<br>0,2—2,0           | 0,05—0,3<br>0,05—0 <b>,</b> 3            | 140— 45<br>200— 70                      |
|                                             | $\sigma_B = 145 kg/mm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T5K10<br>T15K6           | 0,2—2,0<br>0,2—2,0           | 0,05—0,3<br>0,05—0,3                     | 100— 35<br>150— 50                      |
|                                             | σ <sub>B</sub> =165kg/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T5K10<br>T15K6           | 0,2—2,0<br>0,2—2,0           | 0,05—0,3<br>0,05—0,3                     | 85— 25<br>120— 40                       |
| Machining n                                 | ay be also performe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d by sintere             | d carbides gr                | ades BK8, BK2                            | & T30K4                                 |
| Gray cast iron                              | H <sub>B</sub> =170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BK8<br>BK6<br>BK2<br>BK3 | 4—15<br>2— 8<br>1— 8<br>1— 3 | 0,5—3,0<br>0,3—2,0<br>0,1—1,0<br>0,1—0,3 | 90— 35<br>140— 55<br>220— 80<br>220—155 |
|                                             | H <sub>B</sub> =190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BK8<br>BK6<br>BK2<br>BK3 | 4-15<br>2-8<br>1-8<br>1-3    | 0,5—30<br>0,3—2,0<br>0,1—1,0<br>0,1—0,3  | 75— 30<br>115— 45<br>185— 70<br>185—130 |
|                                             | H <sub>B</sub> =230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BK8<br>BK6<br>BK2<br>BK3 | 4—15<br>2— 8<br>1— 8<br>1— 3 | 0,5—3,0<br>0,3—2,0<br>0,1—1,0<br>0,1—0,3 | 55— 20<br>85— 30<br>130— 50<br>130— 90  |
| Соррег                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВК6                      | 1—5                          | 0,2-0,8                                  | 500—350                                 |
| Bronze                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BK6<br>BK2               | ,,                           | ,,                                       | 400—250<br>480—300                      |
| Pure alumi-<br>nium                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВК6                      | 1                            | 19                                       | 1500—1000                               |
| Tough alumi-<br>nium alloys                 | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | ВК6<br>ВК2               | "                            | ,,                                       | 400—250<br>480—300                      |
| Aluminium<br>alloys contain-<br>ing silicon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВК6<br>ВК2               | 23                           | 11                                       | 300—150<br>360—180                      |
| Magnesium<br>alloy                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВK6<br>ВK2               |                              | ,,                                       | 2000—1000<br>2400—1200                  |

# BASIC RULES OF APPLICATION OF CARBIDE TIPPED TOOLS

To get the best results with the carbide tipped tools, the following basic rules must be observed:

#### I. MACHINE-TOOL

The machine-tool chosen to work with carbide tipped tools must meet the following requirements:

- a) It must be powerful enough to operate with the specified cutting speed, feed and depth of cut.
- b) Good condition of the machine-tool is absolutely essential. Spindle bearings and all carriage slides must be properly adjusted to eliminate end play and vibration.
- c) The feed gear must be strong enough to allow the use of the specified feeds.

#### II. COOLANT

The application of coolant when working with carbide tipped tools has a good effect on the cutting process as it increases the output and improves the quality of the machined surface.

The coolant should be directed at the tool point in an abundant and uninterrupted flow at the rate of not less than 12 l/per minute.

If however, the capacity of the coolant pump mounted on the machine is insufficient to provide for such a volume of coolant, it is preferable to work without coolant at all. Insufficient supply of coolant causes cracking of the carbide tips and consequently results in premature tool wear.



Insufficient or drop-wise cooling while grinding or while using the tool may cause tip cracking.

#### III. SETTING OF THE PART TO BE MACHINED

The parts to be machined should be rigidly clamped. If the part is machined in centers proper fixing of the tailstock and its spindle must be assured during the operation. When the part to be machined is held by a lathe chuck or face plate, it must be accurately set before final clamping to avoid eccentricity which may cause chipping and cracking of carbide tips due to uneven depth of cut.

When working at high cutting speeds it is recommended to use a live center or a center provided with a carbide insert, as an ordinary center will wear out very quickly. When turning parts of a considerable length, a roller steady rest must be substituted for cam steady rest.

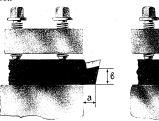
#### IV. TOOL SETTING AND CLAMPING

1. The setting of the tool in the tool holder is done in accordance with the material to be cut and the method of machining. The tool is set up:



When machining cast-iron, bronze and brass—EXACTLY ALONG THE CENTER LINE.




When machining Steel-1-2 MM ABOVE THE CENTER LINE.



When boring all kind of materials — EXACTLY ALONG THE CENTER LINE.

2. It is recommended to keep the tool overhang as small as possible, as a great tool overhang leads to vibrations which unfavourably affect the performance of the tool and cause tip chipping.

The tool overhang must not be greater than the height of the tool.



18 a

"Correct": "a" is equal or smaller than "b"

"Wrong": "a" is larger than "b"

#### V. HOW TO HANDLE THE TOOL WHILE IN USE

- 1. It is not permitted to withdraw the tool while the feed is engaged. It is also forbidden to stop or start the machine when the tool is under cutting conditions.
- 2. If the machine accidentally stops during the operation the spindle must not be reversed to relieve the tool, as it may cause tip chipping. In that case the clamping screws of the tool holder must be unscrewed beginning with the rear ones whereupon the tool can be easily removed.
- 3. When machining an eccentrical part the tool must be gradually brought into contact with the work piece by hand. The power feed should not be engaged until the tool has reached the desired depth of cut.
- 4. The tool must not be fed to the work piece unless the latter is in motion.
- 5. If vibrations are manifested during the operation it should be immediately discontinued, and necessary steps taken to eliminate the trouble.

6. The tipped tool must be handled with care.

Any impact may easily damage it.

In storage, the carbide tool should be protected and its cutting edges should not be allowed to come into contact with other tools or metal parts.

#### VI. CHIP DISPOSAL

The high cutting speeds used when working with carbide tipped tools result in the production of a large amount of chips during the cutting operation. Steel machining produces a continuous chip which is dangerous to the operator. The chip may also wind itself round the work piece thus making further operation impossible.

Therefore when machining is performed with tipped cutting tools, especially where steel is concerned, it is necessary to apply special devices for breaking and coiling the chip. For that purpose we recommend to use various shapes of tool top face or chipbreakers as shown on page 91—93.

#### VII. CHANGING TOOLS FOR RESHARPENING

During the operation the cutting edges are continuously wearing out at the end and side of tool.

It is not recommended to work with a dull cutter as during further use it wears so rapidly that chipping of the carbide tip becomes inevitable.

In addition, when sharpening an excessively worn out tool a large stock of carbide has to be removed, what is not economical.

The tools should be sent to the grinding room for resharpening as soon as normal wear is manifested.

Resharpening and lapping of tools are to be carried out in accordance with rules mentioned on page 96-106.

## USE

THE NEW HIGH PRODUCTIVE SINTERED CARBIDES GRADES

## BK2 and TI5K6T

#### SINTERED CARBIDE BK-2

is more efficient than grades BK8 and BK6 for all kind of cast iron machining with uninterrupted cutting than grades BK8 and BK6.

#### SINTERED CARBIDE T15K6T

is more productive than grade T15K6 for fine and semi-finish steel machining.

VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

## "STANKOIMPORT"

 $Exports\ and\ Imports:$ 

Machine Tools

Woodworking Machinery

Metal Working Machinery (Presses, Hammers, Shears, Cold Roll Forming Machines, Punching Machines) Rolling Mills (imports)

Measuring Instruments and Apparatus (for metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanic's Tools and Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings Microscopes of All Types VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

## "STANKOIMPORT"

Exports and Imports:

Motion-Picture Equipment and Accessories Geodetic Instruments and Equipment

Photographic Cameras

Binoculars

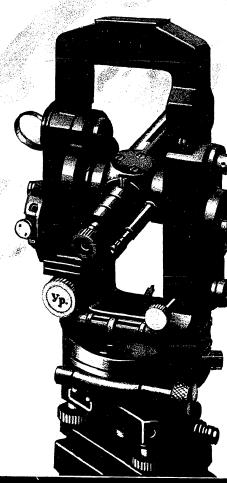
Magnifiers

Lenses

Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije
"S T A N K O I M P O R T"


32/34 Smolenskaja-Sennaja pl., Moscow, U. S. S. R. For cables: Stankoimport Moscow.

Phone: G 4-21-32.

Design and specifications of the hard-alloy products illustrated herein are subject to change without notice.

This catalogue is published on the basis of the new State Standards GOST 3882-53 and GOST 2209-55







STANKOIMPORT

# **GEODETIC**INSTRUMENTS



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE
STANKOIMPORT

USSR

Moscow

5UX1-HU

Geodetic Instruments, produced in the U.S.S.R., are the result of many years of earnest study of the requirements of the engineering profession and the application of modern scientific methods in their manufacture.

The first class materials, perfect modern design and skillful workmanship provide accuracy and durability of the instruments.

Optical properties of Geodetic Instruments are famous and are maintained at the highest possible standard of excellence.

Their fine appearance is due to careful manufacture and decorative finish of various parts and surfaces of the instruments

## UNIVERSAL ASTRONOMICAL THEODOLITE, MODEL AY 2/10

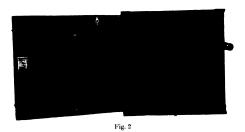
The Universal Astronomical Theodolite (Fig. 1) is a high-precision astronomical geodetic instrument designed for astronomical observations and for measuring horizontal and vertical angles at points of first order triangulation. In first order triangulation, not only the astronomical latitudes and longitudes



are determined for intermediate astronomical points but also their astronomical azimuth in reference to one of the adjoining trigonometric points. The astronomical azimuth, in conjunction with the astronomical longitude of the point whose azimuth has been determined, is of vital importance for controlling

measurements in triangulation. Readings on the horizontal circle are made with the aid of two micrometer microscopes with drum scale divisions of 2''. The vertical circle is read by means of two vernier microscopes having scale divisions of 10''.

The main telescope is of the astronomical, broken-line, central type comprising a two-lens objective, a rectangular prism and a rotary eyepiece micrometer with two interchangeable eyepieces.


The Universal Astronomical Theodolite consists of the following main parts:

- a) Base of instrument (lower part) carrying the horizontal circle and the alidade with the two micrometer microscopes.
- b) Main telescope (upper part) with the vertical circle, vernier microscopes and the Talcott spirit level.
- c) Striding spirit level.
- d) Auxiliary telescope.

The high-quality materials used in manufacturing of the instrument (bronze, brass) ensure its anticorrosive properties. The vital parts, such as the limb, base, lower movement and horizontal axis undergo a special heat treatment to ensure stability of dimensions, one of the most important factors effecting the accuracy of the instrument.

The design of the instrument provides for reliable stability in operation and high accuracy in measurements.

The instrument is stored in two cases.



The lower movement and base, striding spirit level, screw drivers, brush, studs, wrench and levelling shoes are stored in specially provided recesses of one case (Fig. 2).

The other case (Fig. 3) contains the main telescope (upper part of instrument), auxiliary telescope, blind, spare eyepiece, hand hammer and a special box with electrical accessories. All these items are fitted into specially provided recesses.



Fig. 3

#### SPECIFICATIONS

| Main telescope                                                             |                 |
|----------------------------------------------------------------------------|-----------------|
| Aperture of objective                                                      | 55 mm           |
| Resolving power of objective                                               | 2.56"           |
| Foral length of objective                                                  | 450 mm 🏦 🗁      |
| P. I burstles of exercisons                                                | S and 10 mm     |
| T. J. L. Langeriff action of telescope                                     | 56 ^ and 40 ^   |
| Diameters of exit apertures                                                | 1.0 and 1.2 mm  |
| Dield of view                                                              | 0.94            |
| Telescope focusing range                                                   | trom a m        |
|                                                                            | to minity       |
| Distances to exit apertures                                                | 1.4 and 2.76 mm |
| entities and built compressing 9 stationary bairs with an angular          |                 |
| to a model                                                                 | 90" 5"          |
| to the authorization and bairs: width of hiscefor                          | 23 - 30         |
| Distance between bisector and parallel hair                                | 119 75 9        |
| The drum of the eveniece micrometer has 100 divisions                      |                 |
| Value of micrometer drum scale divisions                                   | 1.00            |
| Angle of rotation of eyepiece micrometer                                   | us to 00        |
| together with cross-hairs                                                  | up to           |
| The angle of rotation is set to a positioning circle having a sector scale |                 |
| of 90° with 1° divisions                                                   | 73.3            |
| Maximum elevation of telescope with striding level                         |                 |
| Auxiliary telescope                                                        |                 |
| Auxiliary telescope - astronomical, straight type comprising a two-        |                 |
| lens objective and an eveniece furnished with a micrometer                 |                 |
| Aperture of objective                                                      | 36 mm           |
| Resolving power of objective                                               | 4"              |
| Focal length of objective                                                  | 360 mm [1] 1 %  |
| Focal length of eyepicce                                                   | 12 mm           |
| Total magnification of telescope                                           | 30 ×            |
| Diameter of exit aperture                                                  | 1.2 1010        |
| Field of view                                                              | form 7 m        |
| Telescope focusing range                                                   | to infinity     |
| Distance to exit aperture                                                  |                 |
| Distance to exit aperture                                                  |                 |

станкоимпор:

| Spider cross-hairs consisting of three horizontal hairs at an angular interval                                                                                                                                                                                                                                                                                                                                                                                                    | 30" 35"                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Reading micrometer microscopes for horizontal circle                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Magnification of micrometer microscopes  Pitch of micrometer screws  Microscope field of view (visible portion of circle)  this corresponds to a limb reading of 1°37′  Value of drum scale divisions  The drum has 60 divisions  2.5 rotations of the screw correspond to a cross-hair bisector movement through 1 limb division                                                                                                                                                 | 0.25 mm<br>3.1 mm           |
| The bisector consists of two pairs of spider cross-hairs Distance between axes of bisector Width of bisectors The micrometer cases have engraved inscriptions: "A" and "b" for horizontal circle microscopes and "I" and "II" for vertical circle microscopes                                                                                                                                                                                                                     |                             |
| Scale reading microscopes for vertical circle                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Augnification of microscopes.  Focal length of objective Focal length of eyepiece.  Microscope field of view (visible portion of circle)  List corresponds to a limb reading of 3° 10′  Distance to exit aperture.                                                                                                                                                                                                                                                                | 29.96 mm<br>13.5 mm<br>4 mm |
| The vernier scale of the microscopes has 30 divisions corresponding to $29$ circle divisions                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| Horizontal and vertical circles                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Circle scale diameter (to outer ends of graduations): horizontal circle vertical circle  Smallest division on circles  For approximate adjustment of the alidade section, one-degree divisions are engraved on the horizontal circle. Readings on the one-degree scale are the same as microscope readings with a tolerance of ± 5'  Vertical axis is of the Repsold conical type  The adjusting device, a knob, has a screw with a pitch of 0.25 mm and a head with 50 divisions | 135 mm                      |
| Spirit levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Chamber-type vial Value of striding spirit level divisions                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| Value of Talantt enirit level divisions                                                                                                                                                                                                                                                                                                                                                                                                                                           | to 2 mm of                  |

#### Overall dimensions and weight

| Height of theodolite                                                          |
|-------------------------------------------------------------------------------|
| Overall dimensions of storage case for lower part of instrument428×488×428 mm |
|                                                                               |
| Overall dimensions of storage case for upper part of instrument488×478×298 mm |
| Weight of tripod                                                              |
| Weight of theodolite                                                          |
| Weight of lower part of instrument in storage case                            |
| Weight of upper part of instrument in storage case                            |

#### Attachments

Attac
Interchangeable eyepiece for main telescope for a magnification of 56×
Illuminators for field of view of main and
auxiliary telescopes (2 pes.)
Caps for objectives of main and auxiliary
telescopes (2 pes.)
Dark glasses for main telescope eyepiece
(2 pes.)
Blind with 3 diaphragms of various size
Shoes (3 pes.)
Cords with plugs and contacts (2 pes.)
Hand hammers (2 pes.)
Pencil illuminator
Spare electric light bulbs (20 pes.)
Spare flash-light bulbs (4 pes.)
Large screw driver
Small screw driver
Watchmaker's screw driver Small screw driver
Watchmaker's screw driver
Straight studs (2 pcs.)
Bent studs (2 pcs.)
Wrench for axial nut (adjustable)
Wrench
Soft brush

Chamois leather,  $200 \times 200 \ \mathrm{mm}$ Oil can with oil; in case Off can with off; in case
Sectional-type tripod
Circular spirit level for tripod
Wrench for tripod nuts
Storage case for lower part of instrument
Storage case for upper part of instrument
Storage case for tripod
Described research of thought in Storage case of upper part of instantial Storage case for tripod Box with tripod accessories (stored in tripod case)
Packing cases for lower and upper parts of instrument with shock-absorber devices (2 pes.)
Spure keys for storage and packing cases of lower and upper parts of instrument (4 pes. fitted in special recesses on the bottoms of the cases)
Canvase covers for storage cases of lower and upper parts of instrument (2 pes.)
(2 pes.) Certificate and operating instructions for the instrument

of are

#### TRIANGULATION THEODOLITE, MODEL TT 2/6

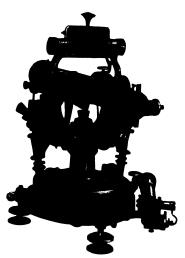



Fig. 4

The Triangulation Theodolite (Fig. 4) is a highly accurate geodetic instrument designed for measuring horizontal angles and zenith distances at first order triangulation points.

The survey of the stations of the geodetical base-line is carried out by triangulation.

Points are selected, in the region to be surveyed, that are located at a considerable distance from each other. When connected by straight lines (sighting lines), the system of points should form a number of triangles; each

triangle being made as nearly equilateral as the conditions will permit. With the aid of this Theodolite, which is an instrument unsurpassed in accuracy, all the angles of the triangles are measured. When laying out a system or chain of triangles for highly accurate triangulation, the geographic co-ordinates (the latitude and longitude) of the apexes of the triangles can be determined by the aid of this instrument, on the basis of astronomical-geodetic observations.

In design, the instrument is sufficiently stable. This is one of the factors ensuring its high accuracy.

The instrument is manufactured of high quality metals and non-ferrous alloys.

The lacquered finish of the instrument as well as the golden lacquer coating on the geodetic micrometers enhance its appearance.

Readings, on the horizontal circle, are made by the aid of two micrometer microscopes having drum scale division values of 2". On the vertical circle, the readings are taken by means of scale microscopes with division values of 6". The instrument is furnished with electrical illumination for use in night

The main telescope of the instrument provides for measuring angles between signals located at a distance up to 60 km from the observer.

The Triangulation Theodolite comprises the following main parts:

Base of instrument (lower part) carrying the horizontal circle and the alidade with the micrometer microscopes;

Main telescope (upper part) with vertical arc and scale microscopes;

Striding spirit level;

Auxiliary telescope.



Fig. 5

The instrument is stored in two cases. The lower movement and base, striding spirit level, screw drivers, brush, studs, wrench, shoes and oil can with oil are stored in specially provided recesses of one case (Fig. 5).

СТАНКОИМПОРТ

СТАНКОИМПОРТ

The other case (Fig. 6) contains the main telescope with the horizontal axis, auxiliary telescope, blind, detachable mirror, spare eyepiece, hand hammer, light filters and a special box with electrical accessories. All these items are fitted into special recesses.



Fig. 6

#### SPECIFICATIONS

| Main telescope                                                                                                                                                                                                                                     |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Aperture of objective                                                                                                                                                                                                                              | 2.15"                                         |
| Focal lengths of eyepieces                                                                                                                                                                                                                         | 8 and 10 mm<br>52× and 65×<br>1.0 and 1.25 mm |
| Fields of view  Telescope focusing range                                                                                                                                                                                                           | from 5 m<br>to infinity                       |
| Distance to exit aperture Spider cross-hairs consisting of three horizontal hairs with an angular interval of 8°35" and adjustable vertical bisector with an angular hair interval of 25"—30" The drum of the expicee micrometer has 100 divisions | 3.2 and 4.0 mm                                |
| Value of micrometer drum scale divisions                                                                                                                                                                                                           | 1.0"                                          |
| Auxiliary telescope  Auxiliary telescope — astronomical, straight type comprising a two- lens objective and an eyepiece with a micrometer                                                                                                          |                                               |
| Aperture of objective Resolving power of objective Focal length of objective Focal length of eyepiece Total magnification of telescope                                                                                                             | 4"<br>360 mm<br>12 mm                         |

| Diameter of exit aperture Field of view Telescope focusing range  Distance to exit aperture Spider cross-hairs consisting of two horizontal hairs at an angular interval of and an adjustable vertical bissector with an angular interval of The drum of the eyepiece micrometer has 100 divisions Value of micrometer drum scale divisions  Reading micrometer microscopes for horizontal circle                                                                                                                              | 1° from 7 m to infinity 8.0 mm 150" 30"- 35"                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Magnification of micrometer microscopes Focal length of objective Focal length of cycpiece Microscope field of view (visible portion of scale)  Distance to exit aperture Value of micrometer drum divisions The drum has 60 divisions                                                                                                                                                                                                                                                                                         | 28.21 mm<br>20.0 mm<br>3.1 mm (1°37′<br>on limb)<br>9.56 mm    |
| 2.5 rotations of the screw correspond to a cross-hair bisector adjustment of 1 limb division The bisector consists of two pairs of spider cross-hairs Distance between axes of bisector Width of bisectors Pitch of micrometer screws                                                                                                                                                                                                                                                                                          | 53''                                                           |
| Scale reading microscopes for vertical arc  Magnification of microscopes Focal length of objective Focal length of eyepiece Microscope field of view (visible portion of scale)  Distance to exit aperture The microscope scale has 10 divisions Ten scale divisions correspond to one arc scale division; reading accuracy                                                                                                                                                                                                    | 15.6 mm<br>10.0 mm<br>3 mm (2°9′ on<br>vertical arc)<br>4.3 mm |
| Herizontal circle and vertical arc  Circle scale diameters (to outer ends of graduations): horizontal circle vertical arc  Smallest division of horizontal circle Smallest division of vertical arc For approximate adjustment of the alidade section, one-degree divisions are engraved on the horizontal circle Readings on the one-degree scale are the same as microscope readings with a tolerance of ± 5' Vertical axis is of the Repsold conical type The adjusting device, a knob, has a screw with a pitch of 0.25 mm | 220 mm<br>160 mm<br>5'<br>10'                                  |
| and a head with 50 divisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |

СТАНКОИМПОРТ

СТАНКОИМПОРТ

anitized Conv. Approved for Release 2010/10/19 · CIA-RDR81-010/3R0008001600002-0

#### Spirit levels

The striding spirit level vial is of the chamber type Value of vertical arc spirit level divisions . . . . . . . . . . . . . . . . 6"---10"

#### Overall dimensions and weight

Overall dimensions of storage case for lower part of instrument ...  $420 \times 425 \times 400 \text{ mm}$  Overall dimensions of storage case for upper part of instrument ...  $600 \times 300 \times 210 \text{ mm}$  Overall dimensions of packing case for lower part of instrument ...  $600 \times 560 \times 605 \text{ mm}$  Overall dimensions of packing case for upper part of instrument ...  $850 \times 390 \times 450 \text{ mm}$  which to (lower part in storage case). Weight of lower part in storage case. 27 kg
Weight of upper part in storage case 17 kg
Weight of lower part in storage case 55 kg 

Interchangeable eyepiece for main telescope for a magnification of  $65 \times$ Illuminators for field of view of main and auxiliary telescopes (2 pcs.) Caps for objectives of main and auxiliary telescopes (2 pcs.) Mirror for vertical are spirit level Blind with 3 diaphragms of various size Shoes (3 pcs.)
Cords with plugs and contacts (2 pcs.)
Hand hammers (2 pcs.) Peneil illuminator Spare electric light bulbs (20 pcs.) Spare flash-light bulbs (4 pcs.) Large screw driver Small screw driver Watchmaker's screw driver Straight studs (2 pcs.)

Bent studs (2 pcs.)

Adjustable wrench

Soft brush Chamois leather, 200×200 mm

Oil can with oil, in case Storage cases for upper and lower parts of instrument (2 pcs.)

Packing cases for upper and lower parts of instrument with shock-absorbing devices (2 pes.)

Spare keys for storage and packing cases of upper and lower parts of instru-ment (4 keys fitted into special recesses on the outside of the bottoms of the cases)

Canvas covers for storage cases of upper and lower parts of instrument (2 pes.)

Cloth hood for the instrument

Certificate and operating instructions for the theodolite

#### OPTICAL THEODOLITE, MODEL OT-02

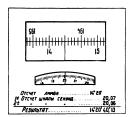


The Optical Theodolite (Fig. 7) is designed for measuring horizontal and vertical angles at higher order triangulation and polygonometric points, as well as for astronomical observations.

The small size, hermetic design, and comparatively small weight of the instrument, in conjunction with the speed and convenience of its operation provide for the possibility of its wide application in geodetic surveys of difficult. mountainous or distant regions. Besides this, the instrument can be advantageous-

ly used in industry (machine-tool building, underground construction, etc.) where the accurate measurement of horizontal and vertical angles is required.

Readings on the horizontal and vertical limbs are combined by the aid of the optical systems of the horizontal and vertical circle microscope objectives into a single field of view of the reading microscope whose eyepiece is arranged side by side with the telescope eyepiece. Readings are taken with a single optical microscope having a seconds disc scale divisions value of 0.2".


The instrument can be used the whole year around, as it provides for normal operation at temperatures from  $-25^{\circ}$  C to  $+50^{\circ}$  C (from  $-13^{\circ}$  F to  $+122^{\circ}$  F).

The instrument has electric illumination.

For making astronomical observations, the instrument is furnished with a removable prism attachment having a dark light filter.

The Optical Theodolite comprises three main parts; lower part of the theodolite, intermediate part and telescope with horizontal axis.

The telescope is the central, astronomical type with interior focusing. It consists of a telephotolens and three interchangeable eyepieces.



Limb reading  $=14^{\circ}20'$ 1st second scale reading 20.07"
2nd second scale reading 20.06"
RESULT  $14^{\circ}20'$  40.13"

| 150 3 50 1 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3 157 3

Fig. 9

Figs. 8 and 9 illustrate the field of view of the reading microscope, Rotating the head actuates the optical micrometer for achieving an exact coincidence of the limb graduations, When the graduations coincide, the degrees and minutes are read on the upper scale. The lower (seconds) scale reading is taken and is multiplied by 2. An alternate method (to increase the accuracy of coincidence of the graduations) is to repeat the coinciding of the graduations and to add the two readings taken on the seconds scale.

#### SPECIFICATIONS

#### Main telescope

| Visible magnification of telescope                                                                                                                        | 24×, 30×<br>and 40×             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Aperture of telephotolens.  Focal length of telephotolens Fields of view                                                                                  | 60 mm<br>350 mm<br>1°40'; 1°20' |
| Resolving power of telephotolens                                                                                                                          |                                 |
| Diameters of exit apertures                                                                                                                               |                                 |
| Telescope focusing range                                                                                                                                  |                                 |
| Length of telescope                                                                                                                                       | 265 mm<br>35"<br>78 microns     |
| Reading devices:                                                                                                                                          |                                 |
| for horizontal limb – one optical system of the horizontal circle microscope objective with magnification of $4^{>}$ ;                                    |                                 |
| for vertical limb — one optical system of the vertical circle microscope objective with magnification of $3\times$ ;                                      |                                 |
| for horizontal and vertical limbs—one reading microscope with a mag-<br>nification of 9.3×; consequently the total magnification of the<br>microscope is: |                                 |
| for the horizontal limb for the vertical limb                                                                                                             |                                 |
| The reading microscope has a field of view of 8×3.8 mm which corresponds to:                                                                              | -                               |
| on horizontal limb                                                                                                                                        |                                 |
| Distance to exit apertures of reading microscope:                                                                                                         |                                 |
| for horizontal limb                                                                                                                                       |                                 |
| Diameters of exit apertures of reading microscope: for horizontal limb                                                                                    |                                 |
| The horizontal and vertical limbs are made of optical glass                                                                                               |                                 |
| Scale circle diameters (to inner ends of graduations):                                                                                                    |                                 |
| horizontal limbvertical limb                                                                                                                              |                                 |
| Smallest division of limbs:                                                                                                                               |                                 |
| horizontalvertical                                                                                                                                        |                                 |
| Thickness of limb graduation lines:                                                                                                                       |                                 |
| horizontal limb                                                                                                                                           | . 6 7 microns                   |
| vertical limb                                                                                                                                             |                                 |
|                                                                                                                                                           |                                 |

СТАНКОИМПОРТ

 $\begin{tabular}{ll} Vertical axis --- cylindrical, self-adjusting type with a ball support on \\ \end{tabular}$ the tapered part of the box Horizontal axis — cylindrical sectional type with internal support on cylindrical bearings.

#### Spirit levels

Value of horizontal limb alidade level scale divisions to 2 mm of arc. . . 6''-7''Value of vertical limb alidade level scale divisions to 2 mm of arc . . . . . 10"-12"

#### Overall dimensions and weight

#### Attachments

Illuminating mirrors (2 pcs.) Illuminating lamps (2 pcs.) Eyepiece attachment Interchangeable eyepieces  $24\times$  and 40× (2 pcs.) Socket plug Cap for objective Centering plate Metal sheath Device for carrying the theodolite Hand hammer

Wrench Stud for adjustment serew Various serew drivers Studs (2 pcs.) Adjustable wrench Brush Flannel napkin Can of oil Electric light bulbs (10 pcs.) Hoods (2 pcs.)
Bag for plate and accessories
Certificate and operating instructions for
the theodolite

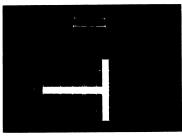
### OPTICAL THEODOLITE, MODEL OT-10



Fig. 10

The Optical Theodolite (Fig. 10) is designed for various types of geodetic surveys and can be used for third order triangulation, second and third order polygonometry as well as for running theodolite traverses.

The horizontal and vertical limbs are made of optical glass.


Readings on the horizontal and vertical limbs are combined in the field of view of a micrometer microscope located on the standard opposite the vertical circle.

Readings on the limbs are taken by a single micrometer microscope whose smallest drum scale division equals 20".

The micrometer microscope tube and the telescope can be inverted through the zenith.

Figs. 11 and 12 illustrate the field of view of the reading microscope and the reading drum of the micrometer screw.

Horizontal circle readings are taken as follows (Fig. 11):



- 1. On the upper image of the horizontal circle scale, in reference to the stationary index, read the degrees and full 20-minute intervals on the circle;
- 2. Rotate the micrometer drum until the vertical adjustable bisector coincides with the upper graduation of the circle to the left of the index and take the drum scale reading;
- 3. Rotate the micrometer drum until the vertical adjustable bisector coincides with the lower graduation of the circle to the left of the index and take the drum scale reading;
  4. Add the circle and micrometer readings.

| Limb reading              | $245^{\circ} 40'$ |
|---------------------------|-------------------|
| 1st reading on drum scale | 4'25''            |
| 2nd reading on drum scale | 4'23''            |
| RESULT                    | 245° 48′ 48′      |



Fig. 12

Vertical circle readings are taken as follows (Fig. 12):

- 1. Rotate the micrometer drum until the adjustable bisector coincides with the stationary index;
- 2. Using the horizontal bisector as an index, read the number of degrees and full 20-minute intervals (below the bisector) on the vertical circle;
- 3. Rotate the micrometer drum until the adjustable horizontal bisector coincides with the lower graduation on the vertical circle and take the micrometer drum scale reading;
  - ${\bf 4. \ Repeat \ by \ coinciding \ the \ bisector \ on \ the \ same \ circle \ graduation;}$
  - 5. Add the readings.

| Reading on vertical circle |     | 2° 20'                        |
|----------------------------|-----|-------------------------------|
| 1st reading on drum scale  |     | $6^{\prime}32^{\prime\prime}$ |
| 2nd reading on drum scale  |     | 6' 30''                       |
| RESU                       | T.T | 2° 33′02″                     |

#### SPECIFICATIONS

| Magnification of telescope                                                                                                                                                                                                                                                                   |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Telescope field of view                                                                                                                                                                                                                                                                      | 1° 10′                    |
| Aperture of objective                                                                                                                                                                                                                                                                        | 40 mm                     |
| Diameter of exit aperture                                                                                                                                                                                                                                                                    | 1.5 mm                    |
| Focal length of objective                                                                                                                                                                                                                                                                    | 253 mm                    |
| Telescope focusing range                                                                                                                                                                                                                                                                     | from 1.5 m<br>to infinity |
| Value of micrometer drum scale divisions for vertical and horizontal circles  Value of smallest division of vertical and horizontal circles  Value of horizontal circle alidade level scale divisions to 2 mm of are.  Value of vertical circle alidade level scale divisions to 2 mm of are | 20'<br>40''60''           |

#### Overall dimensions and weight

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$       |
|-------------------------------------------------------------|
| Weight of theodolite with levelling base 6.3 kg             |
| Weight of theodolite in storage case with accessories 17 kg |
| Weight of tripod                                            |
| dolite                                                      |
| Weight of complete outfit                                   |

#### Attachments

Eyepiece prism
Theodolite case with shoulder straps
Extensible tripod with fastening screw
Case with shock-absorber device for
transporting the theodolite
Vertical circle spirit level
Horizontal circle spirit level
Plumb bob hook

Plumb bob with counter-weight, hook and cord

Sun blind
Canvas case for theodolite
Oil can with oil
Adjustable wrench
Tripod wrench
Screw driver with 4 blades
Studs for screws (2 pcs.)
Brush
Napkin, 200×200 mm

Studs for screws (2 pcs.)
Brush
Napkin, 200×200 mm
Certificate and operating instructions for
the theodolite

#### OPTICAL THEODOLITE, MODEL TB-1

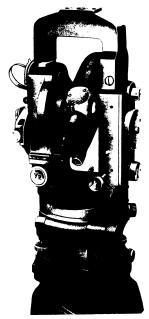



Fig. 13

The Optical Theodolite (Fig. 13) is designed for measuring angles in second and third order triangulation, for astronomical observations as well as for measuring angles in first and second order polygonometry.

21

СТАНКОИМПОРТ

Readings on the horizontal and vertical limbs are combined, by the aid of the optical systems of the horizontal and vertical limb microscope objectives, into a single field of view of the reading microscope whose eyepiece is arranged side by side with the telescope eyepiece.

Readings are taken with a single optical micrometer to an accuracy of  $1^{\prime\prime}$ . The theodolite has stadia hairs for measuring distances with the aid of horizontal or vertical stadia rods.

The instrument can be fitted for night operations.

The instrument is furnished with zenith attachments on the telescope and microscope for astronomical observations.

Due to its small size and comparatively small weight, as well as the ease in reading the horizontal and vertical limbs, this instrument provides for the possibility of achieving highly efficient performance.

Besides geodetic and astronomical operations, this instrument can be used for measuring horizontal and vertical angles in industrial enterprises, in the erection of various types of construction, etc.

#### SPECIFICATIONS

#### Telescope

| Magnification of telescope                              |                  |
|---------------------------------------------------------|------------------|
| Diameter of exit aperture                               | 1.5 mm           |
| Distance of exit aperture from last surface of eyepiece | 6.7              |
| Minimum sighting distance                               | 1.2 m            |
| Resolving power                                         | 4"               |
| Stadia constant coefficient                             | 100              |
| Magnification of eyepiece                               | 25.5             |
| Adjustment of eyepiece                                  | $\pm$ 5 diopters |
| Focal length of objective with focusing lens            | 249.7 mm         |
| Focal length of eyepiece                                | 9.8 mm           |

#### Microscopes

|                           |                      | Vertical limb<br>diam. 75 mm |
|---------------------------|----------------------|------------------------------|
| Magnification             | <br>47×              | $52.3 \times$                |
| Diameter of exit aperture | <br>1.3 mm           | 1.7 mm                       |
| Distance of exit aperture | <br>12 mm            | 12 mm                        |
| Adjustment of eyepiece    | <br>$\pm$ 5 diopters | $\pm$ 5 diopters             |

#### Optical plumbing device

| Magnification             | 1.4×             |
|---------------------------|------------------|
| Field of view             | 8° 17′           |
| Diameter of exit aperture | 4 mm             |
| Distance of exit aperture | 7 mm             |
| Minimum sighting distance | 0.7 m            |
| Adjustment of eyepiece    | $\pm$ 5 diopters |

#### Spirit levels

| Value of horizontal limb alidade cylindrical level divisions | 12"20" to<br>2 mm of are  |
|--------------------------------------------------------------|---------------------------|
| Value of vertical limb cylindrical level divisions           | 17"-25" to<br>2 mm of are |
| Value of spherical spirit level divisions                    | 7'12' to<br>2 mm of are   |
|                                                              |                           |

#### Overall dimensions and weight

| Height of instrument with tripod                  | 2035 mm                                |
|---------------------------------------------------|----------------------------------------|
| Overall dimensions of case                        | 285×210×400 mm                         |
| Overall dimensions of box with storage batteries  | $238 \times 165 \times 180 \text{ mm}$ |
| Weight of theodolite without case                 | 5.1 kg                                 |
| Weight of theodolite in case and with accessories | 9.1 kg                                 |
| Weight of tripod with sighting rod                | $6.25~\mathrm{kg}$                     |
| Weight of box with storage batteries              | 5.9 kg                                 |
| ,                                                 |                                        |

#### Attachments

| Tubular surveying compass   |
|-----------------------------|
| Bridge for sighting rod     |
| Brightening chamber         |
| Tripod with fastening screw |
| Sighting rod                |
| Contoring device            |

Zenith attachment for telescope Zenith attachment for microscope Storage battery with box and cable Set of accessories Certificate and operating instructions for using the theodolite

#### THEODOLITE TACHEOMETER, MODEL TT-50



Fig. 14

The Theodolite Tacheometer (Fig. 14) is an angle measuring instrument designed for measuring horizontal and vertical angles with a reading accuracy of  $30^{\prime\prime}$  as well as for measuring distances by the stadia method using stadia rods.

This theodolite finds its widest application in geotopographic surveys.

In design the Theodolite Tacheometer is of the repeating type of theodolites. A surveying compass is provided with the theodolite for orientation in reference to the magnetic meridian.

In operation, the theodolite is set up on the tripod and fastened with the locking screw. The theodolite is centered with a plumb-line.

The optical system of the theodolite has coated ("blue") lenses. This increases the transmission of light and facilitates observation under conditions of poor illumination.

The Theodolite Tacheometer ensures normal operation at temperatures from  $-40^{\circ}$  C to  $+45^{\circ}$  C (from  $-40^{\circ}$  F to  $+113^{\circ}$  F).

#### SPECIFICATIONS

| Telescope magnification                             | $25.3 \times$ |
|-----------------------------------------------------|---------------|
| Telescope field of view                             |               |
| Stadia constant coefficient                         | 100           |
| Resolving power of objective, not over              | 4.5"          |
| Telescope focusing range                            | from 1.5 m    |
|                                                     | to infinity   |
| Value of horizontal circle spirit level divisions   | 40'' - 60''   |
| Value of vertical circle spirit level divisions     | 25" 40"       |
| Reading accuracy on horizontal and vertical circles | 30′′          |

#### Overall dimensions and weight

#### Attachments

Surveying compass (striding type)
Tripod
Tripod
Theodolite case with shoulder straps
Plumb-bob with counter-weight, hook
and cord
Light filter in mount
Blind
Canvas case for theodolite

Adjustable wrench

Metal screw driver with four blades Studs for screws (2 pes.) Tripod wrench Conical center nut wrench Oil can with oil Brush Napkin Certificate and operating instructions for the theodolite



#### MINE THEODOLITE, MODEL TT-1



Fig. 15

The Mine Theodolite (Fig. 15) is designed for the measurement of horizontal and vertical angles. The arrangement of a spirit level on the telescope allows the instrument to be used for levelling operations.

Linear distances can be measured by using the stadia cross-hairs.

26

The theodolite is used for all underground and surface mine surveying, for various topographical work as well as for astronomical-geodetic observations of the corresponding accuracy. For the latter purpose, the theodolite is furnished with a prism and a dark glass (light filter).

The theodolite comprises the following main parts:

- 1. Lower part consisting of a limb with a silver ring, on which the divisions are engraved, and the levelling base which are connected together by a system of conical centers;
- 2. Upper part consisting of the telescope to which the vertical graduated limb is attached. They are connected by the horizontal axis of rotation of the
- 3. Horizontal axis of rotation of telescope which is supported in the bea-
- rings of the standard that connect the upper and lower parts of the theodolite;
  4. Four spirit levels (striding, on the guard and standard, on the telescope, on the vertical circle alidade).

#### SPECIFICATIONS

| Reading accuracy on horizontal circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30"                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Reading accuracy on vertical circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
| Focusing range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | from 2 m<br>to infinity                    |
| Telescope magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $21 \times + 5^{\circ}$                    |
| Telescope field of view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.8^{\circ} = 5^{\circ}_{0}$              |
| Focal length of objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| Aperture of objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| Stadia constant coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| Value of spirit level divisions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| striding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20" + 2"                                   |
| on guard and standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| on telescope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
| on vertical circle alidade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| Diameter of horizontal circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Diameter of vertical circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| Transcer of Certain Chickens and Constitution of Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Certain Chickens and Ce |                                            |
| Overall dimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sions and weight                           |
| Height of theodolite without tripod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300 mm                                     |
| Weight of theodolite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| in packing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.3 kg                                     |
| without packing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| Weight of extensible tripod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Attacl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nments                                     |
| Extensible tripod with fastening screw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shoes (3 pcs.)                             |
| Case for theodolite with accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Canvas case                                |
| Striding spirit level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spare cross-hairs diaphragm in mount       |
| Zenith prism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Studs (2 pcs.)<br>Can with oil             |
| Dark glass in mount (light filter)<br>Blind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wrench for axes                            |
| Reflector for illuminating cross-bairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Napkin                                     |
| Plumb-bob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spare screws in cross-hair diaphragm       |
| Brush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mount (4 pes.)                             |
| Serew driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Certificate and operating instructions for |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the theodolite                             |

#### PILOT BALLOON THEODOLITE, MODEL LIT



Fig. 16

The Pilot Balloon Theodolite (Fig. 16) is designed for determining the azimuth and height of pilot balloons during meteorologic observations.

One of the methods of investigating phenomena taking place in the upper layers of the atmosphere (as for instance: velocity, direction and constancy of

C T A H K O M M D O P T

the wind, etc.) is the observation of the flight of pilot balloons (or sounding balloons). Special instruments are used to observe the flight of such balloons and to register data concerning their height, direction and velocity. They are also used for the solution of a number of problems concerning aircraft in general. The simplest of these special instruments is the pilot balloon theodolite.

For operation, these instruments are set up in two or even three locations in the region. The bearings of the locations and the distance between them is known beforehand. The position of an observed point in space will be determined if the angular values of the spherical co-ordinates or some other, for instance, graphical expression of these values is measured from the locations of the instruments. One such paired measurement is sufficient for stationary points. If the point is moving continuously, in each successive moment, the co-ordinates determining its position, will differ from the previous co-ordinates.

Consequently, in this case, it is necessary to make a number of such determinations and the paired observations should be made simultaneously.

The computed results of such data, registered by pilot balloon theodolites in the case of a moving point will furnish a number of its successive positions in space. This allows the path of the point to be determined as well as its velocity if the time is known. The Pilot Balloon Theodolite ensures normal operation at temperatures from  $-40^{\circ}$  C to  $+45^{\circ}$  C (from  $-40^{\circ}$  F to  $+113^{\circ}$  F).

#### SPECIFICATIONS

| Telescope magnification                           | . 12×         |
|---------------------------------------------------|---------------|
| Telescope field of view                           | 3 45'         |
| Diameter of exit aperture                         | 3.4 mm        |
| Value of borizontal and vertical circle divisions | . 1"          |
| D. ding aggregation circles                       | . 0.1         |
| Value of spirit level divisions                   | . 6 (0.9.6 mm |
| Value of spiris level divisions (1777)            | of arc        |

#### Overall dimensions and weight

| Overall dimensions of theodolite case     | 200×250×340 mm |
|-------------------------------------------|----------------|
| G Il dimensione of storage battery case   | 125×110×100 mm |
| Overall dimensions of levelling base case | 120×130×110 mm |
| Length of folded tripod                   | 950 mm         |
| Weight of theodolite                      | 3.8 kg         |
| Weight of theodolite                      | . 5.8 kg       |
| Weight of tripod                          | 15.8 kg        |
| Weight of complete outfit                 |                |

#### Attachments

Illuminating device Canvas case Storage case Tripod Case with storage batteries Certificate and operating instructions for the theodolite

#### PRECISE LEVEL, MODEL HA-1



Fig. 17

The Precise Level (Fig. 17) is an instrument designed for determining the relative elevation of points in a locality, It is designed for carrying out first order levelling operations.

- 1. The application in this instrument of an interior focusing telescope shortens the length of the telescope and eliminates the possibility of the penetration of dust and dirt into the optical parts.
- 2. The spirit level is of the contact type. The images of the ends of the spirit level bubble are seen on the telescope cross-hairs. This is of considerable convenience in operation and speeds up readings on the spirit level.
- 3. The plane-parallel plate of the reading mechanism is arranged before the telescope objective. This allows various methods of levelling to be used.
- 4. The vertical axis is of the cylindrical type. This ensures normal operation at a sufficiently large range of temperatures, requires no adjustments and lengthens the term of service of the instrument.

The difference in elevation of point in a locality is determined by the difference in readings on the foresight and backsight rods. During this operation the sighting axis of the telescope must be parallel to the axis of the cylindrical spirit level. Measurement as well as checking of the instrument should be commenced from 15 to 30 minutes after unpacking the level, when the instrument reaches the ambient temperature.

#### SPECIFICATIONS

| Telescope magnification                                          | 44 ^                        |
|------------------------------------------------------------------|-----------------------------|
| Vertical field of view of the telescope                          | 60'                         |
| Horizontal field of view of the telescope                        | 40'                         |
| Aperture of objective                                            | 55 mm                       |
| Diameter of exit aperture                                        | 1.25 mm                     |
| Distance to exit aperture                                        | 6 mm                        |
| Magnification of eyepiece                                        | 27/                         |
| Resolving power of telescope                                     | 3''                         |
| Total focal length of objective                                  | 411 mm                      |
| Sighting range                                                   | from 3.6 m                  |
| - · ·                                                            | to infinity                 |
| Stadia constant coefficient                                      | 100                         |
| Value of cylindrical spirit level divisions                      | $10^{\prime\prime}$ to 2 mm |
| •                                                                | of are                      |
| Magnification of bubble image                                    | $2.5 \times$                |
| Value of cross-type spirit level divisions                       | 2' to 2 mm<br>of arc        |
| Normal levelling distance                                        | 60 ~65 m                    |
| Mean systematic error in measurement for double-rodded levelling |                             |
| per km                                                           |                             |

#### Overall dimensions and weight

| Length of telescope with attachment                   | 400 mm         |
|-------------------------------------------------------|----------------|
| Height of instrument with levelling serews screwed-in |                |
| Overall dimensions of case                            | 400×240×170 mm |
| Length of tripod                                      | 1490 mm        |
| Weight of instrument with attachment                  | 5.8 kg         |
| Weight of ease                                        |                |
| Weight of tripod                                      | 6.5 kg         |

#### Attachments

| Storage case      | Stud                                       |
|-------------------|--------------------------------------------|
| Tripod            | Can with oil                               |
| Fastening screw   | Napkin, 200×200 mm                         |
| Wrench for tripod | Sun blind                                  |
| Screw driver      | Certificate and operating instructions for |
| taren arriv       | the level                                  |



#### ENGINEER'S LEVEL, MODEL HT



Fig. 18

The Engineer's Level (Fig. 18) is of the type of levels in which the telescope can be lifted out of its supports, turned end for end and replaced. It is designed for determining the difference in elevation between points in a locality for technical levelling operations.

The Engineer's Level is used for engineering, as well as ordinary geodetic work requiring an accuracy of performance equalling a mean square error of  $\pm$  3 mm per station or  $\pm$  2 mm per rod-reading with average distances between the rods of about 100 m. The sighting axis can be levelled with an accuracy of  $5^{\prime\prime}-10^{\prime\prime}$ .

A direct reading is taken on the rod to 1 mm

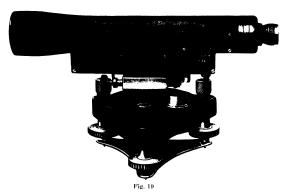
A direct reading is taken on the rod to 1 mm.

### SPECIFICATIONS

| Telescope magnification   | $31.4 \times$ |
|---------------------------|---------------|
| Telescope field of view   | 1°            |
| Aperture of objective     | 34 mm         |
| Diameter of exit aperture | 1.1 mm        |
| Distance to exit aperture | 8.0 mm        |

| Magnification of eyepiece                   | 25×            |
|---------------------------------------------|----------------|
| Resolving power of telescope                | 4.5"           |
| Sighting range                              | from 3 m       |
|                                             | to infinity    |
| Stadia constant coefficient                 | 100            |
| Value of cylindrical spirit level divisions | 17"-25"        |
| 1                                           | to 2 mm of are |
| Value of circular spirit level divisions    | 7'15' to 2 mm  |
| •                                           | of are         |

#### Overall dimensions and weight


| Length of telescope         |       |      |      |      |      |      |  |  |  |      |                                       |
|-----------------------------|-------|------|------|------|------|------|--|--|--|------|---------------------------------------|
| Height of level             |       | <br> | <br> |      | <br> | <br> |  |  |  |      | 165 mm                                |
| Overall dimensions of case. |       | <br> | <br> | <br> | <br> | <br> |  |  |  | 20   | $00 \times 170 \times 300 \text{ mm}$ |
| Length of tripod            |       |      |      |      |      |      |  |  |  |      |                                       |
| Weight of level             |       | <br> | <br> | <br> |      | <br> |  |  |  | <br> | 2.45 kg                               |
| Weight of case with access  | orie- | <br> | <br> | <br> | <br> | <br> |  |  |  |      | 3.1 kg                                |
| Weight of tripod            |       |      |      |      |      |      |  |  |  |      |                                       |
| Weight of complete outfit   |       |      |      |      |      |      |  |  |  |      |                                       |

#### Attachments

| Fastening  | serew |
|------------|-------|
| Sun blind  |       |
| Tripod     |       |
| Can of oil |       |

Flannel napkin,  $200{\times}200~\mathrm{mm}$ Storage case with accessories
Certificate and operating instructions for
the level

#### DUMPY LEVEL, MODEL HF



The Dumpy Level (Fig. 19) is designed for determining the difference in elevation between points in a locality during levelling operations.

This Level finds wide applications in various engineering and geodetic work. This instrument differs from other designs in that the spirit level and telescope are rigidly fastened to the upper part of the instrument. The use of a system of prisms for observing the spirit level bubble doubles the accuracy of adjustment in levelling the telescope.

#### SPECIFICATIONS

| 31×    |
|--------|
| 11     |
| 1.1 mm |
| 7 mm   |
| 4.5′′  |
| 3 m    |
| 100    |
| 25.5×  |
| 314 mm |
|        |

| Value of cylindrical spirit level divisions | 17''25" to  |
|---------------------------------------------|-------------|
|                                             | 2 mm of are |
| Value of circular spirit level divisions    | 7'—15' to   |
|                                             | 2 mm of are |

#### Overall dimensions and weight

| Length of telescope                |    |
|------------------------------------|----|
| Height of instrument               |    |
| Overall dimensions of storage case | 11 |
| Length of tripod                   |    |
| Weight of instrument               |    |
| Weight of case with accessories    |    |
| Weight of tripod                   |    |
| Weight of complete outfit          |    |

#### Attachments

Tripod Fastening screw Sun blind

Storage case with accessories Certificate and operating instructions for the level

#### MINE LEVEL, MODEL HII-1

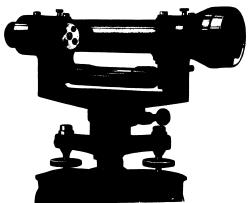



Fig. 20

The Mine Level (Fig. 20) is an instrument used for determining the difference in elevation in a locality and is designed for surface and underground

36

third and fourth order levelling operations.

Linear distances can be measured during levelling.

This model is an engineering level of the wye type with the spirit level fastened to the telescope. It is widely used for levelling operations in pits and mines.

#### SPECIFICATIONS

| Visible telescope magnification              | 31×         |
|----------------------------------------------|-------------|
| Telescope field of view                      |             |
| Focal length of the telescope optical system |             |
| Aperture of objective                        |             |
| Stadia constant coefficient                  |             |
| Value of spirit level divisions              | 15" to 2 mm |
| •                                            | of are      |

#### Overall dimensions and weight

| Length of telescope                  | . 242 mm |
|--------------------------------------|----------|
| Height of level                      | . 155 mm |
| Weight of instrument without packing |          |
| Weight of instrument in packing      | 5.2 kg   |
| Weight of extensible tripod          |          |

#### Attachments

| Tripod  | with festening serew      |
|---------|---------------------------|
|         | or level with accessories |
| Illumir | ator                      |
| Screw   | driver                    |
| Stude   | (9 nes.)                  |

Can with oil
Brush
Napkin
Certificate and operating instructions for
the level

OPTICAL ALIDADE, MODEL KB-1



Fig. 21

The Alidade (Fig. 21) complete with a metal plane table, tripod and drawing board are designed for topographical surveying of localities in scales of 1 to 100 and 1 to 10000, as well as for inscribing horizontal lines on photomans.

1 to 100 and 1 to 10000, as well as for inscribing horizontal lines on photomaps. The alidade has a glass vertical circle which, besides the usual circular scale, has special curves, engraved on its surface, to provide for reading directly elevations and horizontal distances without reading angles and carrying out tiresome computations. The working surface of the vertical circle is in the focal plane of the objective. Due to this, the observer can either read vertical angles or, using the curves, he can directly read elevations and horizontal distances, or, finally, both methods can be combined.

Direct reading on the curves speeds up surveying operations by 1.5-2 times

The vertical circle of the alidade is hermetically enclosed and protected by a metal guard.

A box compass is arranged on the ruler. The ruler is also furnished with a parallelogram device which eliminates the necessity of simultaneously sighting the stadia rod and aligning the edge of the ruler with the point of the plane table.

Vertical angles can be read to an accuracy of 1 minute. The error in elevation readings on the curves does not exceed 50 mm at a distance of 100 m. The error in measuring horizontal distances on the curves does not exceed 0.5%.

#### SPECIFICATIONS

| Magnification of telescope                | . 202     |
|-------------------------------------------|-----------|
| Telescope field of view                   | . 1130′   |
| Diameter of exit aperture                 | . 1.95 mm |
| Distance to exit aperture                 |           |
| Resolving power                           |           |
| Aperture of objective                     |           |
| Value of telescope spirit level divisions |           |
| Value of limb spirit level divisions      | . 30"     |
| Value of scale divisions                  | . 2 mm    |
| Value of limb divisions                   |           |
| Value of compass scale divisions          |           |

#### Overall dimensions and weight

| Lens | th of alidade ruler                    | 580 mm     |
|------|----------------------------------------|------------|
| Heir | ht of alidade                          | 230 mm     |
| Lone | gh of tripod                           | 1570 mm    |
| Simo | of drawing-board                       | 600×600 mm |
| ALC: | tht of alidade and plane table in case | 10.25  kg  |
| Weig | the of drawing-board in canvas case    | 7 kg       |
| Wei  | ht of drawing-board in canvas case     | 5.4 ka     |
| Weig | tht of tripod                          | 39 lea     |
| Weis | tht of complete outfit                 | 23 Kg      |

#### Attachments

| Plane table in case          |
|------------------------------|
| Tripod                       |
| Drawing-board in canvas case |
| Box compass                  |

Sun blind Accessories and spare parts Certificate and operating instructions for the alidade

#### ALIDADE, MODEL KB

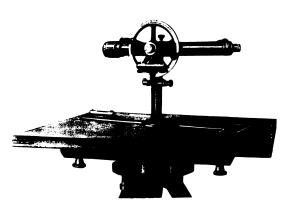



Fig. 22

The Alidade (Fig. 22) complete with a plane table, tripod and drawingboard is designed for topographical surveys of localities and for inscribing horizontal lines on photomaps.

The alidade has an open-type vertical circle and two reading glasses for opposite readings on the circle. Vertical angles can be read to an accuracy of

one minute.

A box compass is furnished to orient the plane table in reference to the magnetic meridian.

#### SPECIFICATIONS

| Magnification of telescope | 25×    |
|----------------------------|--------|
| Aperture of objective      | 34 mm  |
| Focal length of objective  | 380 mm |
| Focal length of eyepiece   | 15 mm  |

| Telescope field of view                         | 1°         |
|-------------------------------------------------|------------|
| Minimum sighting distance                       | 5 m        |
| Stadia constant coefficient                     | 100        |
| Value of smallest vertical circle divisions     | 30'        |
| Value of vertical circle spirit level divisions |            |
| Value of ruler spirit level divisions           | 50′′ -80′′ |
| Smallest division of compass scale              | 30'        |

#### Overall dimensions and weight

| Length of alidade rule                 | 530 mm            |
|----------------------------------------|-------------------|
| Height of alidade (to horizontal axis) | $205~\mathrm{mm}$ |
| Length of tripod                       | 1250  mm          |
| Size of drawing-board                  |                   |
| Weight of alidade                      |                   |
| Weight of plane table                  |                   |
| Weight of drawing-board                |                   |
| Weight of tripod                       |                   |
| Weight of complete outfit              |                   |

Plane table in case Tripod Drawing-board in canvas case

Box compass
Sun blind
Certificate and operating instructions for
the alidade

#### SURVEYING COMPASS, MODEL BC



Fig. 23

The Surveying Compass (Fig. 23) is an improved geodetic compass and is used as an independent field instrument for orientation in reference to points of the compass, as well as for measuring horizontal angles and azimuths

of the compass, as well as for measuring horizontal angles and azimuths.

This compass is used for finding the bearings of base points in reconnaissance operations; especially in heavily wooded localities and near rivers, as well as for sketching details located within the surveyed areas.

| SPECI | FICA | TIONS |  |
|-------|------|-------|--|

| Value of limb divisions                 | 1°    |
|-----------------------------------------|-------|
| Accuracy of reading angles and azimuths | 5'    |
| Distance between vertical sights        | 84 mm |
| Value of compass circle divisions       | 1°    |
| Weight of instrument                    |       |

#### Attachments

Plumb line Screw driver Storage case Certificate and operating instructions for the compass

42



#### GONIOMETER, MODEL TP



Fig. 24

The Goniometer (Fig. 24) is the simplest of angle measuring instrument for use in the field and it fully replaces a surveying compass and an optical square, It is used to measure horizontal angles in reference to compass points, azimuths and between sighting directions.

The angles between directions can be read, simultaneously, on the limb and, using the compass, by their bearings.

The goniometer is used for surveying and pegging out a locality.

#### SPECIFICATIONS

43

СТАНКОИМПОРТ

#### Attachments

Plumb line Serew driver

Storage case Certificate and operating instructions for the goniometer

## GEODETIC OPTICAL SQUARE, MODEL $\partial \Gamma$ -2



The Optical Square  $\rm (Fig,25)$  is a geodetic instrument used for pegging out perpendicular directions to the line of sight. It is of the mirror type,

| SPECIFICATIONS                                                 |                            |  |
|----------------------------------------------------------------|----------------------------|--|
| Angle between mirrors                                          | $15^{\circ} \pm 2^{\circ}$ |  |
| Angle between minors. Length of instrument Width of instrument |                            |  |
| Whight of optical square                                       | U.II Kg                    |  |
| Weight of canvas case                                          | $0.035~{ m kg}$            |  |

Attachments

Canvas case Flannel napkin, 100 - 100 mm

Certificate and operating instructions for the optical square

стан кои м по рт

44

СТАНКОИМПОРТ

#### PRECISE CHECKERED LEVELLING RODS, MODEL 51-T-86

Precise Checkered Levelling Rods are used in first and second order levelling operations.

They are made of fine-grained pine-wood (aviation type).

The rods are graduated on both faces; one face has centimeter checker squares and half-centimeter divisions in black paint; while the opposite face has 11-millimeter squares in red paint and graduations analogical with the

A circular spirit level is attached to one side of the rod while a plumb line may be fastened to the other side for checking the spirit level.

A steel plate is fastened to the lower end of the rod and is used for setting the rod up on the convex spherical projection of the levelling shoe.

The values of the divisions are inscribed as follows:

on black face — at decimeter intervals (from 0 to 30), on red face — at 11-centimeter intervals (from 01 to 28).

Three control markings are provided on each face. They are arranged at a distance of one meter from each other.

Precise levelling rods are furnished in sets of two pieces.

#### SPECIFICATIONS

#### Overall dimensions and weight

| Overall dimensions of rod           | $47{\times}84{\times}3000~\mathrm{mm}$     |
|-------------------------------------|--------------------------------------------|
| Overall dimensions of rod extension | $28\!\times\!72\!\times\!1200~\mathrm{mm}$ |
| Weight of rod                       |                                            |
| Weight of rod extension             | 1.2 kg                                     |

#### Attachments

Handles (rod supports) (4 pcs.) Canvas cases for rods (2 pcs.) Wooden extension rod Canvas case for extension rod

Circular spirit levels (2 on rods and 2 spares in mounts)

Plumb bobs with lines (2 pcs.)

Screw drivers for spirit level adjusting screws (2 pcs.)

Studs for attaching rod extension (4 pcs.)

Device for holding plumb lines and checking circular levels (on the rods) Storage case (with lock) for precise rods and accessories for extension rod

#### CONTENTS

| 0 0 1 1 1 1 1 2                                     | Page |
|-----------------------------------------------------|------|
| 'niversal Astronomical Theodolite, Model AV 2/10    | . 3  |
| riangulation Theodolite, Model TT 2/6               | . 8  |
| optical Theodolite, Model OT-02                     | . 13 |
| Optical Theodolite, Model OT-10                     | . 17 |
| Optical Theodolite, Model TE-1                      | . 21 |
| heodolite Tacheometer, Model TT-50                  | . 24 |
| line Theodolite, Model TF-1                         | . 26 |
| filot Balloon Theodolite, Model IIIT                | . 28 |
| Precise Level, Model HA-1                           | . 30 |
| Engineer's Level, Model HT                          | . 32 |
| Dumpy Level, Model HΓ                               | . 34 |
| line Level, Model HII-1                             | . 36 |
| Optical Alidade, Model KB-1                         | . 38 |
| lidade, Model KE                                    | . 40 |
| Surveying Compass, Model BC                         |      |
| Sonjometer, Model TP                                | . 43 |
| ieodetic Optical Square, Model $\partial \Gamma$ -2 |      |
| Precise Checkered Levelling Rods, Model 51-T-86     | . 46 |
|                                                     |      |

Vneshtorgizdat, Order N 2963

# VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE "STANKOIMPORT"

exports and imports:

Machine Tools

Woodworking Machinery

Metal Working Machinery (Presses, Hammers, Shears, Cold Forming Machines, Punching Machines)

Rolling Mills (imports)

Measuring Instruments and Apparatus (for metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanie's Tools and Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types

Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photographic Cameras

Binoculars Magnifiers

Lenses

Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije

### "STANKOIMPORT"

32/34, Smolenskaja-Sennaja pl., Moscow, U.S.S.R.

For cables: STANKOIMPORT MOSCOW

Design and specifications of the instruments illustrated herein are subject to change without notice.



CABLE ADDRESS: STANKOIMPORT MOSCOW

# ABRASIVES



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE STANKOIMPORT

VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE
STANKOIMPORT

GRINDING WHEELS

ABRASIVE POINTS
ABRASIVE STICKS
ABRASIVE SEGMENTS

ABRASIVE PAPERS

ABRASIVE CLOTHS
ABRASIVE GRAINS

ABRASIVE POWDERS

U S S R moscow

#### CONTENTS

| P:                                                                      | age |
|-------------------------------------------------------------------------|-----|
| Introduction                                                            | 3   |
| Abrasive materials                                                      | .5  |
| Classification of abrasive materials                                    | 8   |
| Bonding materials of abrasives                                          | 11  |
| Grade of abrasives                                                      | 12  |
| Structure of abrasives                                                  | 13  |
| Wheel shapes and sizes                                                  | 13  |
| Marking of grinding wheels and other bonded abrasives                   | 57  |
| Selection of grinding wheels according to the type of abrasive material | 58  |
| Selection of grinding wheels according to their grain size              | 59  |
| Selection of grinding wheels according to grade and bond                | 59  |
| Selection of grinding wheels according to their structure               | 60  |
| Grinding wheels recommendations for metals and their alloys             | 61  |
| Grinding wheels recommendations for non-metallic materials              | 75  |
| Storage and balancing of grinding wheels                                | 76  |
| Abrasive papers and cloths                                              | 79  |
| Waterproof silicon carbide paper                                        | 80  |
| Fibre abrasive discs                                                    |     |

#### INTRODUCTION

he purpose of this booklet is to give the users general information on abrasives as well as some hints as how to select exactly the right grinding tool for their particular jobs.

In general the word abrasives is used to designate all hard grinding materials in all forms of monoliths of grains as well as various tools made of such materials, with the aid of which metals, minerals and other materials are processed by grinding, polishing, lapping, honing and other operations which take off a relatively line layer from the surface to be machined.

Abrasives are used for both rough grinding and finishing of diverse ma-

Abrasives are used for both rough grinding and finishing of diverse materials, for sharpening and lapping of cutting tools, for finish grinding of gears, for honing, lapping, polishing and finishing of precision parts.

Grinding practice plays a constantly increasing part in modern production, gradually substituting planning and milling of flat surfaces, turning and boring, thread cutting, etc.

The grinding capacity of abrasives is determined by three factors; efficiency, produced surface finish and durability.

It should be borne in mind that there are no such abrasives which can handle any job and it is therefore of paramount importance to have a thorough knowledge of the particular properties of each given tool in order to ensure its correct use.

We trust that the present booklet will help the users to improve their production and to cope with the new grinding problems continually arising.

#### ABRASIVE MATERIALS

ll abrasive materials are divided into two groups: natural and artificial ones.

#### NATURAL ABRASIVE MATERIALS

Quartz—is of a dull black, yellowish or red colour and is found in the form of lumps, pebble or sand. It is an antydrous crystallic silicic acid. The hardness of quartz is 7. Silicon—which is a crystallic variety of quartz—crushed to small particles is used for the production of abrasive cloth mainly intended for the finishing of wooden articles.

Emery—is a rock, consisting of a natural oxide of aluminium (up to 25-30%), mixed with a varying amount of iron oxide, quartz and silicates. Depending on the contents of impurities the hardness of emery varies between 7.2 and 7.5. Due to its comparatively low hardness and the non-uniformity of its grinding properties, emery has nowadays a very limited field of applications as an abrasive material. Emery is mainly used in the shape of grains which are pasted on soft felt wheels for polishing of cutlery, hardware, etc.

Corundum—is a mineral, chiefly consisting of crystallic aluminium oxide mixed with a small amount of quartz, mica, etc. The hardness of corundum is 9. The corundum crystals are remarkable by their glassy glitter and are more or less transparent. Depending on the amount of impurities particularly iron oxide, the corundum may be of different colours—bluish-grey, grey, blue, brown, red and yellow. Corundum is the most widely used of all natural abrasive materials.

Corundum is applied in the form of micropowder for polishing of glass, etc.

Corundum is applied in the form of micropowder for polishing of glass, etc. Besides, crushed corundum is used for the manufacture of special grinding wheels intended for grinding of bearing balls.

#### ARTIFICIAL ABRASIVE MATERIALS

Owing to their great hardness and the uniformity of their chemical composition artificial abrasive materials represent the main raw material for the production of various kinds of modern grinding tools.

Artificial abrasive materials include different types of electrocorundum,

Artificial abrasive materials include different types of electrocorundum, silicon carbide and boron carbide.

Electrocorundum regular (symbol "Э")—is the most widely used abrasive material. Electrocorundum has much better cutting properties than natural corundum. It is a crystallic aluminium oxide mixed with a small amount of impurities. The hardness of electrocorundum is 9.05–9.1, and its specific gravity varies from 3.4 to 4.0 depending on the contents of crystallic aluminium oxide and impurities.



Figure 1 shows a lump of electrocorundum.

Great toughness of electrocorundum permits its successful use for grinding high tensile strength metals such as carbon and alloy steel (both soft and hardened), stellit, malleable iron, etc.



Fig. 1

Abrasives made of electrocorundum regular are widely used for roughing out of steel castings and forgings as well as for finishing various kinds of steel when they have to stand up to a high pressure under work. Electrocorundum white (symbol "3b")—has a higher content of crystallic aluminium oxide in comparature to electrocorundum regular. Figure 2 shows

a lump of white electrocorundum.



Fig. 2

According to its chemical composition granulated electrocorundum white is divided into two groups—"9B 99" and "9B 97".

Abrasives made of electrocorundum white are widely used on all jobs calling for special accuracy, speed of cut and quality of finish, as for instance for sharpening of tools, internal grinding, surface grinding, cylindrical grinding,

thread grinding, etc. These abrasives are also used to particular advantage for

thread grinding, etc. These abrasayes are also used to particular art any anage for finish grinding operations when it is necessary to have the least possible heat generation in the zone of grinding.

\*\*Monocorundum\*\* (symbol "M") is a new abrasive material consisting of crystallic aluminium free from slag impurities and having no pores. It is remarkable for its high strength and better cutting properties as compared

remarkable for its high strength and better cutting properties as compared to electrocorundum.

Grinding wheels made of monocorundum are used with great success on all kinds of grinding operations, i.e. surface grinding, external and internal cylindrical grinding, tool sharpening, etc.

Silicon carbide—is a combination of silicon and carbon. Silicon carbide has a greater hardness than electrocorundum (9.13—9.15).

Chemically pure silicon carbide is colourless and transparent. Industrial silicon carbide is of varying colours from light green to black depending on



Fig. 3

the composition and amount of impurities. The specific gravity of silicon carbide varies between 3.12 and 3.22 in accordance with the contents of iron

carbide varies between 3.12 and 3.22 in accordance with the contents of iron oxide.

Silicon carbide is manufactured in two grades; green silicon carbide (symbol "13") and black silicon carbide (symbol "13") and black silicon carbide silicon carbide differs but slightly from green silicon carbide.

Figures 3 and 4 show lumps of green and black silicon carbide respectively.

Figures 3 and 4 show lumps of green and black silicon carbide respectively.

Owing to its high strength, great hardness, sharpness of grains as well
as to its ability for forming coarse crystallic structure silicon carbide has
found a wide field of application on various grinding jobs.

Since the grains of silicon carbide are more brittle than those of electrocorundum and are apt to break off under the pressure of tough and strong
metal chips, silicon carbide wheels are mainly used for the grinding of low
tensile strength metals such as grey cast iron, soft brass and bronze, copper
and nearly all non-metal materials, i.e. wood, leather, glass, agate, corundum
marble, granite, porcelain, refractories, bones, etc.

Silicon carbide is also used for the manufacture of extra hard wheels, used
for the dressing of grinding wheels as substitutes of commercial diamonds.

for the dressing of grinding wheels as substitutes of commercial diamonds.



Abrasives made of green and black silicon carbide are widely used for sharpening of hard alloy tools. In addition to this, black silicon carbide is applied as a highly efficient refractory material and green silicon carbide is used for the manufacture of resistance rods for laboratory furnaces.

Boron carbide—is produced in electric furnaces. The hardness of boron carbide is 9.6. Due to its great hardness it is applied for lapping of hard alloy tools as a substitute of diamond powder as well as for grinding of rubies, quartz, corundum, etc.

anny toois as a sinstitute of mamond powder as well as for grinding of rubies, quartz, corundum, etc.

The specific gravity of boron carbide varies between 2.46 and 2.52 depending on the contents of free carbon.



CLASSIFICATION OF ABRASIVE MATERIALS

In typical wheel manufacture the lumps of abrasive as they come from In typical wheel manufacture the imps of abrasive as they come from furnaces are broken by crushers into small pieces. Further, they are reduced to sizes suitable for grinding wheels or for other kind of abrasive-segments, sticks, mounting abrasive heads, etc. They are washed free of dust, are separated from impurities and are screened to a series of standard sizes (Fig. 5).





For screening of abrasive grains and abrasive powders special machines are used whose screen cloths have meshes of different gauges yarying from very coarse to fine ones. Very fine sizes of grain are separated by hydraulic flota-

tion.

The size of the grain is indicated by the number of meshes per linear inch

The size of the grain is indicated by the number of meshes per linear inch

The size of the size falls while being retained on of the screen through which grain of this size falls while being retained on the screen of the next finer screen.

The sizes of grains in accordance with GOST 3238-46 are shown in

Table 1

| Grain size Screened grains in micrones |                   | Grain size | Screened grains for microne |
|----------------------------------------|-------------------|------------|-----------------------------|
| 10                                     | from 2300 to 2000 | 100        | from 150 to 125             |
| 12                                     | 2000 1700         | 120        | 125 105                     |
| 15                                     | 1700 1400         | 150        | 105 85                      |
| 16                                     | 1400 1200         | 180        | 85 75                       |
| 20                                     | 1200 1000         | 220        | 75 63                       |
| 24                                     | 850 700           | 240        | 63 53                       |
| 30                                     | 700 600           | 280        | 53 12                       |
| 36                                     | 600 500           | 320        | 42 28                       |
| 16                                     | 420 355           | M 28       | 28 20                       |
| 54                                     | 355 300           | M 20       | 20 15                       |
| 60                                     | 300 250           | M 13       | 13 10                       |
| 70                                     | 250 210           | M 10       |                             |
| 80                                     | 210 180           | M 7        | . 7 5                       |
| 90                                     | 180 150           | M 5        | . 5 . 3.5                   |

The first figure in micrones is the mesh size of a screen through which grain particles fall, and the second figure—the mesh size of a screen, on which the grain particles are retained.

In accordance with GOST 347-47 all abrasive materials depending on

their grain sizes are divided into 3 groups as shown in Table 2.

Table 2

| Grain groups                            | Grain size                                                                       |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------|--|--|
| Abrasive grains                         | 10, 12, 14, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80 and 90                        |  |  |
| Abrasive powder<br>Abrasive micropowder | 100, 120, 150, 180, 220, 240, 280 and 320<br>M 28, M 20, M 14, M 10, M 7 and M 5 |  |  |

Table 3 shows the most commonly used grain sizes for different kinds

| Abrasive materials | Group of grain  | Grain size                                         |
|--------------------|-----------------|----------------------------------------------------|
| Quartz             | Abrasive grains | 16, 20, 24, 30, 36, 46, 54, 60, 70,<br>80, 90      |
|                    | Abrasive powder | 100, 120, 150, 180, 220, 240                       |
| Emery              | Abrasive grains | 10, 12, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90 |
| Corundum           | Micropowder     | M 28, M 20, M 14, M 10, M 7                        |



. .

|                            |                                                   | Contd.                                                                                                              |
|----------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Abrasive materials         | Group of grain                                    | Grain size                                                                                                          |
| Electrocorundum<br>regular | Abrasive grains<br>Abrasive powder<br>Micropowder | 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90<br>100, 120, 150, 180, 220, 240, 280, 320<br>M 28, M 20, M 14, M 10, M 7 |
| Electrocorundum<br>white   | Abrasive grains<br>Abrasive powder<br>Micropowder | 36, 46, 54, 60, 70, 80, 90<br>100, 120, 150, 180, 220, 240, 280, 320<br>M 28, M 20, M 14, M 10, M 7 and M 5         |
| Monocorundum               | Abrasive grains<br>Abrasive powder                | 24, 36, 46, 54, 60, 70, 80, 90<br>100, 120, 150                                                                     |
| Silicon carbide<br>black   | Abrasive grains Abrasive powder                   | 12, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90, 100, 120, 150, 180, 220                                             |
| Silicon carbide<br>green   | Abrasive grains<br>Abrasive powder<br>Micropowder | 36, 46, 54, 60, 70, 80, 90<br>100, 120, 150, 180, 220, 240, 280, 320<br>M 28, M 20, M 14, and M 10                  |
| Boron carbide              | Abrasive powder<br>Micropowder                    | 100, 120, 150, 180, 220, 240, 280, 320<br>M 28                                                                      |

After granulating and screening the abrasive materials are packed up in the following manner:

a) Abrasive grains and abrasive powder in 50 kg parcels.
b) Micropowder in 40 kg parcels.




Fig. 6

This refers to all abrasives with the exception of boron carbide which

This refers to an aurasives with the exception is done up in 1 kg parcels.

The parcels are marked in accordance to the respective grain size.

Fig. 6 shows various tools made of abrasive materials, such as grinding wheels, abrasive points, abrasive sticks.

#### BONDING MATERIALS OF ABRASIVES

Bonding has the purpose of holding the abrasive particles together to give the wheel the necessary mechanical strength and the required grinding

The bond must be able to resist the influence of cooling in "wet grinding" and must not be subject (within reasonable limits) to unfavourable influence from heat.

The following kinds of bonds are most commonly used in the manufacture of abrasives.

a) Anorganie: Ceramic bond, known in industry as vitrified; Mineral bond, known as magnesite.

b) Organic: Resinoid bond; Rubber bond.

Vitrified bond. In vitrified abrasives the bond is made up of feldspar, refractory clay, tale, etc. selected for their fusibility and carefully processed. Vitrified bond meets best the demand for proper and suitable embedding of the grains.

the grains.

Since vitrified bonded wheels are very brittle, the application of vitrified bond in the manufacture of wheels of small width is very limited. As to other abrasive tools, more than 70% of same are made with vitrified bond. Vitrified bonded wheels are widely used for internal grinding operations of ball and roller races, aircraft cylinders and for centerless internal grinding of piston rings. They are also extensively used for surface grinding operations accomplished with the periphery of the wheel on micrometer frames, gauge blocks and for centerless external grinding operations on different kinds of bushes, drills, gauges, ball and roller races, piston pins, pistons, valves, etc. Vitrified bonded wheels are also often used for external cylindrical grinding of camshafts, machine tool spindles and crankshafts, for sharpening different types of tools as well as for gear grinding and thread grinding operations. types of tools as well as for gear grinding and thread grinding operations. Vitrified bonded wheels are supplied for use at peripheral speeds from 30 up to 50 meters per second.

Magnesite bond. The magnesite bond has a very limited field of application in so far as it has a comparatively low strength and is liable to be attacked by minding displacements.

grinding fluids

grinding fluids.

Grinding wheels with magnesite bond are mainly used for surface grinding of file blanks. These wheels easily absorb water and may therefore lose their hardness if kept in a damp storage place. They should be stored in a dry place and 5-6 days before being mounted on a machine they have to be dried in special dryers at a temperature of 60-65°C (140-150°F).

Maximum peripheral speed for straight wheels with magnesite bond is 20 m ner sec.

Maximum peripheral speculion values.

20 m per sec.

Resinoid bond. The resinoid bond is the most extensively used organic bond owing to the fact that abrasives made with this bond are distinguished by high strength, elasticity and a comparatively great hardness.

These properties permit to use the resinoid bonded wheels with high peripheral speeds from 30 to 50 m per sec and even up to 60 m per sec on thread orinding operations.

owing to the above mentioned properties of the resinoid bond it may be used in the manufacture of wheels having a width of only 1 mm.

The resinoid bonded wheels are successfully used for such operations where it is important to have the least possible heat generation, i. e. finish grinding of camshafts, lapping of edges of different types of cutting tools, etc.



The resinoid bond is attacked by alkaline solutions such as soda, etc., which are used as coolant. Therefore the coolant applied with resinoid bonded wheels should not contain more than 1.5% of alkalines. In order to minimize the injurious influence of alkaline fluids, the resinoid bonded wheelss are often coated with sulphur, red lead or some other waterproof section.

coating.

Abrasives with resinoid bond are mostly made of electrocorundum, mono-corundum, black silicon carbide and very seldom of white electrocorundum

and green silicon carbide.

Rubber bond. The rubber bond is distinguished by a high density and elasticity and is therefore extensively used for the manufacture of grinding wheels intended for finishing, polishing, cutting through and cutting off opera-

wheels intended for finishing, polishing, cutting through and cutting off opera-tions. Rubber and sulphur are the raw materials used for this kind of bond. Owing to their dense structure the rubber bonded wheels are used on centreless grinding machines as grinding and regulating wheels. Rubber bonded wheels may be made of a very small width, i. e. 0.5 mm while having a comparatively large diameter (125-150 mm). Rubber bonded wheels are widely used for cutting off steel bars, grinding of steel bands, ball bearing races, cylindrical and taper rollers, piston pins, etc.

### GRADE OF ABRASIVES

The grade otherwise known as "hardness" of an abrasive wheel is the strength with which the bonding material holds the abrasive particles together and keeps them from breaking out from the wheel in time of stress.

Wheels are marked according to their hardness by letters—from the softest "M" to the hardest "ЧТ".

On Table 4 the grade scale of abrasive wheels in accordance to GOST 3751-47 is given.

| Grade          | Subdivisions of grade |
|----------------|-----------------------|
| M-soft         | M 1, M 2, M 3         |
| CM-medium soft | CM 1, CM 2            |
| C-medium       | C 1, C 2              |
| CT-medium hard | CT 1, CT 2, CT 3      |
| T-hard         | T 1, T 2              |
| BT-very hard   | BT 1, BT 2            |
| ЧТ-extra hard  | ЧТ 1, ЧТ 2            |

Note. The ciphers 1, 2 and 3 shown in the column "Subdivisions of grade" designate the hardness of the abrasives in increasing sequence.

Depending upon the kind of bonds abrasives are made in the following

- a) Vitrified bond—M3, CM1, CM2, C1, C2, CT1, CT2, CT3, T1, T2, BT1, BT2, YT1 and rarely M1, M2 and YT2;
  - b) Resinoid bond-CM1, CM2, C1, C2, CT1, CT2, CT3 and T1; c) Rubber bond-CM, C, CT and T.

#### STRUCTURE OF ABRASIVES

Structure is the relationship of the abrasive grain to the bonding material and the relationship of these two elements to the spaces or voids that separate them. The precise relationship of these three elements can be controlled so

them. The precise relationship of these three elements can be controlled so that grinding wheels can be made dense or open, or in varying degrees of density or openness to suit grinding conditions.

According to varying manufacturing methods our structure scale ranges from "3"—the extremely dense, to "12"—the very open.

For each particular grinding job wheels of different structures are required. Thus, for example, for external cylindrical grinding wheels of structure "5" are used, for surface and internal grinding—wheels of structure "8", etc. Wheels having structures which vary from 5 to 8 are widely used for various grinding operations. grinding operations.

grinding operations.

Nowadays for special grinding jobs superporous wheels of structures varying from "13" up to "48" are manufactured.

Superporous wheels have a high durability and provide adequate chip clearance and excellent cutting facilities, thus making it possible to use a higher wheel speed and cutting depth, than when using wheels of ordinary expectures.

structures. It should be remembered that when superporous wheels are used their grain size should be by 1-2 numbers finer than that of ordinary wheels. For example, when replacing an ordinary wheel with a grain size of 46 by a superporous one, the grain size of the latter should be 60 or 80.

### WHEEL SHAPES AND SIZES

To meet the various requirements of industry wheels, segments, stones, blocks, mounted wheels and points shown on Tables 5-62 are made of different shapes and sizes in accordance with GOST. When ordering grinding wheels, segments, etc. the following details should be specified:

Quantity, GOST number, shape, dimensions.

#### STRAIGHT WHEELS

(Type "ПП", GOST 2424-52)

In accordance to GOST 2424-52 grinding wheels of straight shape are marked as type " $\Pi\Pi$ " (fig. 7).





These wheels are remarkable for their strength and enjoy a wide field of application. All necessary data pertaining to these wheels are given in Tables 5–12.

Straight wheels up to 150 mm diameter having a width of 16 mm and over are mainly used for internal grinding.

For profile surface grinding of spline shafts wheels of 125 to 300 mm diameter are generally used.

Wheels of 175 to 450 mm in diameter and 16 to 40 mm in width are used for surface grinding operations.

For external grinding on machines of medium size wheels of 250 to 450 mm in diameter and 32–50 mm in width are required (fig. 8).

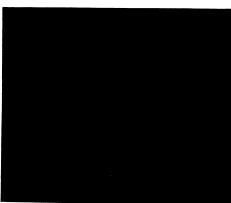



Fig. 8

For roll grinding straight wheels of 600 to 750 mm (sometimes even up to 900 mm) in diameter and 63 to 75 mm in width are used.

Wheels of 750 to 1100 mm in diameter and 32 to 127 mm in width are used for external grinding of crankshaft cheeks.

For centerless internal grinding wheels of 80 to 100 mm in diameter and 75 to 100 mm in width are generally used. Wheels of 250 to 600 mm in diameter and of 40 to 275 mm in width are used for centerless external grinding operations. operations.

operations.

For surfacing work performed on portable grinders wheels of 100 to 250 mm in diameter and of 16 to 25 mm in width are mainly used. For the same operations, but performed on floor stands, wheels of 300 to 600 mm in diameter and 32 to 100 mm in width are used.

For tool sharpening operations wheels of 200 to 500 mm in diameter and 20—50 mm in width are used.

For internal thread grinding operations wheels of 80 to 150 mm in diameter and 6f 6 to 10 mm in width and for external thread grinding operations wheels of 250 to 500 mm in diameter and of 6 to 10 mm in width are generally used  $\frac{665}{100}$  00. (fig. 9).



Fig. 9

Straight wheels, if necessary, can also be used as abrasive truing tools. For this purpose the wheels of 30 to 150 mm in diameter and 5 to 32 mm in width are used.



Straight wheels for general grinding (Type "HII", GOST 2424-52)

Vitrified bond

|                                                             | Dimensions, mm                                           |                                     |                                                                                                            |                                                                      |                                                                                |  |  |
|-------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| D                                                           | imensions.<br>H                                          | d d                                 | Weight, kg<br>(approximate)                                                                                | Abrasive material                                                    | Grain size (most<br>commonly used)                                             |  |  |
| 1                                                           | 2                                                        | 3                                   | 4                                                                                                          | 5                                                                    | 6                                                                              |  |  |
| 3<br>4<br>4<br>5<br>6<br>6<br>8<br>8<br>8<br>10<br>10<br>10 | 8<br>6<br>10<br>8<br>6<br>10<br>13<br>6<br>10<br>13<br>6 | 1 1.5 1.5 2 2 2 2 3 3 3 3 3 3 3 4 4 | 0.0001<br>0.0001<br>0.0002<br>0.0003<br>0.0003<br>0.0004<br>0.0007<br>0.0010<br>0.0012<br>0.0016<br>0.0022 | 3,316<br>3,316<br>3,316<br>3,316<br>3,316<br>3,316<br>3,316<br>3,316 | 80<br>60, 80<br>80<br>60, 80<br>60, 80<br>60, 80<br>60, 80<br>60, 80<br>60, 80 |  |  |



| 0 | <br>٠. | . 1 |  |
|---|--------|-----|--|

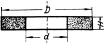
| 1        | 2        | 3        |     | 4              | 5              | 6                |
|----------|----------|----------|-----|----------------|----------------|------------------|
| 12       | 8        | 4        |     | 0.0019         | 3,36           | 60, 80           |
| 12       | 10       | 4        |     | 0.0013         | 9.9E           | 60, 80           |
| 12       | 13       | 4        |     | 0,0030         | Э, ЭБ          | 60, 80           |
| 12       | 16       | 4        |     | 0.0034         | 9. 3E          | 60, 80           |
| 12       | 20       | - 4      |     | 0,0046         | 3.3E           | 60, 80           |
| 12       | 32       | 4        |     | 0,0068         | 9              | 60               |
| 15       | 10       | 5        |     | 0,0036         | Э              | 46 80            |
| 15       | 16       | 5        |     | 0.0057         | 9,96,83        | 46 80            |
| 15       | 20       | . 5      |     | 0.0072         | 36,6           | 46 80            |
| 15       | 25       | 5        |     | 0.0090         | Э, ЭБ          | 46 -80           |
| 17       | 13       | - 6      |     | 0.005          | Э              | 60               |
| 17       | 16       | 6        |     | 0.006          | Э, ЭБ          | 46 - 80          |
| 17       | 20       | 6        |     | 0.009          | Э, ЭБ          | 46 -100          |
| 17       | 25       | 6        |     | 0.011          | Э, ЭБ          | 46 - 80          |
| 20       | 8        | 6        |     | 0.005          | 2              | 46 - 60          |
| 20       | 10       | 6        |     | 0.006          | 36,6           | 46100            |
| 20       | 16       | 6        |     | 0.010          | 0,00           | 46-100           |
| 20<br>20 | 20<br>25 | 6        |     | 0.012          | 9, 96, 13      | 46 -100          |
| 20       | 25<br>32 | 6        |     | 0.016          | 3,36           | 46 100           |
| 25       | 6        | 6        |     | 0.020<br>0.006 | 3,36           | 46-100           |
| 25       | 8        | 6        |     | 0.008          | 9, 9B          | 80<br>80         |
| 25       | 10       | 6        |     | 0.010          | э́, эь         | 60               |
| 25       | 13       | - 6      |     | 0.014          | 9, 3B          | 46 100           |
| 25       | 20       | : 6      |     | 0.020          | 5. 3E          | 46 100           |
| 25       | 25       | . 6      |     | 0.025          | 9, 96<br>9, 96 | 36 -100          |
| 25       | 32       | 6        |     | 0.032          | 9, 9E          | 36 -100          |
| 30       | 10       | 10       |     | 0.014          | 5.00           | 46, 60           |
| 30       | 13       | 10       |     | 0.019          | j :            | 46, 60           |
| 30       | 16       | 10       |     | 0.023          | э. эв          | 4680             |
| 30       | 25       | 10       |     | 0.036          | Э, ЭБ          | 46 80            |
| 30       | 32       | 10       |     | 0.046          | 36,6           | 36 - 100         |
| 30       | 40       | 10       |     | 0.056          | Э, ЭБ          | 46 80            |
| 35       | 16       | 10       |     | 0.032          | 36,6           | 46 - 80          |
| 35       | 20       | 10       |     | 0.040          | Э              | 46 80            |
| 35       | 25       | 10       |     | 0.050          | Э, ЭБ          | 46 -80           |
| 35       | 32       | 10       |     | 0.064          | Э, ЭБ          | 36 - 80          |
| 35       | 40       | 10       |     | 0.080          | Э. ЭБ          | 46 80            |
| 35       | 50       | . 10     |     | 0.100          | Э. ЭБ          | 36 - 80          |
| 40       | 6        | 13       |     | 0.015          | Э              | 4680             |
| 40       | 10       | 13       |     | 0.024          | 5              | 46, 60           |
| 40       | 16<br>25 | 13<br>13 |     | 0.040          | 9              | 46, 60           |
| 40       | 25<br>40 | 13       |     | 0.061          | 9, 3E, KU      | 36 -80           |
| 40       | 32       | 16       |     | 0.100          | 9, 96          | 4680             |
| 40       | 40       | 16       |     | 0.080<br>0.100 | 9, 36<br>9, 36 | 46 80<br>46 80   |
| 40       | 50       | 16       |     | 0.120          | 9, 3B<br>3, 3B | 46 -80<br>46 -80 |
| 40       | 63       | 16       |     | 0.120          | . <i>9</i> ,   | 46 -80<br>46, 60 |
| 45       | 32       | 16       |     | 0.100          | э. эь          | 46 - 80          |
| 45       | 40       | 16       |     | 0.120          | 3.36           | 46 -80           |
| 45       | 50       | 16       |     | 0.160          | 3, 36<br>36, 6 | 46 -80           |
| 50       | 6        | 13       |     | 0.025          | 3,36           | 46 80            |
| 50       | 10       | 13       | - 1 | 0.042          | 9, 96          | 46, 60           |
| 50       | 16       | 13       |     | 0.067          | 9, 9B          | 46, 60           |
| 50       | 20       | 13       |     | 0.084          | Э, ЭБ, КЧ      | 36 80            |
| 50       | 25       | 13       |     | 0.11           | 9.96           | 36 -80           |
| 50       | 32       | 16       |     | 0.14           | Э, ЭБ          | 36 80            |
| 50       | 40       | 16       |     | 0.16           | Э, ЭБ, КЧ, КЗ  | 46 80            |
| 50       | 50       | 16       |     | 0.20           | 3,36           | 36 -60           |
| 60       | 8        | 20       |     | 0.05           | 9              | 60               |
| 60       | 13       | 20       |     | 0.08           | Э, ЭБ          | 46, 60           |

| 60  |   | 20  | 20 | 0.12                | 9,96                                  | 4680               |
|-----|---|-----|----|---------------------|---------------------------------------|--------------------|
| 60  |   | 32  | 20 | 0.19                | Э,ЭБ                                  | 3680               |
| 60  |   | 50  | 20 | 0.29                | (G, G                                 | 36 80              |
| 60  |   | 63  | 20 | 0.36                | (G)                                   | 36 - 80            |
| 70  |   | 6   | 20 | 0.05                | 5                                     | 46                 |
| 70  |   | 10  | 20 | 0.08                | 3,5G                                  | 4680               |
| 7.0 |   | 13  | 20 | 0.10                | 5,56                                  | 3680               |
| 70  |   | 16  | 20 | 0.13                | 3.56                                  | 46                 |
| 70  | i | 2.5 | 20 | 0.20                | э́.эв                                 | 36 - 60            |
| 70  |   | 32  | 20 | 0.26                | 9.3B<br>9.3B                          |                    |
| 70  |   | 50  | 20 | 0.40                |                                       | 36 80              |
| 80  |   | 8   | 20 | 0.10                | 9,36                                  | 4680               |
| 80  |   | 13  | 20 |                     | Э. ЭБ                                 | 46, 60             |
| 80  |   | 20  | 20 | $\frac{0.14}{0.21}$ | 9                                     | 36, 46             |
| 80  |   | 25  | 20 |                     | ac.g                                  | 3680               |
| 80  |   | 32  | 20 | 0.27                | 3                                     | 4680               |
| 80  |   | 40  |    | 0.35                | 9, 9B                                 | 4680               |
| 80  |   | 50  | 20 | 0.44                | 3, 3E                                 | 3680               |
| 80  |   |     | 20 | 0.54                | 5.5B                                  | : 36-80            |
| 80  |   | 63  | 20 | 0.69                | 3. 3E                                 | 46, 60             |
|     |   | 100 | 20 | 1.09                | P3. G                                 | 36, 46             |
| 90  |   | 10  | 20 | 0.14                | GG,G                                  | 4680               |
| 90  |   | 16  | 20 | 0.22                | Э                                     | . 46               |
| 90  |   | 20  | 20 | 0.28                | Э                                     | 80                 |
| 90  |   | 25  | 20 | 0.35                | 3G,G                                  | 36 80              |
| 90  |   | 32  | 20 | 0.44                |                                       | 46                 |
| 90  |   | 50  | 20 | 0.70                | 36,6                                  | 4680               |
| .90 |   | 63  | 20 | 0.88                | 3G,G                                  | 3660               |
| 100 |   | 6   | 20 | 0.10                | 3,3E                                  | 46-320             |
| 100 |   | 8   | 20 | 0.14                | 3,3B                                  | 36240              |
| 100 |   | 10  | 20 | 0.17                | 3, 3B                                 | 36 180             |
| 100 |   | 13  | 20 | 0.22                | 3G,G                                  | 36 120             |
| 100 |   | 16  | 20 | 0.27                | (a)                                   | 36 60              |
| 100 |   | 20  | 20 | 0.34                | O.OB                                  | 3680               |
| 100 |   | 2.5 | 20 | 0.43                | G.G                                   | 36 - 150           |
| 100 |   | 32  | 20 | 0,55                | ac.c                                  | 1680               |
| 100 |   | 40  | 20 | 0.70                | ac,c                                  | 2480               |
| 100 |   | 50  | 20 | 0.85                | D, DB                                 | 24 80              |
| 100 |   | 63  | 20 | 1.07                | Ð, ÐB                                 | 36 - 60            |
| 100 |   | 100 | 20 | 1.70                | 9, 134                                | 24, 36             |
| 110 |   | 8   | 20 | 0.17                | 3. DB                                 | 4680               |
| 110 |   | 16  | 20 | 0.34                | Э                                     | 36, 46             |
| 110 |   | 20  | 20 | 0.42                | · · · · · · · · · · · · · · · · · · · | 36, 46             |
| 110 |   | 25  | 20 | 0.52                | :)                                    | 46                 |
| 110 |   | 50  | 20 | 1.05                | D, DB                                 | 36 80              |
| 125 |   | 6   | 32 | 0.16                | 36,6                                  | 16 180             |
| 125 |   | 8   | 32 | 0.21                | 5, 56, 13                             | 46 - 220           |
| 125 |   | 10  | 32 | 0.27                | 5,56,13                               | 36180              |
| 125 |   | 13  | 32 | 0.35                | 0,06,13                               | 36 - 180           |
| 125 |   | 16  | 32 | 0.42                | 9, 9B, K3                             | 36-80              |
| 125 |   | 20  | 32 | 0.53                | . 0.0B. B4. B3                        | 24 - 120           |
| 125 |   | 25  | 32 | 0.66                | 9, 3E, K3                             | $\frac{24 - 80}{}$ |
| 125 |   | 32  | 32 | 0.85                | 9, 96, 13                             | 24-150             |
| 125 |   | 50  | 32 | 1.32                | 0.0B.1d.13                            | 24-80              |
| 125 |   | 32  | 50 | 0.80                | Э                                     | 46, 60             |
| 125 |   | 50  | 50 | 1.25                | 5, 36, KU, K3                         | 36-120             |
| 150 |   | 6   | 32 | 0.22                | Э, ЭБ                                 | 36220              |
| 150 |   | 10  | 32 | 0.37                | 9, 9B, 183                            | 36-220             |
| 150 |   | 13  | 32 | 0.48                | 5, 56, 133                            | 36-120             |
| 150 |   | 16  | 32 | 0.60                | 9, 96, 64, 63                         | 24120              |
| 150 |   | 20  | 32 | 0.73                | 9. 36, KY, K3                         | 24-120             |
| 150 |   | 25  | 32 | 0.92                | 5, 56, 184, 183                       | 24-120             |
|     |   |     |    |                     |                                       | 12"                |
|     |   |     |    |                     |                                       |                    |



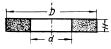


| Co | <br> |  |
|----|------|--|
|    |      |  |


| 1                 | 2            | 3                    | 4            | 5                            | 6               |     |                   | 7 .      |                |                       |                                    |                  |
|-------------------|--------------|----------------------|--------------|------------------------------|-----------------|-----|-------------------|----------|----------------|-----------------------|------------------------------------|------------------|
|                   | <del>'</del> |                      |              |                              |                 |     | 1                 |          |                | 1                     | 5                                  | 6                |
| 150               | 32           | 32                   | 1,20         | 9.9B                         | 36, 46          |     |                   |          |                |                       |                                    |                  |
| 150               | 40           | 32                   | 1.46         | 9, 96<br>9, 36, K3           | 36, 46<br>2480  |     | 350               | 32       | 75             | 6.70                  | Э                                  | 25 - 80          |
| 150               | 32           | 65                   | 1.05         | 0, 36, K3<br>17, K3, 36, G   | 2480            |     | 350               | 40       | 75<br>75<br>75 | 8.40                  | 0.06, K4.13                        | 1680             |
| 150               | 50           | 65                   | 1.65         | 5. 5B, KY, K3                | 46-220          |     | 350               | 50       | 75             | 10.30                 | D. 184                             | 2460             |
| 150               | 63           | 65                   | 2.07         | O. OB                        | 36 - 80         |     | 350               | 75       | . 75           | 15.50                 | Ð                                  | 24, 36           |
| 175               | 10           | 32                   | 0.53         | 3,3B                         | 36-80           |     | 350               | 8        | 127            | 1.53                  | 9B, I/3                            | 60220            |
| 175               | 13           | 32                   | 0.69         | O. OB                        | 3680            |     | $\frac{350}{350}$ | 10<br>13 | 127<br>127     | 1.90<br>2.48          | 9. 96<br>9                         | 60, 80           |
| 125               | 16           | 32                   | 0.84         | 9, 9B, K4LK3                 | 24 - 180        | 1   | 350               | 16       | 127            | 2.18<br>3.06          | 9.0B                               | 46 80<br>46 120  |
| 175<br>175        | 20<br>25     | 32                   | 1.06         | 9, 9B, KY, K3                | 24120           |     | 350               | 20       | 127            | 3,80                  | э. ы<br>Э. КЧ, КЗ                  | 2460             |
| 175               | 32           | 32<br>32             | 1.32<br>1.68 | 9.96,54,53                   | 24-120          |     | 350               | 25       | 127            | 4.75                  | 9, 101, 103<br>9, 96               | 36 60            |
| 175               | 40           | 32                   | 2.12         | 9, 36, 6<br>36, 6            | 24—60<br>36—60  |     | 350               | 32       | 127            | 6.12                  | 5,5B, K4, K3                       | 24 - 80          |
| 200               | 6            | 32                   | 0.43         | 9.3B<br>9.3B                 | 3680            |     | 350               | 40       | 127            | 7.61                  | 9, 9B, KY, K3                      | 16-100           |
| 200               | 8            | 32                   | 0.60         | P3                           | 4660            |     | 350               | 50       | 127            | 9.51                  | 9. 9B. 134, 163                    | 24100            |
| 200               | 10           | 32                   | 0.71         | 5, 3E, 13                    | 36-80           | 1   | 350               | 63       | 127            | 12.20                 | Э                                  | 36, 46           |
| 200               | 13           | 32                   | 0.92         | 9, 9B, 13                    | 36-80           |     | 400               | 16       | 127            | 3.16                  | 9                                  | 3680             |
| 200               | 16           | 32                   | 1.20         | Э.ЭБ, КЧ, КЗ                 | 36 - 120        | 1   | 400<br>400        | 20<br>25 | 127<br>127     | 5,20                  | 9. 9B. 183                         | 46, 60           |
| 200<br>200        | 20<br>25     | 32                   | 1.42         | <u>Э.ЭБ.</u> КЧ. КЗ          | 24-120          | 1   | 400               | 32       | 127            | 6,50<br>8,32          | 9, 9B<br>9, 9B, 1/3                | 2480<br>24120    |
| 200               | 32           | 32<br>32             | 1.77         | Э. ЭБ. КЧ. КЗ                | 24-120          |     | 400               | 10       | 127            | 10.40                 | 9, 9B, 163<br>9, 9B, 184, 163      | 24-120<br>24-100 |
| 200               | 20           | 75                   | 2.40<br>1.24 | 9, <b>9E</b> , KY, K3        | 24100           |     | 300               | 50       | 127            | 13.00                 | 5.56, K4, K3                       | 24 100           |
| 200               | 25           | 75                   | 1.55         | 9, 36, 13<br>9, 36, 13       | 3660            |     | 400               | 63       | 127            | 16,38                 | 9. КЧ. КЗ                          | 21-80            |
| 200               | 32           | 75                   | 1.98         | 9.3B.K3                      | 46, 60<br>24—46 | 1   | 400               | 13       | 203            | 2.80                  | 9, 9B                              | 60, 80           |
| 200               | 63           | 75                   | 3,80         | 3.36                         | 16-80           | ı   | 400               | 16       | 203            | 3.44                  | 9.9B                               | 60, 80           |
| 250               | 6            | 32                   | 0.66         | 9. 9B, K3                    | 4680            |     | \$00              | 20       | 203            | 4.40                  | Ð. ÐB                              | 80               |
| 250               | 8            | 32                   | 0.88         | 9.9B, K3                     | 3680            | i   | 700               | 25       | 203            | 5,40                  | Э, ЭБ                              | 46, 60           |
| 250               | 10           | 32                   | 1.10         | 9,96,63                      | 36 - 80         | 1   | 400<br>400        | 32<br>40 | 203<br>203     | 6,48                  | 9.9B                               | 2480             |
| $\frac{250}{250}$ | 13<br>16     | 32<br>32             | 1.34         | 9.9B, K3                     | 36 80           | 1   | 400               | 50       | 203            | 8,60<br>10,80         | 9, 3B, 184, 183<br>9, 3B, 184, 183 | 24 80<br>24 80   |
| 250               | 20           | 32                   | 1.77<br>2.20 | 3.3B, K3                     | 36-80           | 1.  | 400               | 100      | 203            | 21.60                 | 9.9D. ICI. IO                      | 36 -80           |
| 250               | 25           | 32                   | 2.75         | Э.ЭБ, КЧ, КЗ<br>Э.ЭБ, КЧ, КЗ | 3680<br>24100   | i   | 450               | 25       | 127            | 8.40                  | э́.эв                              | 24 60            |
| 250               | 32           |                      | 3.54         | 9.3B, KY, K3<br>9.3B, KY, K3 | 24-100<br>24-80 | j   | 450               | 40       | 127            | 13,40                 | 9. КЧ                              | 24-80            |
| 250               | 10           | 32<br>75<br>75       | 1.02         | Э.ЭБ                         | 60, 80          | 1   | 450               | 50       | 127            | 16.80                 | 9, 36, KU                          | 24 - 60          |
| 250               | 13           | 75                   | 1.34         | 5.36, k3                     | 1680            | 1.  | 450               | 63       | 127            | 21.20                 | D, DB, RH                          | 24 - 60          |
| 250               | 16           | 75<br>75<br>75<br>75 | 1.64         | 9,96, k4, k3                 | 46 -80          | 1   | 450               | 16       | 203            | 5.62                  | 9                                  | 60               |
| 250               | 20           | 75                   | 2.04         | Э.ЭБ. КЧ, КЗ                 | 36100           |     | 450               | 20       | 203            | 5,80                  | 9. KY                              | 16 80            |
| 250<br>250        | 25<br>32     | 75                   | 2.60         | Э.ЭБ.КЧ.КЗ                   | 24120           | 1   | 450<br>450        | 25<br>32 | 203<br>203     | 7.25<br>9.24          | 9.96<br>9                          | 3660<br>46, 60   |
| 250               | 32<br>40     | . 5<br>7.5           | 3.28<br>4.10 | 9.9B.KY.K3                   | 24-80           | i . | 450               | 40       | 203            | 11.60                 | 9, K3                              | 24 60            |
| 250               | 50           | 75                   | 5.12         | Э. ЭБ, КЧ, КЗ<br>Э           | 2460            |     | 450               | 50       | 203            | 13.50                 | 9, 96, 134, 13                     | 24100            |
| 250               | 63           | 75<br>75             | 6,45         | ä                            | 3660<br>3660    | 1   | 450               | 63       | 203            | 18.60                 | 9, 36, 64                          | 2446             |
| 250               | 6            | 127                  | 0.51         | э́.эв                        | 3660            |     | 450               | 75       | 203            | 21.75                 | э                                  | 24-46            |
| 250               | . 20         | 127                  | 1.68         | Э.ЭБ                         | 3660            | )   | 500               | 25       | 203            | 9,40                  | Э                                  | 46, 60           |
| 300               | 20           | 75                   | 3.02         | Э.ЭБ, КЧ, КЗ                 | 24-80           | i   | 500               | 32       | 203            | 12.00                 | Э                                  | 16, 60           |
| 300               | 25           | 75                   | 3.77         | 9. K3                        | 24 - 80         |     | 500<br>500        | 40       | 203            | 15.00                 | 9. KH. K3                          | 24-80            |
| 300<br>300        | 32<br>40     | 75<br>75             | 4.83         | Э. ЭБ, КЧ, КЗ                | 2480            |     | 500               | 50<br>63 | 203            | $\frac{18.80}{23.80}$ | 9, 96, KY, K3<br>9, 96, KY, K3     | 24-80<br>24-80   |
| 300               | 50           | 7.5<br>7.5           | 6,04<br>7,54 | Э.ЭБ, КЧ, КЗ                 | 16-46           | 1   | 500               | 75       | 203            | 28.20                 | 9.90. KT. No<br>9                  | 24 80<br>16 60   |
| 300               | 6            | 127                  | 7.54<br>0.80 | Э. КЧ<br>ЭБ                  | 16-46           | 1   | 500               | 100      | 203            | 37,60                 | :3                                 | 60               |
| 300               | 8            | 127                  | 1.06         | 9B                           | 46180<br>46180  | 1   | 500               | 10       | 305            | 2.84                  | э́Б                                | 100220           |
| 300               | 10           | 127                  | 1.33         | 9.96                         | 46—60           | 1   | 500               | 13       | 305            | 3,70                  | 9                                  | 46               |
| 300               | 13           | 127                  | 1.72         | 9.96                         | 36-120          | (   | 500               | 16       | 305            | 4.54                  | Э.ЭБ                               | ¥6—80            |
| 300               | 16           | 127                  | 2.12         | э, эв, кз                    | 36-100          | 1   | 500               | 20       | 305            | 5,68                  | 9.9B                               | 46100            |
| 300               | 20           | 127                  | 2.66         | Э, ЭБ, КЗ                    | 36-100          |     | 500<br>500        | 25       | 305            | 7.10                  | 3.36                               | 16-100           |
| 300<br>300        | 25           | 127                  | 3,30         | Э.ЭБ, КЧ, КЗ                 | 24100           | ,   | 500<br>500        | 32<br>40 | 305<br>305     | 9,09<br>11,30         | 9,96<br>9                          | 4680<br>3680     |
| 300               | 32<br>40     | 127<br>127           | 4.24<br>5.32 | Э.ЭБ, КЧ, КЗ                 | 2480            | 1   | 500               | 50       | 305            | 11.30                 | э.<br>Э.ЭБ. КЧ. КЗ                 | 36—80<br>24—80   |
| 300               | 50           | 127                  | 5.32<br>6.60 | 9. 9E. KY, K3                | 24-100          | 1   | 500               | 63       | 305            | 17.89                 | 5.5B. K4. K3                       | 24-80            |
| 300               | 63           | 127                  | 8,33         | Э.ЭБ, КЗ<br>Э                | 2480<br>60      | J   | 500               | 75       | 305            | 21.30                 | 9                                  | 2460             |
| 300               | 75           | 127                  | 9,90         | .,<br>Э                      | 60, 80          | •   | 500               | 100      | 305            | 28.40                 | э.эв                               | 3660             |
| 300               | 100          | 127                  | 13.20        | э́.эБ                        | 16, 60          |     | 500               | 125      | 305            | 35.50                 | Э. ЭБ                              | 3660             |
|                   |              |                      |              | ,                            | 20. 100         |     | 500               | . 150    | 305            | 42.60                 | Э. ЭБ, КЗ                          | 36100            |
|                   |              |                      |              |                              |                 |     |                   |          |                |                       |                                    |                  |

**\*\*\*** 




Contd.

|      |          |            |        |               | - 6                  |
|------|----------|------------|--------|---------------|----------------------|
| 1    | 2        | 3          | - 1    | 5             |                      |
|      | 200      | 305        | 56,80  | Э             | 36 - 60              |
| 500  |          |            | 9,64   | ä             | 46 80                |
| 600  | 20<br>23 | 305<br>305 | 11.50  | э.эв          | 60, 80               |
| 600  |          | 305        | 12.05  | 5.00          | 36 -80               |
| 600  | 25<br>28 | 305        | 13,50  | 3             | 24 - 60              |
| 600  |          | 305        | 15,43  | 3,56          | 3680                 |
| 600  | 32       |            | 16,80  | 5             | 16                   |
| 600  | 38       | 305<br>305 | 19.28  | э́, эв        | 3680                 |
| 600  | 40<br>50 | 305        | 24.10  | 3715          | 24 60                |
| 600  |          |            | 25.05  | $\ddot{5}$    | 60                   |
| 600  | 52<br>63 | 305<br>305 | 30,37  | э́.эв         | 24 60                |
| 600  |          | 305        | 36.15  | 5,5 <u>6</u>  | $\frac{21 - 60}{21}$ |
| 600  | 75       | 305        | 11.45  | 3.00          | 36 -60               |
| 600  | 86       | 305        | 18,20  | 5             | 36 - 60              |
| 600  | 100      |            | 72,30  | ő, ə <u>r</u> | 36 80                |
| 600  | 125      | 305        | 62,66  | 3, 3B         | 36 60                |
| 600  | 130      | 305        | 72,30  | 3             | 36 - 60              |
| 600  | 150      | 305        |        | 3             | 36 - 60<br>2460      |
| 600  | 200      | 305        | 96,40  | 2             | 24 60<br>46          |
| 650  | 33       | 305        | 19.63  | 9             | 16. 60               |
| 650  | 38       | 305        | 22.60  | 5             |                      |
| 650  | 67       | 305        | 40.10  | 9             | 16, 60               |
| 750  | 25       | 305        | 21.20  | 5             | 16 80                |
| 750  | 28       | 305        | 23.80  | 5             | 46, 60               |
| 750  | 33       | 305        | 27.98  | Э             | 36 80                |
| 750  | 38       | 305        | 32.22  | 3)            | 36 60                |
| 750  | 40       | 305        | 33,92  | Э             | 3660                 |
| 750  | 50       | 305        | 12,40  | Э             | 36 -60               |
| 750  | 52       | 305        | 11.10  | :)            | 36 60                |
| 750  | 58       | 305        | 19.20  | :)            | 3660                 |
| 750  | 61       | 305        | 51.72  | :)            | 36 60                |
| 750  | 63       | 305        | 53,42  | Э             | 36 60                |
| 750  | 67       | 305        | 56,80  | :)            | 36 - 60              |
| 750  | 7.2      | 305        | 61.05  | :)            | 3660                 |
| 750  | 75       | 305        | 63,60  | э́. эв        | 36 - 60              |
| 750  | 78       | 305        | 66.15  | Э             | 46, 60               |
| 750  | 82       | 305        | 69,54  |               | 46                   |
| 750  | 86       | 305        | 72.93  | Э             | 36, 46               |
| 750  | 100      | 305        | 84.80  | :             | 36 60                |
| 750  | 130      | 305        | 110.24 | Э             | 36 - 60              |
| 900  | 33       | 305        | 48.73  | Э             | 3660                 |
| 900  | 40       | 305        | 51.80  | Э             | 3660                 |
| 900  | 43       | 305        | 55,70  | õ             | 16, 60               |
| 900  | 50       | 305        | 64,60  | ė             | 3660                 |
| 900  | 52       | 305        | 67.34  | Э             | 36 - 60              |
| 900  | 58       | 305        | 75.10  | Э             | 36 60                |
| 900  | 61       | 305        | 79,00  | Э             | 36 60                |
| 900  | 63       | 305        | 81,58  | ó             | 3660                 |
| 900  | 7.2      | 305        | 93,00  | Э             | 36 60                |
| 900  | 75       | 305        | 97,00  | э             | 46, 60               |
| 900  | 78       | 305        | 101.00 | э́. эБ        | 3680                 |
| 900  | 82       | 305        | 106.20 | Э             | 36                   |
| 900  | 90       | 305        | 116.10 | ä             | 16                   |
| 900  | 100      | 305        | 129.00 | š             | 60                   |
| 1100 | 33       | 305        | 66,00  | á             | 60                   |
| 1100 | 40       | 305        | 80.01  | 9<br>9        | 60                   |
| 1100 | 43       | 305        | 87.07  | ő             | 60                   |
|      | 72       | 305        | 144.03 | ă             | 36-46                |
| 1100 | 82       |            | 164.10 | 9<br>9        |                      |
| 1100 |          | 305        |        | э́Б           | 36-46                |
| 1100 | 90       | 305        | 180.10 | JD            | 60                   |



# Straight wheels for thread grinding (single rib method) (Type "HH", GOST 2424-52) Vitrified bond

| Dimensions, mm |    | Weight, kg | Abrasive      | Grain size<br>(most |               |
|----------------|----|------------|---------------|---------------------|---------------|
| D              | H  | d          | (approximate) | material            | commonly used |
| 100            | 6  | 20         | 0.10          | ЭБ                  | 120 320       |
| 100            | 8  | 20         | 0.14          | ЭБ                  | 120 240       |
| 150            | 6  | 32         | 0.22          | ЭG                  | 120 - 320     |
| 400            | 8  | 203        | 1.72          | ЭБ                  | 180 320       |
| 400            | 10 | 203        | 2.15          | ЭБ                  | 180 - 320     |
| 150            | 8  | 203        | 2.33          | 5B.133              | 150 - 320     |
| 450            | 10 | 203        | 2.90          | ЭБ                  | 150 - 280     |



## Table 7 Straight wheels for thread grinding (multi-rib method) (Type "IIII", GOST 2323-52) Vitrified bond

| Dimensions, mm |    | Weight, kg | Abrasive      | Grain size    |                        |
|----------------|----|------------|---------------|---------------|------------------------|
| D              | 11 | d          | (approximate) | material      | (most<br>commonly used |
| 100            | 50 | 20         | 0.85          | ЭБ. <u>БЗ</u> | 220280                 |
| 100            | 63 | 20         | 1.07          | ЭБ            | 180-220                |
| 150            | 50 | 65         | 1.84          | DB, 1/3       | 120 - 230              |
| 700            | 50 | 127        | 13.00         | ЭБ            | 120-180                |
| 400            | 25 | 203        | 7.28          | ac            | 120180                 |

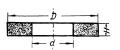
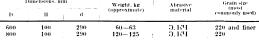




Table 8

Straight wheels for grinding balls (Type "HHI", GOST 2424-52)

Vitrified bond

Grain size (most commonly used) Weight, kg (approximate) Abrasive material







Straight wheels for truing grinding wheels

(Type "HII", GOST 2424-52)

| -      | - d -        | 7      | Vitrified                   | e "IIII", GOST<br>bond | 212. 112.                             |
|--------|--------------|--------|-----------------------------|------------------------|---------------------------------------|
| р<br>р | imensions, m | m<br>d | Weight, kg<br>(approximate) | Abrasive<br>material   | Grain size<br>(most common!)<br>used) |
| 60     | 20           | 20     | 0.11                        | КЧ                     | 12-36                                 |
| 70     | 32           | 20     | 0.25                        | Rii                    | 16-36                                 |
| 80     | 20           | 20     | 0.21                        | КЧ                     | 1636                                  |
| 80     | 32           | 20     | 0.33                        | КЧ                     | 24                                    |
| 80     | \$10         | 20     | 0.51                        | БЧ                     | 24                                    |
| 80     | 32           | 32     | 0.30                        | ВЧ                     | 24                                    |
| 100    | 20           | 20     | 0.33                        | ŘÝ                     | 16, 24                                |
| 100    | 25           | 20     | 0.42                        | ŘÝ                     | 24                                    |
| 100    | 32           | 20     | 0.54                        | ŘÝ                     | 1636                                  |
| 100    | 40           | 20     | 0.67                        | ВЧ                     | 16, 24                                |
| 125    | 20           | 32     | 0.51                        | iй                     | 24                                    |
| 125    | 25           | 32     | 0.64                        | Řú                     | 24, 36                                |
| 125    | 32           | 32     | 0.80                        | ièi                    | 16-36                                 |
| 125    | 32           | 50     | 0.72                        | Ri                     | 16-36                                 |
| 150    | 32           | 32     | 1.15                        | Ri                     | 24                                    |
| 150    | 40           | 32     | 1.50                        | ŘÝ                     | 24                                    |
| 150    | 32           | 65     | 1.00                        | Rti                    | 1224                                  |

Table 10 Straight wheels for general grinding (Type "HHT", GOST 2424-52)

Resincid bond

| Þ   | imensions, m | m  | Weight, kg    | Abrasive    | Grain size             |  |  |  |
|-----|--------------|----|---------------|-------------|------------------------|--|--|--|
| D.  | Н            | d  | (approximate) | material    | (most common!<br>used) |  |  |  |
| 1   | 2            | 3  | 1             | 5           | 6                      |  |  |  |
| 100 | 6            | 20 | 0.14          |             | 16                     |  |  |  |
| 100 | 8            | 20 | 0.16          | ä           | 16                     |  |  |  |
| 100 | 10           | 20 | 0.20          | ã           | 46                     |  |  |  |
| 100 | 16           | 20 | 0.31          | ä           | 46                     |  |  |  |
| 100 | 20           | 20 | 0.39          | ã           | 24, 36                 |  |  |  |
| 100 | 25           | 20 | 0.49          | ä           | 16, 24                 |  |  |  |
| 100 | 32           | 20 | 0.63          | 9           | 24, 36                 |  |  |  |
| 125 | 6            | 32 | 0.18          | ä           | 60                     |  |  |  |
| 125 | 8            | 32 | 0.24          | ä           | 3680                   |  |  |  |
| 125 | 10           | 32 | 0.30          | ă           | 36-80                  |  |  |  |
| 125 | 16           | 32 | 0.47          | ä<br>e      | 24-60                  |  |  |  |
| 125 | 20           | 32 | 0.59          | э. кч       | 24-60                  |  |  |  |
| 125 | 25           | 32 | 0.75          | ə · · · ·   | 24-60                  |  |  |  |
| 125 | 32           | 32 | 0.95          | Э           | 23-60                  |  |  |  |
| 125 | 50           | 32 | 1.50          | КЧ          | 16                     |  |  |  |
| 150 | 6            | 32 | 0.26          |             | 4660                   |  |  |  |
| 150 | 10           | 32 | 0.44          | ä           | 2460                   |  |  |  |
| 150 | 13           | 32 | 0.57          | 9<br>9<br>9 | 46-60                  |  |  |  |
| 150 | 16           | 32 | 0.70          | ă           | 24-60                  |  |  |  |
| 150 | 20           | 32 | 0.88          | э.хч        | 24, 36                 |  |  |  |
| 150 | 25           | 32 | 1.10          | ð, Kti      | 24-60                  |  |  |  |

Table 9

| 1                 | 2        | 3             | 4                   | 5              | 6               |
|-------------------|----------|---------------|---------------------|----------------|-----------------|
| 150               | 32       | 32            | 1.5                 | Э              | 36              |
| 175               | 6        | 32            | 0.36                | ä              | 3660            |
| 175               | 10       | 32            | 0,60                | ä              | 36, 46          |
| 175               | 13       | 32            | 0.78                | . 3            | 36, 46          |
| 175               | 16       | 32            | 0.97                | Э              | 36 60           |
| 175               | 20       | 32            | 1.21                | Э. КЧ          | 24-16           |
| 175               | 25       | 32            | 1.51                | 9, КЧ<br>Э     | 24              |
| 175               | 50       | 32            | 3.02                | á              | 24-36           |
| 200               | 6        | 32            | 0.48                | ()             | 36, 46          |
| 200               | 10       | 32            | 0.80                | ()             | 24-60           |
| 200               | 16       | 32            | 1.28                | 9, КЧ          | 2460            |
| 200               | 20       | 32            | 1.60                | Э. КЧ          | 2460            |
| 200               | 25       | 32            | 2.00                | РЯ.G<br>С      | 2460            |
| 200               | 30       | 75            | 3.19                | 9              | 36              |
| 200               | 50       | 25            | 4.00                | Э              | 36, 46          |
| 200               | 63       | 75<br>75      | 4.90                | Э              | 36              |
| 200               | 75       | 20            | 6.00                | 9              | 36              |
| 250               | 6        | 32            | 0.75                | 5              | 36              |
| $\frac{250}{250}$ | . 8      | 32            | 1.00                | 5              | 24-46           |
|                   | 10       | 32            | 1.26                | ģ              | 24-46           |
| $\frac{250}{250}$ | 13<br>16 | 32<br>32      | 1.63                | Э              | 2460            |
| 250<br>250        | 16<br>20 | 32            | $\frac{2.00}{2.51}$ | 9. КЧ          | 46, 60          |
| 250               | 20<br>25 | 32            | 3.14                | РЯ.G<br>РЯ.G   | 24-46           |
| 250               | 32       | 32            | 3.14<br>4.01        | 9. K4<br>9     | 2460            |
| 250               | 50       | 32            | 6,28                | ร์             | 36              |
| 250               | 20       | 75            | 2.32                | ä              | 24<br>24 36     |
| 250               | 25       | 75            | 2,90                | อื่            | 24 36<br>24.—46 |
| 250               | 32       | 75            | 3,75                | ä              | 2446<br>36      |
| 250               | 40       | 75            | 4.64                | э. кч          | 16—60           |
| 250               | 63       | 75            | 7.32                | 9.11.1         | 46—80           |
| 300               | 20       | 75            | 3.45                | ő              | 24              |
| 300               | 25       | 75            | 4.30                | Э. КЧ          | 24. 36          |
| 300               | 32       | 7.5           | 5.51                | Ď. ŘÝ          | 24, 36          |
| 300               | 40       | 75            | 6.90                | РЯ.Ğ           | 12-46           |
| 300               | 50       | 75            | 8.62                | Э              | 16, 24          |
| 300               | 6        | 127           | 0.91                | Э              | 36              |
| 300               | 8        | 127           | 1.21                | Э              | 36, 46          |
| 300               | 10       | 127           | 1.51                | Э              | 36              |
| 300               | 13       | 127           | 1.96                | Э              | 24-46           |
| 300               | 20       | 127           | 3.02                | Э. КЧ          | 3680            |
| 300               | 25       | 127           | 3.77                | Э. КЧ          | 3680            |
| 300               | 32       | 127           | 4.83                | Э. КЧ          | 24. 36          |
| 300<br>300        | 40       | 127           | 6.03                | Э. КЧ          | 16-46           |
| 300               | 50       | 127<br>127    | 7.54<br>9.50        | Э. КЧ          | 24-46           |
| 300               | 63<br>75 | 127           | 9,50<br>11,31       | 9<br>9         | 80              |
| 350               | 32       | 75            | 7.74                |                | 36              |
| 350               | 40       | <del>13</del> | 9,55                | РЛ, С<br>РЛ, С | 16-36           |
| 350               | 50       | 75            | 11.70               | 9, KY<br>9, KY | 1636<br>1636    |
| 350               | 25       | 127           | 5,43                | 9. K4<br>9     | 24. 36          |
| 350               | 32       | 127           | 6.95                | ě              | 24, 36          |
| 350               | 40       | 127           | 8.68                | э́. кч         | 16-36           |
| 350               | 50       | 127           | 10.86               | э. Кч          | 16-36           |
| 400               | 16       | 127           | 4.70                | . i. i         | 24              |
| 400               | 20       | 127           | 5.88                | ě              | 16              |
| 400               | 40       | 127           | 11.75               | э. кч          | 16—46           |
| 400               | 50       | 127           | 14.69               | Э. КЧ          | 16-36           |
| 400               | 63       | 127           | 18.51               | Э              | 80              |
| 400               | 13       | 203           | 3.13                | Э              | 60              |
| 400               | 16       | 203           | 3.88                | Э              | , 60            |
| 400               | 25       | 203           | 6.06                | ě              | 60              |
|                   |          |               |                     |                |                 |



Condt.

| 1   | 2   | 3   | 4      | 5                 | 6      |
|-----|-----|-----|--------|-------------------|--------|
| 400 | 32  | 203 | 7.76   | Э                 | 36     |
| 400 | 40  | 203 | 9.70   | э́. кч            | 16-36  |
| 400 | 50  | 203 | 12.13  | э, кч             | 16-36  |
| 450 | 40  | 127 | 15.22  | 9, КЧ             | 12-36  |
| 450 | 50  | 127 | 19,03  | 9, КЧ             | 12-36  |
| 450 | 63  | 127 | 24.00  | 9. Кч             | 12-36  |
| 450 | 40  | 203 | 13.18  | 9, 11, 1          | 60     |
| 450 | 50  | 203 | 16.48  | š                 | 16, 24 |
| 450 | 63  | 203 | 20.76  | ă                 | 24, 36 |
| 500 | 25  | 203 | 10.74  | e<br>e            | 24, 30 |
| 500 | 40  | 203 | 17.05  | ă                 | 12-36  |
| 500 | 50  | 203 | 21.32  | э́, кч            | 12-46  |
| 500 | 63  | 203 | 26.86  | э́, кч            | 12-46  |
| 500 | 7.5 | 203 | 31.98  | 9, RY             | 12-16  |
| 500 | 16  | 305 | 5.13   | j                 | 60     |
| 500 | 20  | 305 | 6.41   | ă                 | 60     |
| 500 | 25  | 305 | 8.01   | ă                 | 60     |
| 500 | 63  | 305 | 20,20  | э́. кч            | 12-36  |
| 500 | 75  | 305 | 24.04  | P3.6              | 12-36  |
| 500 | 100 | 305 | 32.05  | э                 | 36-80  |
| 500 | 125 | 305 | 40.07  | j<br>j            | 2460   |
| 500 | 150 | 305 | 48.08  | ă                 | 24-60  |
| 600 | 25  | 305 | 13.63  | ä                 | 60     |
| 600 | 32  | 305 | 17.85  | ě                 | 60     |
| 600 | 40  | 305 | 21.81  | ā                 | 60     |
| 600 | 50  | 305 | 27.26  | э́, Кч            | 16-46  |
| 600 | 63  | 305 | 34.35  | Э, КЧ             | 12-46  |
| 600 | 75  | 305 | 40.90  | э́, КЧ            | 12-46  |
| 600 | 100 | 305 | 54.52  | Э. К <del>Ч</del> | 24-80  |
| 600 | 125 | 305 | 68.15  |                   | 3660   |
| 600 | 150 | 305 | 81.77  | Э                 | 3660   |
| 750 | 40  | 305 | 38,35  | <b>:</b>          | 24     |
| 750 | 63  | 305 | 60.40  | э                 | 60     |
| 750 | 75  | 305 | 71.89  | э, кч             | 2460   |
| 900 | 40  | 305 | 56.57  | 9. КЧ             | 3660   |
| 900 | 50  | 305 | 70.72  | Э. КЧ             | 60-220 |
| 900 | 75  | 305 | 106.07 | 9. КЧ             | 60-220 |
| 900 | 100 | 305 | 141.43 | 9                 | 36     |

Table 11

Straight wheels for peripheral speed up to 50 m per sec.

(Type "HH", GOST 2424-52)

Resinoid bond

| 1   | Dimensions | . anm |                             |                      | Grain size              |  |
|-----|------------|-------|-----------------------------|----------------------|-------------------------|--|
| Þ   | п          | - d   | Weight, kg<br>(approximate) | Abrasive<br>material | (most<br>commonly used) |  |
| 300 | 40         | 75    | 6.90                        | Э. КЧ                | 16, 24                  |  |
| 350 | 40         | 75    | 9.55                        | э́. Кч               | 16, 24                  |  |
| 400 | 40         | 127   | 11.75                       | 9. KŸ                |                         |  |
| 400 | 50         | 203   | 12.13                       | э. К <del>Ч</del>    | 16, 24                  |  |
| 500 | 50         | 203   | 21.32                       | э. К <del>Ч</del>    | 16, 24                  |  |
| 500 | 63         | 203   | 26.86                       | э, кч<br>э. кч       | 16, 24                  |  |
| 500 | 75         | 203   | 31.98                       | 9. KY                | 16, 24                  |  |
| 600 | 50         | 203   | 32.53                       | 9, KY                | 16, 24                  |  |
| 600 | 75         | 203   | 48.80                       |                      | 12-24                   |  |
| 600 | 63         | 305   | 34.35                       | э, кч                | 12-24                   |  |
| 600 | 75         | 305   | 40.90                       | Э, КЧ<br>Э, КЧ       | 12—24<br>12—24          |  |

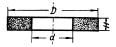



Table 12 Straight wheels for general grinding (Type "HIII", GOST 2424-52)

Rubber bond

|            | Dimensions, m | m        | Weight, kg    | Abrasive                                  | Grain size              |
|------------|---------------|----------|---------------|-------------------------------------------|-------------------------|
| D          | н             | d        | (approximate) | matérial                                  | (most commonly<br>used) |
| 1          | 2             | 3        | 4             | 5                                         | 6                       |
| 60         | 13            | 20       | 0.09          | Э                                         | 80, 100                 |
| 60         | 16            | 20       | 0.11          | ě                                         | 100                     |
| 70         | 6             | 20       | 0.06          | ĕ                                         | 80                      |
| 70         | 10            | 20       | 0.10          | ă                                         | 100                     |
| 70         | 13            | 20       | 0.13          | ă                                         | 100                     |
| 70         | 16            | 20       | 0.15          | ă                                         | 100                     |
| 70         | 20            | 20       | 0.20          | ອ<br>ອ<br>ອ<br>ອ<br>ອ<br>ອ<br>ອ<br>ອ<br>ອ | 80-120                  |
| 80         | 13            | 20       | 0.17          | ă                                         | 80-150                  |
| 80         | 14            | 20       | 0.18          | ă                                         | 100                     |
| 80         | 16            | 20       | 0.21          | ā                                         | 100                     |
| 80         | 18            | 20       | 0.24          | э                                         | 100                     |
| 90         | 14            | 20       | 0.24          | ā                                         | 100                     |
| 90         | 20            | 20       | 0.34          | ອ<br>ອ<br>ອ<br>ອ<br>ອ                     | 100                     |
| 90         | 23            | 20       | 0.48          | Э                                         | 80                      |
| 100        | 6             | 20       | 0.12          | Э                                         | 80, 100                 |
| 100        | 8             | 20       | 0.16          | Э                                         | 80, 100                 |
| 100        | 10            | 20       | 0.21          | Э                                         | 80, 100                 |
| 100        | 13            | 20       | 0.27          | Э                                         | 100—150                 |
| 100        | 16            | 20       | 0.33          | ă<br>a                                    | 80, 100                 |
| 100        | 20            | 20       | 0.42          | э<br>э                                    | 80-150                  |
| 100        | 23            | 20       | 0.48          | Э                                         | 100                     |
| 100        | 25            | 20       | 0.52          | ě                                         | 80, 100                 |
| 100        | 32            | 20       | 0.67          | Э                                         | 80, 100                 |
| 100        | 40            | 20       | 0.84          | Э                                         | . 80                    |
| 110        | 16            | 20       | 0.41          | ě                                         | 100                     |
| 110<br>125 | 20            | 20       | 0.51          | ē                                         | 80                      |
| 125        | 6 8           | 32       | 0.19          | ã                                         | 60, 100, 220            |
| 125        | 10            | 32       | 0.26          | ā                                         | 60-100                  |
| 125        | 13            | 32<br>32 | 0.30          | 9                                         | 60-100                  |
| 125        | 16            | 32<br>32 | 0.38<br>0.32  | 9                                         | 80120                   |
| 125        | 18            | 32       | 0.54          | 9                                         | 80                      |
| 125        | 20            | 32       | 0.54          | 9                                         | 80                      |
| 125        | 23            | 32       | 0.77          | 3                                         | 80                      |
| 125        | 25            | 32       | 0.80          | 2                                         | 80, 100<br>80           |
| 125        | 28            | 32       | 0.93          | 3                                         |                         |
| 125        | 32            | 32       | 1.03          | 3                                         | 80, 100<br>80           |
| 125        | 50            | 32       | 1.50          | 3                                         | 80                      |
| 150        | 6             | 32       | 0.28          | ă                                         | 60                      |
| 150        | 10            | 32       | 0.47          | ă                                         | 60, 80                  |
| 150        | 13            | 32       | 0.61          | ă                                         | 80                      |
| 150        | 16            | 32       | 0.75          | ă                                         | 100                     |
| 150        | 20            | 32       | 0.94          | ă                                         | 80                      |
| 150        | 25            | 32       | 1.18          | ă                                         | 80                      |
| 150        | 32            | 32       | 1.51          | ă                                         | 80                      |
| 200        | 75            | 75       | 5.67          | ā                                         | 80                      |
| 200        | 200           | 75       | 15.12         | ě                                         | 80, 100                 |
| 250        | 6             | 75       | 0.62          | ē                                         | 80, 100                 |
| 250        | 10            | 75       | 1.24          | ě                                         | 80, 100                 |
| 250        | 100           | 127      | 10.19         | 000000000000000000000000000000000000000   | 80, 100                 |
| 300        | 6             | 127      | 0.97          | Э                                         | 80-220                  |



| 1    | 2    | 3     | 4     |   | 5                                                   | 6        |
|------|------|-------|-------|---|-----------------------------------------------------|----------|
| 300  | 8    | 127   | 1.30  |   | Э                                                   | 80-220   |
| 300  | 10   | 127   | 1.62  |   | ě                                                   | 80220    |
| 300  | 13   | 127   | 2.11  |   | ä                                                   | 100220   |
| 300  | 16   | 127   | 2.60  |   | ä                                                   | 100150   |
| 300  | 20   | 127   | 3.25  |   | š                                                   | 46150    |
| 300  | 25   | 127   | 4.06  |   | ä                                                   | 80, 100  |
| 300  | 32   | 127   | 5.20  |   | э<br>э                                              | 80       |
| 300  | 40   | 127   | 6.50  |   | ă                                                   | : 100    |
| 300  | 50   | 127   | 8.12  |   | 9<br>9<br>9<br>9                                    | 80       |
| 300  | 63   | 127   | 10.23 |   | ă                                                   | 80       |
| 300  | 75   | 127   | 12.18 |   | ă                                                   | 80       |
| 300  | 100  | 127   | 16.24 |   | ă                                                   | 60       |
| 350  | - 8  | 127   | 1.87  |   | ă                                                   | 100      |
| 350  | 10   | 127   | 2.33  |   | ă                                                   | 100      |
| 350  | 13   | 127   | 3.04  |   | ĕ                                                   | 100      |
| 350  | . 16 | 127   | 3,74  |   | ă                                                   | 100      |
| 350  | 20   | 127   | 4.67  |   | ä                                                   | 100      |
| 350  | 25   | 127   | 5.85  |   | 9<br>9<br>9<br>9<br>9                               | 80       |
| 350  | 32   | 127 , | 7.48  |   | ă                                                   | 80       |
| 350  | 40   | 127   | 9.35  |   | ร                                                   | 60       |
| 350  | 100  | 127   | 23.38 |   | š                                                   | 60 100   |
| 400  | 6    | 203   | 1.56  |   | š                                                   | 120      |
| 100  | 8    | 203   | 2.09  |   | ă                                                   | 80, 100  |
| 100  | 10   | 203   | 2.61  |   | š                                                   | 80       |
| 100  | 13   | 203   | 3.39  |   | ě                                                   | 80, 100  |
| 00   | 16   | 203   | 4.19  |   | ě                                                   | 80, 100  |
| 00   | 18   | 203   | 4.70  |   | ě                                                   | 80, 100  |
| 00   | 20   | 203   | 5.22  |   | ä                                                   | 80, 100  |
| 00   | 23   | 203   | 5.98  | 1 | ë<br>ë                                              | 80, 100  |
| 00   | 25   | 203   | 6.53  |   | ă                                                   | 80, 100  |
| 00   | 28   | 203   | 7.28  | ! | ă                                                   | 80, 100  |
| 00   | 32   | 203   | 8.36  |   | ă                                                   | 80, 100  |
| 75   | 100  | 203   | 45.08 |   | ă                                                   | 60120    |
| 00   | 13   | 305   | 4.49  |   | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 80       |
| : 00 | 16   | 305   | 5.52  |   | ă                                                   | 80       |
| 00   |      | 305   | 6.90  |   | ă                                                   | 100      |
| 00   | 25   | 305   | 8.63  |   | ă                                                   | 100      |
| 00   | 32   | 305   | 11.04 |   | ă                                                   | 100, 120 |
| 00   | 40   | 305   | 13.81 | 1 | ă                                                   | 100, 120 |
| 00   | 50   | 305   | 17.26 |   |                                                     | 100, 120 |
| 00   | 63   | 305   | 21.75 |   | 9<br>9<br>9<br>9<br>9                               | 120      |
| 00   | 75   | 305   | 25,89 |   | ă                                                   | 60       |
| 00   | 150  | 305   | 51.78 |   | ă                                                   | 60-120   |
| 00   | 200  | 305   | 69.05 |   | ă                                                   | 60       |
| 00   | 150  | 305   | 88,06 |   | š                                                   | 60       |

#### GRINDING WHEELS TAPERED TWO SIDES

(Type "2 II", GOST 2424-52)

The type "2 H" wheels represent a variety of straight wheels having a tapered profile of 40 or  $60^\circ$ . They are mainly used for gear grinding operations and for the grinding of threads when the single rib method is used. All necessary data are given in Table 13.





Table 13 Wheels tapered two sides  $(Type~"2\Pi",~GOST~2424-52)$ 

Vitrified bond

|     | Din | ensions, | nım |    | Weight, kg    | Abrasive | Grain size              |
|-----|-----|----------|-----|----|---------------|----------|-------------------------|
| D   | н   | d        | a   | a° | (approximate) | material | (most commonly<br>used) |
| 250 | 10  | 75       | 4   | 40 | 0.97          | ЭБ. КЗ   | 46, 60                  |
| 250 | 13  | 75       | 4   | 40 | 1.25          | ЭБ. КЗ   | 46-80                   |
| 250 | 16  | 75       | 4   | 40 | 1.55          | ЭБ. КЗ   | 4680                    |
| 250 | 20  | 75       | 6   | 40 | 1.85          | ЭБ       | 46                      |
| 250 | 25  | 7.5      | 6   | 40 | 2.42          | ЭБ       | 46                      |
| 300 | 25  | 127      | 6   | 40 | 3.40          | ЭБ       | 46                      |
| 350 | 32  | 127      | 8   | 40 | 4.35          | ЭБ       | 46                      |
| 450 | - 8 | 229      | 3   | 60 | 2.33          | ЭБ       | 46. 60                  |
| 450 | 10  | 229      | 3   | 60 | 2.91          | ЭБ       | 46, 60                  |
| 500 | 10  | 254      | 2   | 60 | 2.84          | ЭБ       | 46. 60                  |

#### GRINDING WHEELS TAPERED ONE SIDE

(Type "3 II", GOST 2424-52)

The type "341" wheels (fig. 10) are widely used for sharpening different kinds of saws. All necessary data are given in Table 14.



Table 14 Wheels tapered one side (Type "3H", GOST 2424-52)

Resinoid bond

| D   | imensions, n | m   | Weight, kg    | Abrasive | Grain size              |  |
|-----|--------------|-----|---------------|----------|-------------------------|--|
| D   | 11           | d   | (approximate) | material | (most commonly<br>used) |  |
| 250 | 6            | 75  | 0,90          | Э        | 36, 46                  |  |
| 250 | 8            | 75  | 1.20          | Э        | 36, 46                  |  |
| 250 | 10           | 75  | 1.50          | Э        | 36, 46                  |  |
| 300 | 6            | 7.5 | 1.00          | Э        | 36, 46                  |  |
| 300 | 8            | 75  | 1.30          | Э        | 36, 46                  |  |
| 300 | 10           | 7.5 | 1.60          | Э        | 36, 46                  |  |
| 300 | 8            | 127 | 1.15          | Э        | 36, 46                  |  |
| 300 | 10           | 127 | 1.40          | Э        | 36, 46                  |  |
| 300 | 13           | 127 | 1.82          | Э        | 36, 46                  |  |



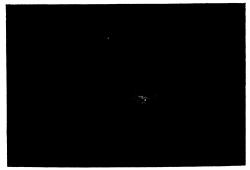
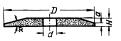



Fig. 10



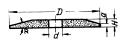
Fig. 11




#### GRINDING WHEELS TAPERED ONE SIDE

(Type "4 II", GOST 2424-52)

The type "4 II" wheels (fig. 11) up to 250 mm in diameter are used for tooth sharpening on different kinds of milling cutters, reamers and other types of small tools. Wheels of 300 up to 350 mm in diameter are usually applied for grinding shaper cutters.


All necessary data for type "4  $\Pi$  " are given in Tables 15 and 16.



Wheels tapered one side (Type "411", GOST 2424-52)

Vitrified bond

| Dimensions, mm |    |     |     |    | Weight, kg    | Abrasive | Grain size<br>(most commonly |  |
|----------------|----|-----|-----|----|---------------|----------|------------------------------|--|
| Ð              | Н  | d   | a   | 10 | (approximate) | material | used)                        |  |
| 75             | 6  | 13  | 2   | 10 | 0.04          | ЭБ       | 60, 80                       |  |
| 100            | 6  | 20  | 2   | 10 | 0.075         | эь, кз   | 60, 80                       |  |
| 125            | 8  | 32  | 2   | 10 | 0.15          | ЭБ, КЗ   | 4680                         |  |
| 150            | 8  | 32  | 2   | 10 | 0.215         | эБ, КЗ   | 46-80                        |  |
| 175            | 10 | 32  | - 3 | 10 | 0.36          | ЭБ, КЗ   | 4680                         |  |
| 200            | 13 | 32  | 3   | 10 | 0.60          | ЭБ, КЗ   | 46, 60                       |  |
| 250            | 16 | 32  | 3   | 10 | 1.06          | ЭБ       | 4680                         |  |
| 300            | 13 | 127 | 3   | 15 | 1.35          | ЭБ       | 46-100                       |  |
| 350            | 25 | 127 | 4   | 30 | 3,90          | ЭБ       | 80                           |  |



Wheels tapered one side (Type "4H", GOST 2424-52)

Resinoid bond

| D                 | Dimensions, mm  D ' H d a 5° |     |                |  | Weight, kg<br>(approximate) | i | Abrasive<br>material | Grain size<br>(most commonly<br>used) |   |             |                |
|-------------------|------------------------------|-----|----------------|--|-----------------------------|---|----------------------|---------------------------------------|---|-------------|----------------|
| 125<br>150<br>175 | 8<br>8<br>10                 | 1 : | 32<br>32<br>32 |  | 2<br>2<br>3                 |   | 10<br>10<br>10       | 0.17<br>0.24<br>0.40                  | - | 9<br>9<br>9 | 36<br>36<br>46 |



#### GRINDING WHEELS RECESSED ONE SIDE

(Type "IIB", GOST 2424-52)

The type " $\Pi B$ " wheels (fig. 12) are made up to 600 mm in diameter. Wheels having diameters from 10 to 150 mm are generally used for internal

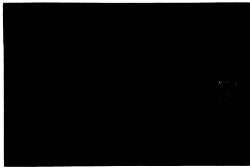



Fig. 12

grinding operations when it is necessary to grind hole and its adjacent face simultaneously at one setting. This type of grinding wheel is also used for surface grinding operations.

Wheels of 300 to 500 mm in diameter are used for external cylindrical grinding corrections.

grinding operations.

All necessary data for this type of wheels are shown in Table 17.



Wheels recessed one side (Type "HB" GOST 2424-52)

Vitrified bond

|    | 1                                                   | Dimensi | ons, mi        | 11  |      | Weight, kg    | Abrasive material | Grain size<br>(most |  |
|----|-----------------------------------------------------|---------|----------------|-----|------|---------------|-------------------|---------------------|--|
| D  | $\mathbf{D} + \mathbf{H} + \mathbf{d} + \mathbf{d}$ |         | $\mathbf{d}_1$ | H,  | r    | (approximate) | Aprasive material | commonly<br>used)   |  |
| 1  | 2                                                   | 3       | 4              | 5   | 6    | 7             | 8                 | 9                   |  |
| 10 | 6                                                   | 3       | 5              | 3   | 0.25 | 0.0009        | Э                 | 4680                |  |
| 10 | 13                                                  | 3       | 5              | 6   | 0.25 | 0.0020        | Э                 | 46, 60              |  |
| 12 | 10                                                  | 4       | 6              | . 5 | 0.5  | 0.0020        | Э                 | 46 - 80             |  |
| 12 | 16                                                  | 4       | 6              | . 8 | 0.5  | 0.0040        | Э                 | 46, 60              |  |
| 15 | 8 -                                                 | 5       | 8              | 4   | 0.5  | 0.0030        | Э. ЭБ             | 46, 60              |  |
| 15 | 13                                                  | 5       | 8              | 6   | 0.5  | 0.004         | Э                 | 46, 60              |  |
| 15 | 20                                                  | 5       | 8              | 10  | 0.5  | 0.007         | Э. ЭБ             | 46, 60              |  |

Contd.

| 1   | 2    | 3   | 4       | 5  | 6   | Т   | 7     | 8                                                          |       | . 9     |
|-----|------|-----|---------|----|-----|-----|-------|------------------------------------------------------------|-------|---------|
| 20  | 10   | 6   | 10      | 5  | 1   | T   | 0.006 | Э                                                          |       | - 46    |
| 20  | 16   | 6   | 10      | 8  | 1   |     | 0.060 | Э, ЭE                                                      |       | 4680    |
| 20  | 25   | 6   | 10      | 13 | . 1 |     | 0.015 | Э, ЭБ                                                      | ;     | 46, 60  |
| 25  | 13   | 6   | 13      | 6  | 1   |     | 0.014 | 9                                                          |       | 46      |
| 25  | 20   | 6   | 13      | 10 | 1   |     | 0.019 | 9, 9E                                                      |       | 46, 60  |
| 25  | 25   | 6   | 13      | 13 | 1   |     | 0.023 | 9, 9E                                                      |       | 60      |
| 30  | 16   | 10  | 16      | 8  | . 1 |     | 0.020 | . 3                                                        |       | 46      |
| 30  | 25   | 10  | 16      | 13 | 1   |     | 0.032 |                                                            |       | 46-80   |
|     | 32   | 10  | 16      | 16 | 1   |     | 0.040 | Э                                                          |       | 46, 60  |
| 35  | 25   | 10  | 20      | 13 | 1   |     | 0.043 | Э                                                          |       | 46-80   |
|     | 32   | 10  | 20      | 16 | 1   |     | 0.056 | Э, ЭБ                                                      |       | 46-80   |
| 40  | 25   | 13  | 20      | 13 | 1   |     | 0.059 | Э, ЭБ                                                      |       | 46, 60  |
| 40  | 40   | 13  | 20      | 20 | 1   |     | 0.097 | Э, ЭБ                                                      |       | 46-80   |
| 50  | 25   | 13  | 25      | 13 | 1   |     | 0.094 | Э                                                          |       | 46, 60  |
| 50  | 40   | 1:3 | 25      | 20 | 1   |     | 0.150 | Э, ЭБ                                                      | , КЗ  | 46, 60  |
| 60  | 32   | 20  | 32      | 16 | 1   |     | 0.165 | Э                                                          |       | 46      |
| 60  | 50   | 20  | 32      | 30 | 1   |     | 0.25  | Э, ЭБ                                                      |       | 36-80   |
| 70  | 25   | 20  | 40      | 13 | . 1 |     | 0,17  | Э                                                          |       | 46, 60  |
| 70  | 40   | 20  | 40      | 20 | 1   |     | 0.28  | э, эв                                                      |       | 46, 60  |
| 80  | 32   | 20  | 40      | 16 | 1   |     | 0.31  | Э, ЭБ                                                      |       | 3660    |
| 80  | 40   | 20  | 40      | 20 | 1   |     | 0.39  | Э                                                          |       | 60      |
| 90  | 25   | 20  | 40      | 13 | 1   | 1   | 0.32  | Э                                                          |       | 3660    |
| 90  | 63   | 20  | 40      | 30 | 1   | - ! | 0.81  | Э, ЭБ                                                      |       | 46, 60  |
| 100 | 32   | 20  | 50      | 16 | 1.5 |     | 0.49  | Э                                                          |       | 46, 60  |
| 100 | 40   | 20  | 50      | 20 | 1.5 |     | 0.60  | Э                                                          |       | 46, 60  |
| 100 | 50   | 20  | 50      | 30 | 1.5 |     | 0.75  | Э, ЭЕ                                                      | ,     | 3660    |
| 110 | 25   | 32  | 65      | 13 | 1.5 |     | 0.48  | Э                                                          |       | 46      |
| 110 | 40   | 32  | 65      | 20 | 1.5 |     | 0.68  | Э, ЭГ                                                      |       | 46, 60  |
| 125 | 32   | 32  | 65      | 16 | 1.5 |     | 0.75  | Э. ЭЕ                                                      |       | 36 - 60 |
| 125 | 50   | 32  | 65      | 30 | 1.5 |     | 1.14  | Э, ЭБ                                                      |       | 36 - 60 |
| 150 | 32   | 32  | 85      | 16 | 2   |     | 1.06  | Э, ЭЕ                                                      |       | 3660    |
| 175 | 32   | 32  | 100     | 16 | 2   |     | 1.44  | Э, ЭЕ                                                      | •     | 46, 60  |
| 200 | 32   | 7.5 | 125     | 16 | 2 2 |     | 1.70  | Э                                                          |       | 46, 60  |
| 200 | 40   | 7.5 | 125     | 20 | 2   |     | 2.10  | 9, 90                                                      | . N3  | 46      |
| 250 | 4.0  | 75  | 125     | 20 | 3   |     | 3.47  | 9, 91                                                      | •     | 46, 60  |
| 300 | 40   | 127 | 175     | 20 | 3   |     | 4.48  | Э                                                          |       | 46, 60  |
| 300 | 50   | 127 | 175     | 30 | 3   |     | 5.50  | (a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | i, K3 | 4680    |
| 300 | 63   | 127 | 200     | 30 | . 3 |     | 7.00  | 9                                                          | * *** | 80      |
| 350 | 40   | 127 | 200     | 20 | 3   |     | 6.80  | Э. ЭЕ                                                      |       | 4680    |
| 350 | 50   | 127 | 200     | 30 | 3   |     | 8.50  | Э, ЭБ                                                      | , h3  | 60      |
| 400 | 40   | 127 | 200     | 20 | 5   |     | 9.53  | 9                                                          |       | 60      |
| 100 | 50   | 127 | 200     | 25 | 5   |     | 9.40  | 9. <b>Э</b> Е                                              |       | 36-60   |
| 150 | 63   | 203 | 265     | 30 | 5   |     | 11.80 | 9, 13                                                      |       | 36-60   |
| 500 | 50   | 203 | 265     | 25 | 5   |     | 17.50 | 9, 91                                                      |       | 60, 80  |
| 500 | 63   | 203 | 265     | 30 | 5   |     | 22.20 | ə. ər                                                      | •     | 46, 60  |
| 500 | 63   | 305 | 375     | 30 | 5   |     | 15.28 | a                                                          |       | 36, 46  |
| 500 | .75  | 305 | 375     | 35 | 5   |     | 18.25 | Э                                                          |       | 60      |
| 500 | 100  | 305 | 375     | 25 | 5   |     | 26.20 | э<br>Э                                                     |       | 60      |
| 600 | . 75 | 305 | . 375 . | 35 | - 6 |     | 34.00 | ð                                                          |       | 36, 46  |

#### GRINDING WHEELS RECESSED ONE SIDE WITH BEVELED FACE

(Type "ΠΒΚ", GOST 2424-52)

The type "IIBK" grinding wheels (fig. 13) are designed for various external cylindrical grinding operations where external diameter and shoulder of the part are to be ground simultaneously.

Table 18 gives all the necessary dimensions for this type of wheels.





### Table 18

## Wheels recessed one side with beveled face

(Type "ПВК", GOST 2424-52)

Vitrified bond

|                          | Dimensions, mm       |                          |                          |                      |                      |                  |                                 | Abrasive    | Grain size<br>(most                |
|--------------------------|----------------------|--------------------------|--------------------------|----------------------|----------------------|------------------|---------------------------------|-------------|------------------------------------|
| D                        | Н                    | d                        | d,                       | H,                   | a°                   | r                | Weight, kg<br>(approximate)     | material    | commonly<br>used)                  |
| 350<br>500<br>600<br>750 | 50<br>50<br>75<br>75 | 127<br>203<br>305<br>305 | 265<br>375<br>375<br>500 | 25<br>25<br>35<br>35 | 20<br>15<br>10<br>10 | 3<br>4<br>5<br>5 | 5.03<br>13.70<br>29.44<br>47.84 | 9<br>9<br>9 | 36, 46<br>36, 46<br>36—60<br>36—46 |

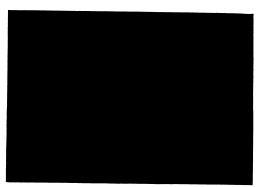



Fig. 13

#### GRINDING WHEELS RECESSED TWO SIDES

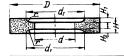
(Туре "ПВД", GOST 2424-52)

The type "ПВД" wheel is mainly used for cutter sharpening and external cylindrical grinding operations.

This type of wheel can also be used for centerless grinding operations and serves as a regulating or grinding wheel on centerless grinding machines.

All necessary data for this type of wheels are given in Tables 19-23:




Table 19

Wheels recessed two sides (Type "HBД", GOST 2424-52)

Vitrified bond

| Dimensions, num |     |     |     |    |      | Weight, kg | Abrasive<br>material | Grain siz<br>(most<br>commonl |        |
|-----------------|-----|-----|-----|----|------|------------|----------------------|-------------------------------|--------|
| D               | н   | d   | d,  | н, | Hz   | <u> </u>   | (approximate)        | materiai                      | used)  |
| 250             | 75  | 75  | 150 | 25 | 25   | 3          | 6,68                 | Э                             | 46, 60 |
| 300             | 50  | 127 | 200 | 13 | 13   | 3          | 5.55                 | 9.13                          | 46     |
| 350             | 75  | 127 | 250 | 25 | 25   | 3          | 10.23                | Э. КЧ. КЗ                     | 36-80  |
| 350             | 100 | 127 | 200 | 25 | 25   | 3          | 17.05                | Э                             | 46     |
| 400             | 50  | 203 | 265 | 13 | 13   | 5          | 9,36                 | Э. КЧ. КЗ                     | 3680   |
| 450             | 50  | 203 | 265 | 13 | 13   | 5          | 13.20                | 9.9B.K4.K3                    | 3680   |
| 500             | 63  | 203 | 265 | 16 | 16   | - 5        | 22.05                | Э.ЭБ.КЧ.КЗ:                   | 3680   |
| 500             | 75  | 203 | 265 | 16 | 16   | 5          | 26.68                | Э                             | 46     |
| 500             | 86  | 305 | 375 | 20 | 20   | 5          | 20.94                | 9                             | 46     |
| 500             | 50  | 305 | 375 | 13 | 13   | 6          | 21.87                | Э                             | 3660   |
| 500             | 58  | 305 | 375 | 13 | 13   | 6          | 25.73                | Э                             | 46, 60 |
| 500             | 63  | 305 | 375 | 16 | . 16 | 6          | 27.62                | Э. ЭБ                         | 3660   |
| 500             | 7.5 | 305 | 375 | 16 | 16   | 6          | 33.50                | 9                             | 3660   |
| 500             | 78  | 305 | 375 | 20 | 20   | 6          | 34.17                | Э                             | 36     |
| 600             | 100 | 305 | 375 | 25 | 25   | 6          | 43.92                | Э                             | 46     |
| 600             | 110 | 305 | 375 | 25 | 25   | - 6        | 48.75                | Э                             | 46     |
| 650             | 50  | 305 | 375 | 13 | 13   | 6          | 27.52                | Э                             | 46     |
| 650             | 7.5 | 305 | 375 | 16 | - 16 | - 6        | 37.13                | Э                             | 36, 46 |
| 750             | 63  | 305 | 375 | 16 | 16   | 6          | 50.68                | Э                             | 3660   |
| 750             | 75  | 305 | 375 | 16 | 16   | 6          | 60.93                | Э                             | 3660   |
| 750             | 78  | 305 | 375 | 20 | 20   | 6          | 63.18                | Э                             | 46, 60 |
| 750             | 82  | 305 | 375 | 20 | 20   | 6          | 66,42                | . š                           | 46, 60 |
| 50              | 86  | 305 | 375 | 20 | 20   | 6          | 69.48                | ă                             | 3660   |
| 750             | 113 | 305 | 375 | 25 | 25   | 6          |                      | ő                             | 36, 46 |
| 750             | 130 | 305 | 375 | 25 | 25   | . 6        | 105,30               | ä                             | 36, 40 |
| 100             | 63  | 305 | 375 | 16 | 16   | 6          | 83.40                | · š                           | 36, 46 |
| 900             | 7.5 | 305 | 375 | 16 | 16   | 6          | 94.47                | ě                             | 36, 46 |
| 900             | 90  | 305 | 375 | 20 | 20   | 6          | 115.80               | ă                             | 36, 46 |
| 900             | 100 | 305 | 375 | 20 | 20   | 6          | 129.80               | ä                             | 36, 46 |





### Wheels recessed two sides for centerless grinding machines (regulating wheels) (Type "HBA", GOST 2424-52)

Rubber bond

|     | Dimensions. mm |     |     |    | Weight, kg |     |               | Abrasive | (most             |
|-----|----------------|-----|-----|----|------------|-----|---------------|----------|-------------------|
| D   | н              | d   | d,  | Н, | н,         | r   | (approximate) | material | commonly<br>used) |
| 300 | 100            | 127 | 200 | 13 | 13         | 3   | 14.62         | Э        | 80-120            |
| 300 | 150            | 127 | 200 | 40 | 35         | 3   | 19.95         | Э        | 80-120            |
| 300 | 200            | 127 | 200 | 40 | 85         | - 3 | 25.45         | Э        | 80120             |
| 350 | 150            | 127 | 200 | 20 | 20         | 3   | 31.2          | Э        | 80-120            |
| 350 | 200            | 127 | 200 | 40 | 50         | 3   | 40.5          | Э        | 80-120            |
| 350 | 275            | 127 | 200 | 65 | 100        | 3   | 54.9          | Э        | 80-120            |



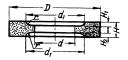
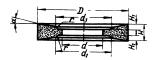



Table 21 Wheels recessed two sides for centerless grinding machines (regulating wheels) (Type "ПВД", GOST 2424-52)

Resinoid bond


|     | Dimensions |     |   |     | isions, r | am  |    |     |    | Weight, kg | Abrasive           | Grain size |                            |
|-----|------------|-----|---|-----|-----------|-----|----|-----|----|------------|--------------------|------------|----------------------------|
| D   | 1          | Н   | ï | d   | ì         | d,  | Н, |     | Н, | r          | (approxi-<br>mate) | material   | (most<br>commonly<br>used) |
| 300 |            | 100 | - | 127 | 1         | 200 | 13 | 1   | 13 | 3          | 13.66              | а          | 80, 100                    |
| 300 |            | 150 |   | 127 |           | 200 | 40 | į.  | 35 | 3          | 18.30              | ă          | 80, 100                    |
| 300 |            | 200 |   | 127 |           | 200 | 40 | - 1 | 85 | 3          | 23.35              | ā          | 80, 100                    |
| 350 |            | 150 |   | 127 |           | 200 | 20 | - ! | 20 | 1 3        | 28,60              | ä          | 80, 100                    |
| 350 |            | 200 |   | 127 |           | 200 | 40 |     | 50 | 3          | 38.06              | ä          | 80 100                     |

#### GRINDING WHEELS RECESSED TWO SIDES WITH BEVELED FACE

(Type "HВДК", GOST 2424-52)

The type "IIBAK" wheels are mainly used for external cylindrical grinding when it is necessary to grind the external diameter and the two adjacent shoulders of the job from both sides at one setting.

All dimensions for this type of wheels are given in Table 22.



#### Table 22 Wheels recessed two sides with beveled face

(Туре "ПВДК", GOST 2424-52)

Vitrified bond

|            |          | Dime       | nsions, 1  | nm       |     |     | Weight, kg<br>(approxi- | Abrasive | Grain size<br>(most |
|------------|----------|------------|------------|----------|-----|-----|-------------------------|----------|---------------------|
| D          | н        | d          | d,         | Н,       | 10  | r   | mate)                   | material | commonly<br>used)   |
| 600<br>750 | 75<br>75 | 305<br>305 | 375<br>500 | 20<br>16 | ; ; | , 5 | 27.60<br>48.80          | Э        | 3660                |

#### CORRUGATED STRAIGHT WHEELS

(Type "IIP", GOST 2424-52)

The type " $\Pi P$ " are mainly used for preliminary rough grinding operations. Wheels of this type having a diameter of 500 to 750 mm are made of one piece and wheels of 1340 mm in diameter consist of six segments.

All necessary data for this type of wheels are given in Table 23.





Table 23 Corrugated straight wheels

(Type "HP", GOST 2424-52)

Resinoid bond

| 1    | Dimensions, n | ım  | Weight, kg    | Abrasive | Grain size              |
|------|---------------|-----|---------------|----------|-------------------------|
| D    | н             | d   | (approximate) | material | (most commonly<br>used) |
| 500  | 16            | 50  | 7.85          | Э. КЧ    | 16. 24                  |
| 500  | 16            | 150 | 7.20          | э, кч    | 16. 24                  |
| 500  | 16            | 203 | 6.90          | 9, KÝ    | 16. 24                  |
| 585  | 16            | 150 | 10.00         | ě, t. i  | 24                      |
| 650  | 16            | 150 | 11.54         | э. кч    | 16, 24                  |
| 750  | 16            | 203 | 16.70         | ě, r. i  | 16, 24                  |
| 1340 | 16            | 250 | 55.00         | э́. кч   | 16. 24                  |

#### STRAIGHT STEELBACKED DISC WHEELS

(Type "IH", GOST 2424-52)

The type "IIH" wheel is a bonded abrasive wheel vulcanized or cemented to a steel disc. The steel disc serves as a frame for the abrasive and at the same time as a means for mounting the disc wheel on the driving plate of the machine.

Disc wheels of 500 to 750 mm in diameter are made of one piece, while disc wheels of 1340 mm in diameter are assembled of 4 to 6 segments cemented together along radial lines.

All dimensions for this type of wheels are given in Table 24.

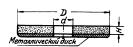



Table 24 Straight steelbacked disc wheels

(Type "IIH", GOST 2424-52)

Resincid bond

| Þ   | imensions, m | ım  | Weight, kg    | Abrasive | Grain size              |
|-----|--------------|-----|---------------|----------|-------------------------|
| D   | н            | d   | (approximate) | material | (most commonly<br>used) |
| 500 | 40           | 50  | 19.80         | Э. КЧ    | 16, 24                  |
| 500 | 40           | 203 | 16.50         | э        | 36                      |
| 500 | 60           | 203 | 24.80         | ā        | 2446                    |
| 500 | 40           | 305 | 10.80         | э. кч    | 24                      |
| 585 | 40           | 50  | 27.00         | э. кч    | 16. 24                  |
| 585 | 40           | 203 | 23.90         | a        | 80                      |
| 585 | 60           | 203 | 35.80         | кч       | 60, 80                  |
| 650 | 40           | 50  | 34,00         | ŘЧ       | 16. 24                  |
| 750 | 40           | 50  | 43.9          | ŘЧ       | 1660                    |
| 750 | 40           | 150 | 43.00         | э̂.      | 36                      |
| 750 | 40           | 350 | 35.9          | э. кч    | 36 80                   |
| 750 | 60           | 350 | 53.8          | кч       | 24                      |
| 340 | 40           | 203 | 144.0         | э. кч    | 16 24                   |

otes.

1. To avoid any possibility of error, the steel discs are to be submitted to the supplier.

2. On special request the type "THH" wheels can be supplied with inserted nuts by means of which the wheels are attached to the driving plate of the machine.

(Туре "Д", GOST 2424-52)

The type "A" cutting-off wheels (fig. 14) are a variety of the type "III" straight wheels but having a width of 0.5 mm up to 5 mm. The type "A" cutting-off wheels are mainly used for cuttingoff different structural shapes of steel, tungsten bars, steel tubes, glass, refractory bricks, quartz and ceramic plates and other kind of materials.

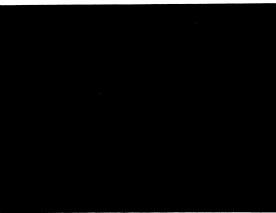



Fig. 14

The type "A" cutting-off wheels facilitate quick and economic cutting and the abrasive cut-off machine competes with the shear and saw. The type "A" cutting-off wheels have to work at a speed of 50 m per sec.

All dimensions for this type of wheel are given in Tables 25-26.

| West Warrant | -d-           | 7  | (Тур                        | Cutting-off who<br>e "Д", GOST :<br>Resinoid bor | 2424-52)                              |  |
|--------------|---------------|----|-----------------------------|--------------------------------------------------|---------------------------------------|--|
| Ι            | Dimensions, π | ım | Weight, kg<br>(approximate) | Abrasive<br>material                             | Grain size<br>(most commonly<br>used) |  |
| Þ            | Н             | d  | (approximate)               | materiai                                         |                                       |  |
| 80           | 3.0           | 20 | 0.036                       | Э                                                | 46                                    |  |
| 100          | 1.5           | 20 | 0.027                       | Э                                                | 4680                                  |  |
| 100          | 3.0           | 20 | 0.038                       | Э                                                | . 60                                  |  |
| 100          | 3.5           | 20 | 0.047                       | Э                                                | 80                                    |  |



Contd.

| 1   | dimensions, n | ım  | Weight, kg    | Abrasive material | Grain size (most<br>commonly used) |
|-----|---------------|-----|---------------|-------------------|------------------------------------|
| D   | Н             | d   | (approximate) |                   | commonly used)                     |
| 100 | 3.0           | 20  | 0.057         | Э                 | 4680                               |
| 100 | 5.0           | 20  | 0.094         | Э                 | 4680                               |
| 125 | 1.5           | 20  | 0.046         | Э                 | 3680                               |
| 125 | 2.0           | 20  | 0.061         | 9                 | 60, 80                             |
| 125 | 2.5           | 20  | 0.077         | 9                 | 60, 80                             |
| 125 | 3.0           | 20  | 0.093         | Э                 | 4680                               |
| 150 | 1.5           | 32  | 0.062         | Э                 | 4680                               |
| 150 | 2.0           | 32  | 0.083         | Э                 | 3660                               |
| 150 | 3.0           | 32  | 0.126         | Э                 | 46-80                              |
| 150 | 4.0           | 32  | 0.168         | Э                 | 4680                               |
| 175 | 1.5           | 32  | 0.10          | Э                 | 4680                               |
| 175 | 2.0           | 32  | 0.14          | Э                 | 3680                               |
| 175 | 2.5           | 32  | 0.17          | Э                 | . 80                               |
| 175 | 3.0           | 32  | 0.20          |                   | 80                                 |
| 175 | 4.0           | 32  | 0.28          | Э                 | 4680                               |
| 200 | 1.5           | 3.2 | 0.12          | Э                 | 4680                               |
| 200 | 2.0           | 32  | 0.16          | Э                 | 36 80                              |
| 200 | 3.0           | 32  | 0.24          | Э                 | 3680                               |
| 250 | 1.5           | 32  | 0.19          | ė                 | 80                                 |
| 250 | 2.0           | 32  | 0.24          | Э                 | 46 80                              |
| 250 | 3.0           | 32  | 0.36          | Э                 | 36 80                              |
| 300 | 2.0           | 32  | 0.36          | Э                 | 3680                               |
| 300 | 2.5           | 32  | 0.44          | Э                 | 3680                               |
| 300 | 3.0           | 32  | 0.48          | Э                 | 3680                               |
| 400 | 3.0           | 32  | 0.80          | Э. КЧ             | 24 - 60                            |
| 400 | 3.5           | 32  | 0.95          | кч                | 16, 24                             |
| 400 | 4.0           | 32  | 1.00          | Э, КЧ             | 16 60                              |
| 500 | 1.0           | 22  | 1.75          | 3                 | 36 46                              |



Table 26 Cutting-off wheels (Type "Д", GOST 2424-52) Rubber bond

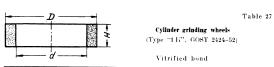
| 1   | Dimensions ma | 1  | Weight, kg    | Abrasiv : material | Grain size (most<br>commonly used) |
|-----|---------------|----|---------------|--------------------|------------------------------------|
| Ð   | 11            | d  | (approximate) |                    | commonly used)                     |
| 80  | 1.0           | 20 | 0.013         | Э                  | 80-120                             |
| 80  | 3.0           | 20 | 0.040         | Э                  | 60. 80                             |
| 100 | 0.5           | 20 | 0.10          | э                  | 100                                |
| 100 | 0.75          | 20 | 0.015         | Э                  | 80, 100                            |
| 100 | 1.0           | 20 | 0.02          | Э                  | 60-120                             |
| 100 | 1.5           | 20 | 0.03          | э                  | 60100                              |
| 100 | 2.0           | 20 | 0.04          | Э                  | 60-100                             |
| 100 | 3.0           | 20 | 0.06          | ě                  | 4680                               |
| 100 | 5.0           | 20 | 0.10          | ě                  | 46-80                              |
| 125 | 0.5           | 20 | 0.017         | ě                  | 60120                              |
|     | 1.0           | 20 | 0.035         | š                  | 60-120                             |
| 125 |               |    | 0.052         | · š                | 60100                              |
| 125 | 1.5           | 20 | 0.032         | 3                  | 46100                              |
| 125 | 2.0           | 20 |               | a<br>a             | 46-80                              |
| 125 | 2.5           | 20 | 0.087         | 2                  | 4680                               |
| 125 | 3.0           | 20 | 0.104         | 9<br>9<br>9<br>9   | 4680                               |
| 125 | 5.0           | 20 | 0.174         | 9                  |                                    |
| 150 | 0.75          | 32 | 0.033         | Э                  | 100, 120                           |
| 150 | 1.0           | 32 | 0.045         | Э                  | 60120                              |

Contd.

| D   | imensions, m | m   | Weight, kg    | Abrasive              | Grain size<br>(most commonly |
|-----|--------------|-----|---------------|-----------------------|------------------------------|
| D   | Н            | đ   | (approximate) | material              | used)                        |
| 150 | 1.5          | 32  | 0.066         | Э                     | 60100                        |
| 150 | 2.0          | 32  | 0.090         | Э, КЧ                 | 46-100                       |
| 150 | 3.0          | 32  | 0.132         | э. кч                 | 46120                        |
| 150 | 4.0          | 32  | 0.180         | Э                     | 4680                         |
| 175 | 1.0          | 32  | 0.08          | ä                     | 60100                        |
| 175 | 2.0          | 32  | 0.16          | ē                     | 46100                        |
| 175 | 4.0          | 32  | 0.32          | ë                     | 60, 80                       |
| 200 | 1.0          | 32  | 0.09          | ä                     | 60-100                       |
| 200 | 1.5          | 32  | 0.14          | 9<br>9<br>9<br>9<br>9 | 4680                         |
| 200 | 2.0          | 32  | 0.18          | ă                     | 4680                         |
| 200 | 3.0          | 32  | 0.28          | ă                     | 4680                         |
| 250 | 2.0          | 32  | 0.26          | ă                     | 4680                         |
| 250 | 3.0          | 32  | 0.39          | ä                     | 4680                         |
| 300 | 2.0          | -32 | 0.40          | ä                     | 60, 80                       |
| 300 | 2.5          | 32  | 0.50          | ä                     | 46 80                        |
| 300 | 3.0          | 32  | 0.60          | š                     | 3680                         |
| 400 | 3.0          | 32  | 0.88          | ă                     | 46, 60                       |
| 400 | 4.0          | 32  | 1.10          | ě                     | 46, 60                       |

#### CYLINDER GRINDING WHEELS

(Type "1 K" and "2 K", GOST 2424-52)


Cylinder grinding wheels type "1 K" (fig. 15) are straight wheels having a relatively large width and a bore of not less than 0.55 of external diameter of the wheel. The "1 K" type wheels are mainly used for surface grinding operations which are performed on vertical spindle surface grinding machines. The cylinder wheels are mounted on the spindle plate by means of cementing materials, i.e. sulphur, colophony, etc.





The "1 K" type wheels can be recommended for surface grinding of thin parts, or when great accuracy and smooth finish are required. For preliminary surface grinding operations performed on vertical spindle surface grinding machines segmental type wheels are recommended as they remove stock faster and more economically.

All dimensions for "1 K" type of wheels are given in Tables 27-28.

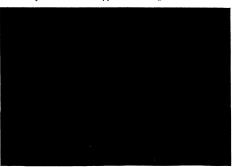


| Dimensions, mm |     |     | Weight, kg    | Abrasive      | Grain size              |
|----------------|-----|-----|---------------|---------------|-------------------------|
| D              | н   | d   | (approximate) | material      | (most commonly<br>used) |
| 200            | 75  | 125 | 3.30          | э             | 46. 60                  |
| 200            | 100 | 150 | 3.20          | Э, ЭБ, КЗ     | 46, 60                  |
| 250            | 125 | 200 | 5.10          | Э. ЭБ. КЧ. КЗ | 3680                    |
| 300            | 100 | 250 | 6.25          | Э. ЭБ. КЧ. КЗ | 36-80                   |
| 350            | 150 | 250 | 16.25         | Э.ЭБ          | 36, 46                  |
| 400            | 125 | 300 | 15.80         | э'            | 24, 36                  |
| 450            | 125 | 250 | 31.50         | 9.96          | 36. 46                  |
| 150            | 125 | 380 | 13,00         | + 9           | 36. 46                  |
| 450            | 150 | 250 | 38,00         | э. эБ         | 36. 46                  |
| 500            | 100 | 400 | 16.00         | 9             | 24-46                   |



Table 28

Cylinder grinding wheels (Type "1 K", GOST 2424-52)


Resinoid bond

| 1   | timensions, m | ım  | Weight, kg    | Abrasive        | Grain size              |
|-----|---------------|-----|---------------|-----------------|-------------------------|
| ь   | н             | d   | (approximate) | material        | (most commonly<br>used) |
| 200 | 75            | 125 | 3,30          | Э               | 36. 46                  |
| 200 | 100           | 150 | 3.60          | ä               | 3660                    |
| 250 | 125           | 200 | 5.00          | э. БЧ           | 3660                    |
| 300 | 100           | 250 | 5.50          | j               | 3660                    |
| 350 | 125           | 280 | 10.90         | э. кч           | 24. 36                  |
| 400 | 125           | 300 | 17.40         | э. Кч           | 16-80                   |
| 450 | 125           | 250 | 35,00         | э́. Кч          | 24-60                   |
| 450 | 125           | 300 | 28,70         | a               | 46                      |
| 450 | 125           | 380 | 17.10         | э́. кч          | 24-80                   |
| 450 | 150           | 250 | 42.00         | э. <u>кч</u>    | 24-60                   |
| 500 | 100           | 400 | 20.50         | э. Кч           | 46. 60                  |
| 600 | 100           | 480 | 25.50         | э हेर् <u>य</u> | 16-80                   |



Cylinder grinding wheels type "2 K" (fig. 16) are a variety of the "1 K" type wheels and differ from the latter by having a tapered dovetail groove by means of which the wheels are attached to the driving plate of the grinding

All necessary data for "2 K" type wheels are given in Table 29.



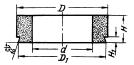



Table 29 Cylinder grinding wheels

(Type "2 K", GOST 2424-52)

Vitrified bond

|     | Dimensions, mm |     |     |   |       | Weight, kg    | Abrasive | Grain size<br>(most commonly |
|-----|----------------|-----|-----|---|-------|---------------|----------|------------------------------|
| D   | Н              | d   | D,  | 1 | $H_1$ | (approximate) | material | used)                        |
| 340 | 100            | 260 | 335 | ī | 20    | 9.5           | Э        | 36, 46                       |

#### STRAIGHT CUP GRINDING WHEELS

(Type "ЧЦ", GOST 2424-52)

The type "HI(" wheels (fig. 17) are designed for various sharpening operations. The wheels up to 150 mm in diameter having a rim width up to 13 mm are mainly used for sharpening milling cutters, reamers, core drills, broaches, etc.



Wheels having a rim width from 15 mm and higher are used for sharpening different kinds of knives; in particular cases they can be used for surface



Fig. 17

grinding operations as well. Straight cup wheels of type "UIU" are also used for internal grinding operations when the bore and its adjacent face are to be ground simultaneously at one setting.

It is recommended to substitute cylinder grinding wheels of "1 K" type for larger sizes of the "411" type wheels.

All dimensions of "411" type wheels are given in Tables 30-31.

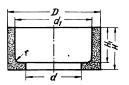



Table 30

Straight cup wheels ... (Type "ЧЦ", GOST 2424-52)

Vitrified bond

|     |     | Dimensi | ons. mm |    |     | Weight, kg    | Abrasive        | Grain size<br>(most |
|-----|-----|---------|---------|----|-----|---------------|-----------------|---------------------|
| D.  | н   | d       | d,      | В, | r · | (approximate) | material        | commonly<br>used)   |
| 30  | 25  | 13      | 32      | 20 | 3   | 0.035         | ЭБ              | 60                  |
| 50  | 32  | 13      | 50      | 25 | 3   | 0.070         | ЭБ              | 60, 80              |
| 7.5 | 40  | 20      | 65      | 32 | 3   | 0.160         | Э, ЭБ           | 46, 60              |
| 100 | 50  | 20      | 85      | 40 | 4   | 0.380         | э, эв, кч, кз   | 3680                |
| 125 | 63  | 32      | 110     | 50 | 4   | 0.640         | э, эв, кч, кз   | 36-80               |
| 125 | 63  | 65      | 85      | 45 | 4   | 1.045         | э, эв, кч, кз   | 36-80               |
| 150 | 80  | 32      | 125     | 65 | 5   | 1.400         | э. эв. кч. кз   | 3680                |
| 150 | 63  | 65      | 100     | 40 | 5   | 1.650         | э. эв. кз       | 3680                |
| 200 | 63  | 32      | 170     | 45 | 5   | 2.150         | э. эв. кч. кз н | 36-80               |
| 250 | 100 | 150     | 200     | 75 | 5   | 4.810         | Э. ЭБ, КЧ. КЗ   | 3680                |



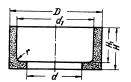



Table 31

Straight cup wheels (Type "UII", GOST 2424-52)

Resinoid bond

|                          |                       | Dimensi               | ons, mm                 | 1                    |                  | Weight, kg                   |                   |   | Grain size<br>(most        |  |
|--------------------------|-----------------------|-----------------------|-------------------------|----------------------|------------------|------------------------------|-------------------|---|----------------------------|--|
| Ð                        | н                     | d                     | d,                      | Н,                   | г                | (approximate)                | Abrasive material | 1 | commonly<br>used)          |  |
| 125<br>150<br>150<br>250 | 63<br>80<br>63<br>100 | 65<br>32<br>65<br>150 | 85<br>125<br>100<br>200 | 45<br>65<br>40<br>75 | 4<br>5<br>5<br>5 | 1.20<br>1.50<br>1.75<br>5.40 | 9<br>9, №3<br>9   |   | 80<br>3680<br>4680<br>3660 |  |

#### FLARING CUP GRINDING WHEELS

(Type "ЧК", GOST 2424-52)

The cup wheels of type "UK" (fig. 18) have a greatly expanded field of application. The cup wheels up to 150 mm in diameter with an external



Fig. 18

angle of gradient of 70° are used for sharpening milling cutters, reamers, broaches, circular cutters, etc. The wheels of type "HK" having a fine grain size are used for lapping the cutting edges of rack-shaped gear cutters, circular cutters, shaper cutters, etc. and for surface grinding of the relief angle of core drills, broaches, milling cutters, etc.

The wheels with a 50° external angle of gradient are used for grinding parts having tapered surfaces such as ways of machine tool beds, saddles, etc.

Wheels of 175 mm in diameter and higher are used for sharpening different sizes of cutters.

All dimensions of the flaring cup wheels of type "HK" are given in Tables 32–33.



#### Flaring cup wheels

(Type "ЧК", GOST 2424-52)

Vitrified bond

|     | Dimensions, mm |   |     |     |   |     |    |                 | Weight, kg | Abrasive      | Grain size<br>(most |                  |
|-----|----------------|---|-----|-----|---|-----|----|-----------------|------------|---------------|---------------------|------------------|
| D   | н              | 1 | d   | d,  | 1 | Н,  | an | $\beta^{\circ}$ | r          | (approximate) | material            | commonl<br>used) |
| 50  | 25             | 1 | 13  | 40  | - | 18  | 70 | 65              | 3          | 0.045         | 3, 36, 6            | 60, 80           |
| 75  | 30             |   | 20  | 65  | 1 | 22  | 70 | 65              | 3          | 0.100         | э. эь, кз           | 4680             |
| 100 | 30             |   | 20  | 80  |   | 20  | 50 | 45              | 4          | 0.170         | э, эь, кз           | 1680             |
| 100 | 35             |   | 20  | 85  |   | 25  | 70 | 65 .            | 4          | 0.220         | э, эь, кч, кз       | 46-80            |
| 125 | 35             |   | 32  | 105 |   | 25  | 50 | 45              | 4          | 0.280         | Э, ЭБ, КЗ           | 36 - 60          |
| 125 | 45             |   | 32  | 105 |   | 32  | 70 | 65              | 4          | 0.430         | э, эь, кч, кз       | 3680             |
| 150 | : 35           |   | 32  | 125 |   | 23  | 50 | 45              | 5          | 0.470         | э, эь, кз           | 36 80            |
| 150 | 50             |   | 32  | 130 |   | 35  | 70 | 65              | 5          | 0.700         | э, эв, кч, кз       | 36 - 80          |
| 175 | 63             |   | 32  | 130 |   | 45  | 60 | 60              | 5          | 1.300         | Э, ЭБ, КЧ, КЗ       | 36 - 60          |
| 250 | 140            |   | 100 | 190 |   | 100 | 80 | 80.             | 5          | 6,800         | D. DE, RH, R3       | 36 - 60          |
| 300 | 150            |   | 150 | 230 |   | 110 | 80 | 80              | 5          | 10.100        | Э. КЧ. K3           | 3680             |

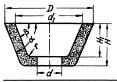



Table 33

#### Flaring cup wheels

(Type " $^{\rm t}$ HK", GOST 2424–52)

Resinoid bond

|     |    |     | Dim | en | sions, | m | m  |         | Weight, kg    | Abrasive  | Grain size<br>(most |
|-----|----|-----|-----|----|--------|---|----|---------|---------------|-----------|---------------------|
| D   | 11 | !   | d   | I  | d,     | İ | н, | α° β° r | (approximate) | material  | commonly<br>used)   |
| 75  | 30 | - 1 | 20  |    | 65     | Т | 22 | 70 65 3 | 0.16          | Э         | 60                  |
| 100 | 35 |     | 20  |    | 85     | 1 | 25 | 70 65 4 | 0.34          | э, кз     | 60, 80              |
| 125 | 45 |     | 32  |    | 105    |   | 32 | 70 65 4 | 0.47          | э, кч. кз | 24-180              |
| 150 | 35 |     | 32  |    | 125    |   | 23 | 50 45 5 | 0.52          | Э         | 46, 60              |
| 150 | 50 |     | 32  |    | 130    |   | 35 | 70 65 5 | 0.77          | э, кз     | 36 - 240            |

#### DISH GRINDING WHEELS

(Types "1 T", "2 T", "3 T", GOST 2424-52)

The type "1 T" wheels (fig. 19) are used for sharpening milling cutters, reamers, broaches and other kinds of cutting tools. Wheels of this type having a fine grain size are mainly used for lapping cutting edges of different types of small tools.





Fig. 19

All dimensions of the "1 T" type of wheels are given in Tables 34-35.

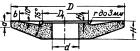



Table 34 Dish wheels

(Type "1 T", GOST 2424-52)

|     |    | -   | -d-               |    |   |     | Vitrified bond |           |                     |  |  |
|-----|----|-----|-------------------|----|---|-----|----------------|-----------|---------------------|--|--|
|     |    | Din | iensions.         | mm |   |     | Weight, kg     | Abrasive  | Grain size<br>(most |  |  |
| Þ   | н  | d   | $-\mathbf{D}_{i}$ | Н, | a | b   | (approximate)  | material  | commonly<br>used)   |  |  |
| 7.5 | 8  | 13  | 30                | 3  | 2 | - 4 | 0,045          | 3. 3B     | 60                  |  |  |
| 100 | 10 | 20  | 40                | 1  | 2 | 6   | 0,090          | 0.06.13   | 56 - 80             |  |  |
| 125 | 13 | 32  | 50                | 5  | 3 | - 6 | 0.140          | Э, ЭБ, КЗ | 46 - 80             |  |  |
| 150 | 16 | 32  | . 60              | 6  | 4 | 8   | 0.40           | Э. ЭБ. КЗ | 36 - 80             |  |  |
| 200 | 20 | 32  | 80                | 8  | 4 | 10  | 0.61           | э. эБ. 13 | 3680                |  |  |
| 250 | 25 | 32  | 100               | 10 | 6 | 13  | 1.23           | ə, əß     | 46, 60              |  |  |

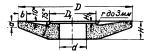
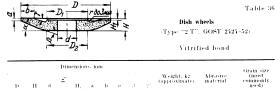




Table 35 Dish wheels

Type "1 T", GOST 2424-521

|     |    | Din | ensions.       | mm |   |     | Weight, kg    | Abrasive | Grain size<br>(most |
|-----|----|-----|----------------|----|---|-----|---------------|----------|---------------------|
| Ð   | н  | d   | $\mathbf{p}_i$ | Н, | a | ь   | (approximate) | material | commonly<br>used)   |
| 7.5 | 8  | 13  | 30             | 3  | 2 | - 1 | 0.03          | 1/3      | 180240              |
| 100 | 10 | 20  | 40             | í  | 3 | 6   | 0.09          | E3       | 180 240             |
| 125 | 13 | 32  | 50             | 5  | 3 | 6   | 0.14          | F3       | 180 240             |
| 150 | 16 | 32  | 60             | 6  | 4 | 8   | 0.50          | 133      | 180 - 240           |

Dish wheels of type "2 T" are mainly used for sharpening involute gear cutters. All dimensions of this type of wheels are given in Table 36.



 $\Pi_i = \mathbf{a} = \mathbf{b} = \mathbf{e}^{i_1} - \beta^{i_2} = \beta^{i_3}$ 9. 36. K3 9, 36. K3

Dish wheels of type "3 T" (fig. 20) are generally used for gear grinding operations and for sharpening different kinds of tools.

All dimensions of this type of wheel are given in Table 37.

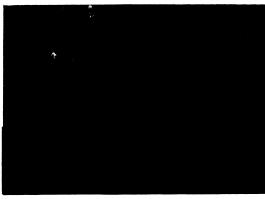


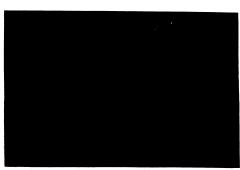





Table 37

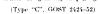
(Type "3 T", GOST 2424-52)

Vitrified bond


|     |      |    | Di | mension        | s, mm          |     |    |   | Weight, kg    | Abrasive | Grain size<br>(most |
|-----|------|----|----|----------------|----------------|-----|----|---|---------------|----------|---------------------|
| D   | Н    |    | d  | $\mathbf{D_i}$ | D <sub>2</sub> | Н,  | r  | а | (approximate) | material | commonly<br>used)   |
| 225 | 18   |    | 40 | 120            | 105            | 2   | 8  | 2 | 0.82          | ЭБ       | 46 80               |
| 225 | 18   |    | 40 | 120            | 105            | 2   | 8  | 4 | 0.90          | ЭБ       | 46 80               |
| 225 | - 18 |    | 40 | 120            | 105            | 2   | 8  | 6 | 0.97          | ЭБ       | 46. 60              |
| 275 | 20   |    | 40 | 125            | 105            | 4   | 10 | 4 | 1.35          | ЭБ       | 46 80               |
| 275 | . 20 | ١. | 40 | 125            | 105            | , 4 | 10 | 6 | 1.40          | 9E       | 46 80               |

#### WHEELS FOR GRINDING SNAP GAUGES

(Type "C", GOST 2424-52)


The type "C" wheels (fig. 21) are designed for special grinding machines and are advantageously used for surface grinding of snap gauges and vernier

The dimensions of this type of wheels are given in Table 38.





## Wheels for grinding snap gauges



Vitrified bond

|     |    |     | ions, mu       | n    |     | Weight, kg    | Abrasive | Grain size<br>(most commonly |
|-----|----|-----|----------------|------|-----|---------------|----------|------------------------------|
| D   | н  | d   | $\mathbf{D_i}$ | Н,   | ь   | (approximate) | material | used)                        |
| 150 | 10 | 32  | 65             | 3    | - 6 | 0.14          | Э, ЭБ    | 46, 60                       |
| 150 | 16 | 32  | 65             | 5    | 6   | 0.22          | Э, ЭБ    | 46, 60                       |
| 175 | 16 | 32  | 65             | 5    | 6   | 0.41          | э. эв    | 46, 60                       |
| 175 | 25 | 32  | *****          | 8    | 6   | 0.60          | Э. ЭБ    | 46, 60                       |
| 200 | 25 | 32  |                | 8    | . 8 | 0.82          | э. эБ    | 46, 60                       |
| 200 | 40 | 32  | Marco          | . 16 | 8   | 0.92          | э. эБ    | 46, 60                       |
| 250 | 20 | 75  | 125            | 6    | 8   | 1.34          | Э. ЭБ    | 46, 60                       |
| 300 | 16 | 127 | 150            | 5    | 10  | 0.94          | 9. 9B    | 46, 60                       |

#### GRINDING WHEELS FOR SHARPENING NEEDLES

(Type "И", GOST 2424-52)

The type "M" wheels are specially designed for the pointing of needles. In order to lengthen the travel of the needle to be pointed and to ensure a good contact between the needle and the wheel surface, the periphery of these wheels have radius grooves.

All data pertaining to these wheels are given in Table 39.

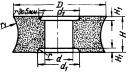



Table 39

Wheels for sharpening needles (Type "II", GOST 2424-52)

Vitrified bond

|     |     | Dimensi | ons, mn        | 1  |                | Weight, kg    | Abrasive | Grain size        |
|-----|-----|---------|----------------|----|----------------|---------------|----------|-------------------|
| D   | 11  | d       | d <sub>1</sub> | Н, | r <sub>1</sub> | (approximate) | material | commonly<br>used) |
| 250 | 125 | 75      | 100            | 25 | 125            | 12.6          | Э        | 60                |
| 400 | 150 | 100     | 170            | 25 | 150            | 40.0          | Э        | 60                |
| 450 | 200 | 150     | 225            | 25 | 200            | 63,00         | Э        | 60                |

#### STEEL CENTERED ABRASIVE SAWS

(Type "M", GOST 2424-52)

The type "M" steel centered abrasive saw is a bonded abrasive wheel which is vulcanized or cemented to a steel centered disc. This type of saw is mainly used for cutting blocks of marble, granite, asbestos, refractory bricks and other mineral materials.



All dimensions of this type of saw are given in Table 40.

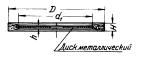



Table 40 Steel centered abrasivesaws

(Type "M", GOST 2424-52)

Resinoid bond

|            | Dimensi | ons. mm        |        |                   |                                    |  |  |
|------------|---------|----------------|--------|-------------------|------------------------------------|--|--|
| b          | 11      | d <sub>1</sub> | h      | Abrasive material | Grain Size (most<br>commonly used) |  |  |
| 350<br>400 | 8<br>8  | 250<br>300     | 5<br>6 | 184<br>184        | 16, 24<br>16, 24                   |  |  |

#### GRINDING WHEELS FOR SHARPENING MOWER KNIVES

(Type "KC", GOST 2424-52)

The type "KC" grinding wheels (fig. 22) are specially designed for hand sharpening of mower and combine knives assembled in holders.

All dimensions of this kind of wheels are given in Tables 41 and 42.



Fig. 22

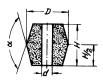



Table 11

Wheels for sharpening mower knives (Type "KC", GOST 2424-52)

Vitrified bond

| D  | Dimensi   | ons, mm |       | Weight, kg<br>(approximate) | Abrasive material | Grain size (most<br>commonly used) |  |  |
|----|-----------|---------|-------|-----------------------------|-------------------|------------------------------------|--|--|
| 90 | 90 20 150 |         | 0.912 | . a                         | 36, 46            |                                    |  |  |



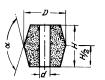



Table 42

#### Wheels for sharpening mower knives

(Type "LC", GOST 2424--52)

Resinoid bond

|    | Dimensi | ons, mm |     | Weight, kg    | Abrasive | Grain size<br>(most commonly |  |  |
|----|---------|---------|-----|---------------|----------|------------------------------|--|--|
| D  | H d     |         | , v | (approximate) | material | (most commonly<br>used)      |  |  |
| 90 | 90      | 20      | 150 | 1.00          | Э        | 36, 46                       |  |  |

#### MOUNTED WHEELS AND POINTS

(GOST 2447-52)

Fig. 23 shows a large number of mounted wheels and points widely used in the tool room and die shop for making moulds and dies, and for touching up dies while they are in service. Mounted wheels and points are used on castings to clean up hard-to-reach spots and small fillets and similar jobs along the seams and fillets of large welded parts.

The "TIL" mounted wheels are well suited for internal grinding operations performed on internal grinding machines when straight wheels of the type "HIL" cannot be used.

The type "TN" is advantageously used for work in less accessible spots, and for grinding of different shapes of grooves. The types "TI" and "I 60" are mainly suited for grinding taper surfaces and centres.

Mounted points of the type "USE" are used for grinding parts having irregular shapes of a large radius and type "TIIII" for parts of small radius shapes. The type "TIIII" mounted points are mainly suited for grinding part of complicated shapes.

type "FIIII" mounted points are mainly suited for grinding part of complicated shapes.

All necessary data and shapes of mounted wheels and points are given in Tables 43-49.







Table 43

#### Cylindrical mounted wheels

(Type "FII", GOST 2447-52)

Vitrified bond

|    | Dime | nsio | ns, mi | 11 |         | Weight, kg    | Abrasive material | Grain size (most |
|----|------|------|--------|----|---------|---------------|-------------------|------------------|
| Ð  | H    |      | d      |    | $H_{i}$ | (approximate) |                   | commonly used;   |
| 4  | 10   |      | 1.5    |    | - 6     | 0.0003        | ()                | 100              |
| 6  | 10   |      | 2      |    | - 6     | 0.0006        | Ð, ÐB             | 60, 80           |
| 6  | 16   |      | 2      |    | - 6     | 0.001         | 9                 | 60, 80           |
| 8  | 10   |      | 2      |    | 6       | 0.001         | O, OB             | 60, 80           |
| 10 | 10   |      | - 3    |    | - 6     | 0.002         | O, OB             | 60, 80           |
| 10 | 25   |      | 3      |    | 10      | 0.004         | Э. ЭБ             | 60, 80           |
| 12 | 16   |      | 4      |    | 8       | 0.004         | O. OB             | 60, 80           |
| 15 | 20   |      | 5      |    | 8       | 0.008         | э. эв             | 60, 80           |
| 15 | 40   |      | 5      |    | 20      | 0.015         | Э                 | 60               |
| 20 | 32   |      | 6      |    | 13      | 0.022         | Э                 | 60               |
| 20 | 60   |      | 6      |    | 25      | 0.043         | Э                 | 60               |
| 25 | 32   |      | 6      |    | 13      | 0.035         | Э. ЭБ             | 4680             |
| 30 | 32   |      | 6      |    | 13      | 0.051         | Э, ЭБ             | 36 60            |
| 40 | 75   |      | 16     |    | 30      | 0.201         | Ð.                | 60               |



Table 44

Angular mounted wheel (Type "FV", GOST 2447-52)

Vitrified bond

|     | Dimen |   | , mn | 1 |    | - 1 | Weight, kg    | Abrasive material | Grain size (moșt |  |  |
|-----|-------|---|------|---|----|-----|---------------|-------------------|------------------|--|--|
| D : | н     | Ĺ | d    | 1 | н, | - 1 | (approximate) | 1                 | commonly used)   |  |  |
| 15  | 8     |   | 3    |   | 6  |     | 0.0023        | э                 | 60               |  |  |
| 35  | 10    |   | 6    |   | 6  |     | 0.018         | . 3               | 16. 60           |  |  |



Table 4

#### 60° Taper mounted points

(Type "I' 60 ", GOST 2447–52)

| Vi | t r | ified | bond |
|----|-----|-------|------|

|                | Dimensio       | ,      |                |   | Weight, kg               | Abrasive material       | Grain size (most     |  |  |
|----------------|----------------|--------|----------------|---|--------------------------|-------------------------|----------------------|--|--|
| Ð              | н              | d      | н,             | 1 | (approximate)            | Abrasive material       | commonly used)       |  |  |
| 10<br>20<br>30 | 25<br>35<br>50 | 3<br>6 | 10<br>13<br>20 | 1 | 0.0033<br>0.017<br>0.054 | 9, 96<br>9, 96<br>9, 96 | 4680<br>4680<br>4680 |  |  |





Table 46

### Arched mounted points

(Type "I'Cs", GOST 2447-52)

#### Vitrified bond

|          | Dim      | ensions, | mm      |                  | - | Weight, kg     |   | Abrasive |  | Grain size<br>(most commonly |  |
|----------|----------|----------|---------|------------------|---|----------------|---|----------|--|------------------------------|--|
| D.       | н        | d        | $H_{i}$ | . R <sub>1</sub> |   | (appròximate)  | 1 | material |  | used)                        |  |
| 10<br>20 | 20<br>40 | 3<br>6   | 8<br>16 | 25<br>40         | - | 0.0023<br>0.02 |   | 9        |  | 60, 80<br>60                 |  |



Table 47

Table 48

#### Taper mounted points with a rounded top

(Type "TK", GOST 2447-52)

Vitrified bond

|    | Dimensions, mm |    |   |    |   |    |   |   |   | Weight, kg    |   | Abrasive | Grain size<br>(most common) |
|----|----------------|----|---|----|---|----|---|---|---|---------------|---|----------|-----------------------------|
| D  |                | н  | 1 | d  |   | н, |   | R |   | (approximate) | į | material | used)                       |
| 15 | -              | 16 |   | 3  | 7 | 6  | 1 | , |   | 0,005         |   | 9, 96    | 60, 80                      |
| 20 |                | 32 |   | 6  |   | 13 |   | 3 |   | 0.020         |   | э, эБ    | 46, 60                      |
| 25 |                | 32 |   | 6  |   | 13 | 1 | 5 |   | 0.033         | 1 | ЭБ       | 46                          |
| 30 |                | 40 |   | 6  |   | 13 | i | 5 |   | 0.065         | 1 | э, эб    | 46, 60                      |
| 25 |                | 75 | 1 | 10 |   | 30 | i | 5 | 1 | 0.125         |   | 9        | 46                          |



Spherical mounted points

(Type "FIII", GOST 2447-52)

#### Vitrified bond

|    | Dimensions, no |    | Weight, kg<br>(approximate) | Abrasive<br>material | Grain size<br>(most commonly<br>used) |
|----|----------------|----|-----------------------------|----------------------|---------------------------------------|
| Ð  | d .            | н, |                             |                      |                                       |
| 10 | 3              | 4  | 0.002                       | Э                    | 60, 80                                |
| 15 | 3              | 6  | 0.004                       | Э                    | 60, 80                                |
| 20 | 1 6 .          | 8  | 0.009                       | Э                    | 60, 80                                |
| 25 | 6              | 10 | 0.018                       | Э                    | 60                                    |
| 30 | 6              | 13 | 0.031                       | Э                    | 46, 60                                |





#### Table 49

#### Spherical mounted points with a cylindrical surface

(Туре "ГИНЦ", GOST 2447-52)

Vitrified bond

|    | Dime | ensions, | mm    |     | Weight, kg    | Abrasive | Grain size<br>(most commonly |
|----|------|----------|-------|-----|---------------|----------|------------------------------|
| D  | н    | d        | $H_1$ | R   | (approximate) | material | used)                        |
| 95 | 95   | - 6      | · 10  | 0.5 | 0.003         | ac c     | 46.60                        |

#### ABRASIVE STICKS

(GOST 2456-52)

(GOST 2450-52)

Abrasive sticks (fig. 24) are used for hand grinding operations and for honing, lapping and superfinishing operations performed on special machines. For manual work all types of sticks except "BN", "BXB" and partially "BKB" are used.

The sticks of type "BKB", "BX" and "BXB" are mainly used for lapping, honing and superfinishing different parts.

All dimensions and shapes of sticks are given in Tables 50-56.



Fig. 24

Table 55



| Square    | abrasive | sticks |     |
|-----------|----------|--------|-----|
| (Type "BK | в", GOS  | T 2456 | 521 |

| ٠     | ٠ | ٠ | ٠ | ٠ | • | ٠. |   | • | • |   | ••• | ٠, |
|-------|---|---|---|---|---|----|---|---|---|---|-----|----|
| <br>- | - | - | - | - | - | -  | - | _ | - | - | -   | -  |

| Dime | ension | s, mm     | Weight, kg    | Abrasive         | Grain size           |
|------|--------|-----------|---------------|------------------|----------------------|
| A    | _      | L.        | (approximate) | material         | (most commonly used) |
| 6    |        | 100       | 0.014         | ЭБ, КЗ           | 150-320              |
| 10   |        | 75<br>100 | 0.043         | ЭБ, КЗ<br>ЭБ, КЗ | 100 M 28<br>100 320  |
| 10   |        | 150       | 0.034         | DE, 133          | 120 - 320            |



36, k3 36, k3 36, k3 36, k3 36, k3 36, k3 36, k3 36, k3 36, k3 36, k3 100 - M 28 180 - M 28 100 - M 20 100 - M 20 100 - M 20 100 - M 20 180 - 320 180 - 220 13 13 13 16 20 25 25 40  $\begin{array}{c} 100 \\ 125 \\ 150 \\ 150 \\ 150 \\ 200 \\ 150 \\ 200 \\ 250 \end{array}$  $\begin{array}{c} 0.039 \\ 0.048 \\ 0.058 \\ 0.087 \\ 0.138 \\ 0.184 \\ 0.216 \\ 0.288 \\ 0.920 \end{array}$ 



#### Flat abrasive sticks

Table 51

Table 52

Table 53

53

(Type "BH", GOST 2456-52)

Vitrified bond

| Dimensions, mm |    |       | Weight, kg    | Weight, kg Abrasive<br>(approximate) material |                      |  |
|----------------|----|-------|---------------|-----------------------------------------------|----------------------|--|
| В              | 11 | L.    | (approximate) | material                                      | (most commonly used) |  |
| 20             | 10 | 150   | 0,070         | ЭБ, ТаЗ                                       | 120240               |  |
| 20             | 13 | 150   | 0.092         | 315                                           | 120 M 28             |  |
| 20             | 16 | 150   | 0.011         | ЭБ, БЗ                                        | 120 180              |  |
| 25             | 16 | 150   | 0.125         | ЭБ, БЗ                                        | 100-240              |  |
| 30             | 13 | 200   | 0.180         | 3E                                            | 120                  |  |
| 30             | 20 | 200 . | 0.275         | ЭБ, 1 <sub>5</sub> 3                          | 120-180              |  |
| 30             | 13 | 200   | 0.240         | ЭБ                                            | 220                  |  |
| 50             | 20 | 200   | 0.250         | OB                                            | 100 - 320            |  |



#### Triangular abrasive sticks

(Type "BT", GOST 2456-52)

Vitrified bond

| Dimensi | ons, mm | Weight, kg    | Abrasive | Grain size           |
|---------|---------|---------------|----------|----------------------|
| Ð       | L       | (approximate) | material | (most commonly used) |
| 10      | 150     | 0,010         | ЭБ       | 100-220              |
| 13      | 150     | 0.017         | ЭБ       | 100-220              |
| 16      | 150     | 0.026         | ÐB       | 100220               |



### Round abrasive sticks

(Type "BKp", GOST 2456-52)

Vitrified bond

| Dimens | ions, mm | Weight, kg    | Abrasive | Grain size           |  |
|--------|----------|---------------|----------|----------------------|--|
| D      | L        | (approximate) | material | (most commonly used) |  |
| 10     | 100      | 0.018         | ЭБ       | 120                  |  |
| 10     | 150      | 0.028         | ЭБ       | 120, 150             |  |
| 13     | 150      | 0.046         | ЭБ       | 120                  |  |
| 16     | 150      | 0.069         | ЭБ       | 150                  |  |







#### Half-round abrasive sticks

(Type "BHR", GOST 2456-52)

Vitrified bond

| Dimensions, mm |  |     |  | Weight, kg    | Abrasive | Grain size<br>(most commonly |
|----------------|--|-----|--|---------------|----------|------------------------------|
| D              |  | L   |  | (approximate) | material | used)                        |
| 10             |  | 150 |  | 0.014         | ЭБ       | 120                          |
| 13             |  | 150 |  | 0.023         | ЭБ       | 120                          |
| 20             |  | 200 |  | 0.070         | 96       | 220                          |



Table :

Table 54

#### Honing sticks

(Type "BX", GOST 2456-52)

Vitrified bond

| - 1 | dimensions, m | m   | Weight, kg    | Abrasive              | Grain size<br>(most commonly |  |
|-----|---------------|-----|---------------|-----------------------|------------------------------|--|
| В   | I.            | н   | (approximate) | material              | used)                        |  |
| 6   | 15            | - 5 | 0.002         | ЭБ, 1 <del>3</del> 3  | 120 M 28                     |  |
| 9   | 32            | 8   | 0,006         | ЭБ. КЗ                | 120 -M 28                    |  |
| 9   | 63            | 8   | 0.012         | ЭБ. КЗ                | 120 M 28                     |  |
| 9   | 100           | 8   | 0.020         | ЭБ. КЗ                | 120 M 28                     |  |
| 10  | 30            | 9   | 0,009         | ЭБ. КЗ                | 120 M 28                     |  |
| 11  | 100           | 9   | 0.023         | ЭБ. КЗ                | 120 M 28                     |  |
| 15  | 150           | 15  | 0.062         | ЭБ, 1 <del>/</del> (3 | 120 M 28                     |  |





#### Honing sticks

(Type "BXB", GOST 2456-52)

#### Vitrified bond

|     | Din | rension | s. mm |                | Weight, kg    | Abrasive<br>material | Grain size<br>(most commonly<br>used) |
|-----|-----|---------|-------|----------------|---------------|----------------------|---------------------------------------|
| В   | L   | н       | $H_1$ | $\mathbf{B_i}$ | (approximate) |                      |                                       |
| 3.5 | 40  | 3,5     | 1     | 0.5            | 0.001         | 9 13                 | 220 M 20                              |

#### ABRASIVE SEGMENTS

(GOST 2464-52)

For finishing larger areas in surface grinding than can be readily handled by the standard cylindrical and cup wheels, there are available segments held in chucks, in shapes which are shown on fig. 25 and the dimensions of which are given in Tables 57-62.



Segmental wheels are especially good for sharpening of tobacco leaf knives and shelling knives because these wheels allow the coolant to be applied at the point of grinding contact. Thus, a good deal of heat is absorbed which is very important for sharpening operations.



Fig. 25

Table 57

Flat abrasive segments (Type "CH", GOST 2464-52)

Resinoid bond

| D   | imensions, u | ım  | Weight, kg<br>(approximate) | Abrasive | Grain size<br>(most commonly<br>used) |
|-----|--------------|-----|-----------------------------|----------|---------------------------------------|
| В   | н            | L.  |                             | material |                                       |
| 50  | 25           | 150 | 0.47                        | Э        | 36                                    |
| 60  | 20           | 125 | 0.54                        | (i       | 36                                    |
| 60  | 25           | 125 | 0.52                        | (i       | 36                                    |
| 75  | 25           | 150 | 0.77                        | Э, КЧ    | 24. 36                                |
| 80  | 25           | 150 | 0.83                        | :)       | 16 60                                 |
| 90  | 35           | 150 | 1.32                        | O, OB    | 24 -60                                |
|     | 10           | 200 | 2.00                        | ()       | 36                                    |
| 100 | 35           | 150 | 1.73                        | á        | 24, 36                                |
| 120 | 33<br>50     | 200 | 3.10                        | ä        | 24, 36                                |



Convex-concave abrasive segments

(Type "1C", GOST 2464-52)

Resinoid bond

|                      | Din                  | ensions.                | mm                      |                        | Weight, kg<br>(approximate)  | Abrasive<br>material         | Grain size<br>(most commonly<br>used) |
|----------------------|----------------------|-------------------------|-------------------------|------------------------|------------------------------|------------------------------|---------------------------------------|
| 13                   | $\mathbf{B}_{i}$     | L                       | R                       | r                      |                              |                              |                                       |
| 55<br>60<br>70<br>75 | 40<br>40<br>45<br>50 | 125<br>75<br>125<br>125 | 100<br>85<br>125<br>125 | 80<br>60<br>107<br>107 | 0,33<br>0,26<br>0,36<br>0,36 | 9<br>9, KЧ<br>9, КЧ<br>9, КЧ | 24-46<br>24, 36<br>24, 36<br>24, 36   |



|     | Dim   | ensions | , mm |     | Weight, kg    | Abrasive | Grain size              |
|-----|-------|---------|------|-----|---------------|----------|-------------------------|
| В   | $B_1$ | L       | R    | r   | (approximate) | material | (most commonly<br>used) |
| 90  | 55    | 125     | 175  | 150 | 0.87          | ə, кч    | 24, 36                  |
| 100 | 85    | 125     | 125  | 107 | 0.57          | D. K4    | 24, 36                  |
| 410 | 75    | 150     | 175  | 140 | 1.35          | D. K9    | 24, 36                  |
| 110 | 90    | 150     | 200  | 175 | 1.02          | D. L.U   | 24, 36                  |
| 140 | 100   | 175     | 225  | 190 | 2.00          | 9, КЧ    | 24, 36                  |
| 150 | 110   | 200     | 300  | 250 | 3.57          | P.J., G  | 24, 36                  |



Table 59 Concave-convex abrasive segments

 $({\rm Type}\ ^{\rm o}2\,{\rm C}^{\rm o},\ {\rm GOST}\ 2464\,\text{-}52)$ 

Resinoid bond

|    | Din              | ensions, | nım |       | Weight, kg    | Abrasive<br>material | Grain size<br>(most commonly<br>used) |
|----|------------------|----------|-----|-------|---------------|----------------------|---------------------------------------|
| В  | $\mathbf{B}_{i}$ | L        | R   | r     | (approximate) |                      |                                       |
| 75 | 80               | 125      | 170 | . 150 | 0,55          | D. 184               | 24, 36                                |
| 80 | 95               | 175      | 250 | 220   | 1.25          | D. K4                | 24, 36                                |



Table 60

Convex-flat abrasive segments

(Type "3 C", GOST 2464-52)

|                   | مح                                  |                   |                   |                 | Resincid bond               |                         |                                       |  |
|-------------------|-------------------------------------|-------------------|-------------------|-----------------|-----------------------------|-------------------------|---------------------------------------|--|
| В                 | Dimensions, mm B <sub>1</sub> L R H |                   |                   | 11              | Weight, kg<br>(approximate) | Abrasive<br>material    | Grain size<br>(most commonly<br>used) |  |
| 110<br>115<br>210 | . 75<br>80<br>140                   | 175<br>150<br>300 | 300<br>250<br>400 | 40<br>45<br>100 | 1.70<br>1.73<br>- 14.50     | 0. KU<br>0. KU<br>0. KU | 24, 36<br>24, 36<br>24, 36            |  |



Flat-convex abrasive segments (Type "4 C", GOST 2464-52)

Resincid bond

| Din            | 85   100   150   230   38   1.45   D. KU | Grain size   |                |                         |
|----------------|------------------------------------------|--------------|----------------|-------------------------|
| $B = := B_{i}$ | L R H                                    |              |                | (most commonly<br>used) |
|                |                                          | 1.45<br>3.74 | 9, KЧ<br>9, КЧ | 24—46<br>24—46          |



Trapezoidal abrasive segments

Table 62

(Type "5C", GOST 2464-52)

Resinoid bond

|          |    | Weight, kg    | Abrasive material | Grain size (most<br>commonly used) |          |                 |
|----------|----|---------------|-------------------|------------------------------------|----------|-----------------|
|          |    | (approximate) |                   | commonly used)                     |          |                 |
| 50<br>95 | 60 | 125           | 15<br>35          | 0.28                               | . FA . 6 | 24-60<br>16, 24 |

#### MARKING OF GRINDING WHEELS AND OTHER BONDED ABRASIVES

All grinding wheels and other bonded abrasives for the purpose of identification are marked by stencil or, if they are too small, by tag. The marking standard establishes a symbol for each of the most essential characteristics of a grinding wheel or other bonded abrasives, namely:

a) For abrasiva materials:

| Abrasive materials                                                                                                                     | Symbols             |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Electrocorundum, regular<br>Electrocorundum, white<br>Monocorundum<br>Monocorundum<br>Silicon carbide, black<br>Silicon carbide, green | 9<br>96<br>84<br>83 |

b) For bonds:

| Bonds     | Symbols |
|-----------|---------|
| Vitrified | К       |
| Resinoid  | Б       |
| Rubber    | В       |

- c) Grain size is indicated by a number, namely: Nos. 12, 14, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90, 100, 120, 150, 180, 220, 240, 280, 320, 400 (M 28), 500 (M 20) and 600 (M 14).

  The grain sizes Nos. 14, 20, 30, 54, 70 and 90 are used occasionally.
  d) For designating structures numbers from 1 to 18 are used which cover the whole range of structures in use at present.
  e) The shapes of abrasives are indicated by conventional symbols in accordance with GOST. Thus, for example, straight wheels are marked by symbols "III", etc.
  f) When it is possible all the dimensions are designated by stencil, or are shown on the attached tag.
  g) The grade is indicated as follows:
  For vitrified and resinoid bonds M1, M2, M3, CM1, CM2, C1, C2, CT1, CT2, CT3, T1, T2, BT1, BT2, 'IT1 and 'IT2;
  for rubber and magnesite bonds CM, C, CT and T.



In addition to the above marking the maximum permissible peripheral speed is indicated. For wheels of 250 mm in diameter and higher which have been tested for balance at the Manufacturer's Works the corresponding class of balance is indicated by numbers from 1 to 4.

Sequence of markings:

- 1) Abrasive material

- 2) Grain size
  3) Grade
  4) Bond
  5) Structure.

Examples of the interpretation of marking symbols

| Symbols        | Interpretation of symbols                                                                      |
|----------------|------------------------------------------------------------------------------------------------|
| ЭБ 46 CM 2 K 6 | Electrocorundum white — DB, grain size — 46, grade — CM 2, vitrified bond — K, structure — 6   |
| KU 24 CT 2 B   | Silicon carbide black — KY, grain size — 24, grade — CT 2, resinoid bond — B                   |
| O 16 CT 1 B    | Electrocorundum regular — D, grain size — 16, grade —<br>CT 1, resinoid bond — B               |
| K3 60 CM 1 K 6 | Silicon carbide green — K3, grain size — 60, grade — CM 1<br>vitrified bond — K, structure — 6 |
| O 100 CT B     | Electrocorundum regular — D, grain size — 100, grade —<br>CT_rubber_bond — B                   |

For accurate and safe grinding it is absolutely essential before mounting the wheel on flanges to familiarize ourselves with the marking in order to be sure that the selected wheel is best suited for the job in view.

#### SELECTION OF GRINDING WHEELS ACCORDING TO THE TYPE OF. ABRASIVE MATERIAL

The most important properties of the abrasive material are its hardness and durability. Electrocorundum, for instance, is less hard than silicon carbide, but has a greater durability. Silicon carbide crystals are more brittle than electrocorundum crystals.

than electrocorundum crystals.

These properties determine the selection of a particular abrasive material for a given job.

If the materials to be ground have a high tensile strength, they will break-off small silicon carbide crystals before the latter get dulled. In consequence the wheel shows a rapid wear and is not efficient in service.

For grinding materials with a high tensile strength, as for instance steel, malleable iron and some kinds of aluminium alloys, electrocorundum wheels are best suited.

are best suited.

Grinding wheels of white electrocorundum are used in those cases when it is necessary to avoid a great generation of heat in the zone of grinding. These wheels are mainly used for profile grinding, thread grinding and various sharpening operations.

Monocorundum grinding wheels are used for profile grinding (for example, crankshaft grinding), tool sharpening, etc.

Silicon carbide wheels are chiefly used for materials having a low tensile strength, such as grey iron, chilled iron, bronze and brass castings, copper, hard alloys and nearly all non-metal materials—leather, minerals, bones, glass, porcelain, etc.

#### SELECTION OF GRINDING WHEELS ACCORDING TO THEIR GRAIN SIZE

The required grain size of the abrasives is determined by stock to be removed, the necessary surface finish and by the properties of the material to be ground. In most cases, the coarser the grain size of the wheel, the more

to be ground. In most case, the Coast' as grown as stock can be removed.

However, this rule is not without exceptions. Thus, for example, for grinding hard (brittle) materials, it is necessary to use wheels with fine grain

size. For grinding soft materials grinding wheels with coarse grain size should be used

When using monocorundum wheels, it should be borne in mind that the grains of these wheels possess greater cutting facilities than electrocorundum grains. Therefore to obtain a smooth surface finish it is recommended to select monocorundum wheels with a finer grain size (by 1 or 2 numbers) than

select monocorundum wheels with a finer grain size (by 1 or 2 numbers) than that of the electrocorundum wheels. The most commonly used grain sizes of abrasives depending on the kind of grinding operation in view are given below:

Grain size Nos. 12-16: Rough grinding of cast iron, when a great amount of stock is to be removed.

Grain size Nos. 16-24: Surfacing of steel castings and forgings, cutting-off of refractory materials, marble, steel blanks, etc.

Grain size Nos. 36-46: Sharpening of steel and hard alloy tools, grinding of non-ferrous metals, preliminary surface grinding, external cylindrical grinding and centerless grinding of a great variety of parts.

Grain size Nos. 60-80: Finish grinding with the periphery of the wheel, sharpening of various tools, profile grinding, grinding of ball and roller bearing races.

snarpening of various tools, points, points of the process of different tools, preliminary honing operations, thread grinding, grinding of glass, etc.

Grain size Nos. 240–M28: Finish thread grinding, honing and lapping.

Grain size Nos. M 20–M 14: Superfinishing operations.

It should be emphasized that the selection of the abrasive is also dependent on the skill of the operator.

#### SELECTION OF GRINDING WHEELS ACCORDING TO GRADE AND BOND

The correct selection of grinding wheels in respect to their grade (bond hardness) is one of the most important factors of successful grinding. When selecting the wheel grade it is of great importance to take into consideration the physical and mechanical properties of the materials to be ground, the surface finish required, etc.

Table 63 shows the most commonly used grinding wheels made of different abrasive materials, having different grain sizes and grades depending upon the kind of the bond.



As a rule, for most grinding jobs wheels on vitrified and resinoid bonds are generally applied. Rough grinding operations are mostly performed by means of resinoid bonded wheels. Vitrified bonded wheels are seldom used for this kind of work. Surface grinding operations carried out by using the wheel face or the segment type wheels are preferably accomplished with abrasives on resinoid bond. When sharpening cutting edges of different tools or grinding thin pipes and sheets, where overheating should be avoided, it is recommended to use soft resinoid bonded wheels.

Resinoid or rubber bonds are usually applied when it is necessary to obtain a fine surface finish.

a fine surface finish.

Rubber bonded wheels are extensively used for grinding ball and roller bearings.

Table 63

|           |                          |                                                                                  | 1 41/16: 00                                             |  |
|-----------|--------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Bond      | Abrasive<br>materials    | Grain size<br>(most commonly used)                                               | Grade                                                   |  |
| Magnesite | Electrocorundum          | 24, 36, 46                                                                       | C, CT                                                   |  |
| Vitrified | Electrocorundum          | 16, 24, 36, 46, 60, 80, 100, 120                                                 |                                                         |  |
|           | Electrocorundum<br>white | 36, 46, 60, 80, 100, 120, 150,<br>180, 220, 240, 280, 320 and<br>rare M 28, M 20 | M 3, CM 1, CM 2,<br>C 1, C 2, CT 1,<br>CT 2, CT 3, T 1, |  |
|           | Monocorundum             | 36, 46, 60, 80                                                                   | T 2, BT 1 and<br>rare M 1, M 2,                         |  |
|           | Silicon carbide<br>black | 12, 16, 24, 36, 46, 60, 80, 100, 120, 150, 180                                   | BT 2, UT 1, UT                                          |  |
|           | Silicon carbide<br>green | 36, 46, 60, 80, 100, 120, 150,<br>180, 220, 240, 280, 320 and<br>rare M 28, M 20 |                                                         |  |
|           | Electrocorundum          | 12, 16, 24, 36, 46, 60, 80, 100, 120, 150, 180, 220                              |                                                         |  |
|           | Electrocorundum<br>white | only in rare cases mainly 100,<br>120, 150, 180, 220                             | CM 1. CM 2. C 1.                                        |  |
| Resinoid  | Monocorundum             | 24, 36, 46, 60, 80, 100, 120                                                     | C 2, CT 1, CT 2,                                        |  |
|           | Silicon carbide<br>black | 12, 16, 24, 36, 46, 60, 80,<br>100, 120, 150, 180, 220                           | CT 3 and rare<br>T 1                                    |  |
| i         | Silicon carbide<br>green | only in rare cases, mainly<br>150, 180, 220, 240, 280, 320                       |                                                         |  |
|           | Electrocorundum          | 36, 46, 60, 80, 100, 120, 180,<br>220                                            | CM, C, CT, T                                            |  |
| Rubber    | Silicon carbide<br>black | 46, 60, 80, 100, 120                                                             |                                                         |  |

#### SELECTION OF GRINDING WHEELS ACCORDING TO THEIR STRUCTURE

When selecting the structure of wheels, the following three factors should

When selecting the structure of wheels, the following three factors should be considered:

1) Physical and mechanical properties of the material to be ground;

2) Required surface finish;

3) Kind of grinding operation in view.
Thus, for instance, for grinding soft materials it is recommended to use open structure wheels, while dense structure wheels are mainly suitable for rough grinding operations.

Most commonly used wheels are those with a structure 5-8. Wheels with structure 5 are used for external cylindrical grinding, and with structure 8-for surface and internal grinding.
Superprous wheels with structure 14-16 are applied for surface grinding jobs and wheels with structure 13-for external cylindrical grinding.

Tables 64 and 65 contain grinding wheel recommendations for a great many grinding operations on a diversity of parts and various materials.

Table 64

#### GRINDING WHEEL RECOMMENDATIONS FOR METALS AND THEIR ALLOYS

| Parts to be<br>ground | Material to be ground        | Grinding operation                                              | Abra-<br>sive  | Grain<br>size   | Grade                  | Bond     |
|-----------------------|------------------------------|-----------------------------------------------------------------|----------------|-----------------|------------------------|----------|
| 1                     | 2                            | 3                                                               | 1              | 5               | 6                      | 7        |
| Agricultural forks    | Steel                        | Rough grinding of<br>forging                                    | э              | 16-21           | CT 2-CT 3              | Б        |
| Aluminium parts       | Aluminium and its alloys     | Fork prong sharpening<br>External cylindrical<br>rough grinding | F2I            | 24— 36<br>34—46 | CT 2-CT 3<br>CM 2-C1   | K        |
|                       | us anoys                     | External cylindrical finish grinding                            | RH             | 60-80           | CM 1-CM 2              | К        |
|                       |                              | Surface grinding                                                | 104            | 36              | CM 1-CM 2              | K        |
|                       | **                           | Internal grinding<br>Centerless grinding                        | 194            | 46-60<br>46-60  | CM 1-CM 2<br>CM 1-CM 2 | K        |
|                       |                              | Cutting-off                                                     | 5              | 24 - 36         | CT                     | B        |
| Arbors                | Carbon steel.                | External cylindrical                                            | ä              | 36-46           | C1-C2                  | K        |
|                       | hardened                     | preliminary grinding                                            |                |                 |                        |          |
|                       | **                           | External cylindrical                                            | :)             | 60 SU           | CM 2-C1                | К        |
| Armature              | Cast iron                    | finish grinding<br>External rough                               | CRH            | 24              | CT1-CT2                | К        |
| Atmature              | Cast non                     | grinding                                                        | ∃ikii ⊨        | 16-24           | CT1-CT3                | 15       |
|                       | Steel                        | External cylindrical                                            | 9              | 46              | 0.5                    | ĸ        |
|                       |                              | grinding<br>Internal grinding                                   | а              | 60              | CM2                    | К        |
| Armour plates         |                              | Rough surface                                                   |                | 16-21           | C 2-CT 1               | iš       |
| Atmosti piates        |                              | grinding                                                        | { <del>2</del> | 16 - 24         | CT1-CT2                | 13       |
|                       |                              | Surface grinding                                                | 9              | 16-24           | CM 2-C2                | - 13     |
| Axes                  |                              | Siding<br>Edging                                                | 3              | 1624<br>2436    | CT 2-CT 3<br>CT 1-CT 2 | 15<br>15 |
| Axles                 | Steel, hardened              | External cylindrical                                            | - 3            | 36-46           | CMT-C1                 | ii       |
| (auto-tractors)       | martin                       | preliminary grinding                                            |                |                 |                        |          |
|                       |                              | External cylindrical                                            | - 0            | 4660            | CM 1-CM 2              | ĸ        |
|                       |                              | finish grinding<br>External centerless                          | Э.             | 46-60           | CM 2-C1                | 18       |
|                       | **                           | grinding                                                        |                |                 |                        |          |
| Axie shafts           | Steel                        | Preliminary surface                                             | Э.             | 3646            | C1-C2                  | 13       |
| (auto-tractors)       |                              | grinding                                                        | а              | 60 80           | CM 2-C1                | Б        |
|                       |                              | Surface grinding<br>(finishing)                                 | ,              | 90 AU           | 0.01.2-0.1             | 1,       |
|                       |                              | External cylindrical                                            | :)             | 3646            | CT1                    | 18       |
|                       |                              | preliminary grinding                                            |                |                 |                        |          |
|                       |                              | External cylindrical                                            |                | 4660            | C1-C2                  | 16       |
| Balls for hall        | Steel, not                   | grinding (finishing)<br>Preliminary grinding                    | Э              | 24-46           | BT1-TT1                | К        |
| bearings              | hardened                     | ritiminal, gillian                                              |                |                 |                        |          |
|                       | Steel, hardened              | Finish grinding                                                 | ` ə, кч        | 240             | BT1-TT1                | 18       |
| Ball races            | Bearing steel.               | Preliminary external<br>centerless grinding                     | Э              | 46              | М 3-СМ 2               | K        |
|                       | hardened and<br>not hardened | Finish external                                                 |                | 60-80           | CT                     | В        |
|                       | not hardened                 | centerless grinding                                             |                |                 |                        |          |
|                       |                              | External centerless                                             | Э              | 60              | CT                     | В        |
|                       |                              | preliminary and finish<br>grinding at one setting               |                |                 |                        |          |
|                       |                              | Internal grinding of                                            |                |                 |                        |          |
|                       | ,,                           | external races:                                                 |                | 6.0             | CT1-CT2                | 16       |
|                       |                              | wheel diameter up to                                            | 96             | 80              | , C11-C12              |          |
|                       |                              | wheel diameter from                                             | ЭБ             | 60-80           | C.5                    | H        |
|                       |                              | 10 to 25 mm                                                     |                |                 |                        | ٠.       |
|                       |                              | wheel diameter from                                             | 96             | 60              | C1                     | Н        |
|                       | 1                            | 25 to 40 mm<br>wheel diameter from                              | ас             | 60              | CM2                    | 1        |
|                       | 1                            | 40 to 60 mm                                                     | J.,            |                 |                        | . *      |





| 1                                         | . 2                             | 3                                                         | 4                 | 5                | 6                    | 1.7      |
|-------------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------|------------------|----------------------|----------|
| Ball races                                | Bearing steel.                  | wheel diameter from                                       | ЭБ                | 60               | CM t                 | K        |
|                                           | hardened and<br>not hardened    | 60 to 100 mm<br>wheel diameter over                       | ЭБ                | 60               | M 3                  | R        |
|                                           |                                 | 100 mm<br>Preliminary grinding of<br>external race roller |                   |                  |                      |          |
|                                           |                                 | ways:<br>wheel diameter up to                             | 96                | 60               | . C1                 | K        |
|                                           |                                 | 40 mm<br>wheel diameter from                              | эв                | 60               | CM 2                 | К        |
|                                           |                                 | 40 to 60 mm<br>wheel diameter from<br>60 mm and over      | эв                | 60               | CM I                 | К        |
|                                           |                                 | Ditto (finishing):<br>wheel diameter up to                | 96                | 120              | CM2                  | К        |
|                                           |                                 | 40 mm<br>wheel diameter from                              | ЭБ                | 120              | CM 1                 | 17       |
|                                           |                                 | 40 to 60 mm<br>wheel diameter from<br>60 mm and over      | ЭБ                | 120              | М 3                  | К        |
|                                           |                                 | Preliminary grinding of<br>external race radius:          |                   |                  |                      | В        |
|                                           |                                 | wheel diameter up to<br>45 mm                             |                   | 100 120          | CT                   |          |
|                                           |                                 | wheel diameter from<br>45 mm and over                     | Э                 | 80               | CT                   | В        |
|                                           |                                 | Ditto (finishing):<br>wheel diameter up to<br>45 mm       | :)                | 180220           | CT                   | В        |
|                                           |                                 | wheel diameter from                                       | ; ə               | 150              | C-CT                 | В        |
|                                           |                                 | 45 to 60 mm<br>wheel diameter from                        | :)                | 120              | C                    | - 13     |
|                                           |                                 | 60 to 90 mm<br>wheel diameter from                        | ; :               | 120              | C-CM                 | В        |
|                                           |                                 | 90 to 125 mm<br>Grinding of internal                      | :)                | 120 - 220        | CT                   | В        |
|                                           | **                              | race radius Preliminary grinding of internal race roller  | Э                 | 60               | CM 2-C1              | В        |
|                                           | **                              | ways<br>Ditto (finishing)<br>Grinding of internal         | )<br>)            | [00<br>80        | CM 2<br>CM 2-C1      | 17<br>17 |
|                                           |                                 | tace shoulders<br>Grinding of external                    | Э                 | 60               | CM 2-C1              | 17       |
|                                           |                                 | race shoulders<br>Surface grinding of<br>races            | Э                 | 6080             | CM 1-C1              | Б        |
| Band saws                                 | Steel, carbon and<br>high speed | Gumming                                                   | { <del>}</del> }  | \$6 -60<br>\$660 | C<br>CM 2-C2         | B        |
| Barrels of scaling                        | Steel.<br>not hardened          | Internal grinding                                         | . 5               | 46               | C1-C2                | K        |
| Bearing bushings                          | Bronze                          | Rough face grinding<br>External cylindrical<br>grinding   | : 184<br>184      | 2436<br>3646     | C1-C2<br>CM 2-C1     | B<br>K   |
| Bed ways of                               | Cast iron                       | Internal grinding Preliminary surface                     | 189<br>(189)      | \$660<br>2436    | CM 1-CM 3<br>CM 2-C1 | K<br>B   |
| machine tools                             |                                 | grinding<br>Finishing surface                             | - { 56<br>- { 69; | 4660             | см 1-см з            | 15;      |
| Bicycle forks<br>Bicycle handle           | Steel                           | grinding<br>Hand weld surfacing<br>Surfacing of welds     | 31G <i>)</i>      | 1624<br>2436     | CTI-CTS<br>CTI-CTS   | 16<br>16 |
| bars<br>Bicycle spokes<br>Blades for meat | Steel, hardened                 | Surfacing of ends<br>Hand sharpening                      | . 3               | 46 -60<br>4660   | CT2-CT3<br>C1-C3     | Б        |
| choppers<br>Boring bars                   |                                 | External cylindrical                                      |                   | 16               | C1                   | 16       |
| Boring Dars                               |                                 | rough grinding<br>External cylindrical                    | 9                 | 60               | CM 2                 | 16       |
| Brass parts                               | Brass                           | finish grinding<br>External centerless                    | 164               | 36               | C 2                  | К        |
| parte                                     |                                 | grinding<br>External cylindrical                          | 184               | 36               | CMT                  | 16       |
|                                           | 3                               | grinding<br>Internal grinding                             | 189               | 36               | М 3                  | К        |
|                                           | ::                              | Surface grinding with<br>cup wheels                       | स्थि              | 21               | М 3                  | ič       |
|                                           |                                 | Ditto, with the wheel                                     | КЧ                | 16 21            | C1                   | 15       |
|                                           |                                 | Rough grinding<br>Cutting-off                             | 164               | 21-36            | CT1<br>CT2           | Б        |
| Broaches, flat                            | Steel, high speed               | Sharpening (with dish<br>wheels)                          | э́в               | 60               | CM 2                 | K        |

| 1                                         | 2                                  | 3                                                                    | 4 :            | 5              | 6                    | 7    |
|-------------------------------------------|------------------------------------|----------------------------------------------------------------------|----------------|----------------|----------------------|------|
| Broaches, flat                            | Steel, high speed                  | Backing off (with dish                                               | ЭБ             | 60             | CM 2                 | К    |
| Broaches, key                             | Steel, high speed                  | wheels) Lapping of cutting edges Sharpening (with dish wheels)       | 9B             | 180<br>60      | CM t                 | К    |
| Broaches, round                           | Steel, carbon and                  | Lapping of cutting edges<br>External cylindrical                     | 183<br>96      | 180<br>60      | C2<br>CM 1-CM 2      | К    |
|                                           | high speed                         | grinding<br>Sharpening                                               | эь             | 60             | CM 2                 | К    |
| Bronze parts                              | Bronze, soft                       | Lapping of cutting edges<br>External cylindrical<br>grinding         | 163<br>164     | 180<br>36      | CM 1-CM 2            | К    |
|                                           |                                    | Centerless external<br>grinding                                      | кч             | 36             | C1-C2                | К    |
|                                           | **                                 | Internal grinding<br>Surface grinding with<br>the wheel face or cup  | КЧ<br>КЧ       | 36<br>16—24    | CM1-CM2              | Б    |
|                                           |                                    | wheel<br>Ditto, with the peri-                                       | ю              | 2436           | C.1+C.5              | Б    |
|                                           | Bronze, hard                       | phery of the wheel<br>External cylindrical                           | Э              | 46             | CM 2                 | К    |
|                                           |                                    | grinding<br>Centerless grinding                                      | Э              | 60             | C1                   | K    |
|                                           |                                    | Internal grinding                                                    | 915            | 16-24          | CM 1-CM 2<br>C1-C2   | Б    |
|                                           | **                                 | Rough surface grinding<br>Rough grinding (with<br>portable grinder)  | Eq.            | 24             | CT 2                 | ь    |
| Bushings                                  | Steel, not hardened                | Cutting-off<br>Surface grinding with                                 | 3              | 36<br>36 46    | CT 3<br>CM 2-C2      | K    |
|                                           |                                    | the wheel face<br>Centerless grinding                                | )<br>)         | 46<br>36 — 16  | CM 2-C2<br>CM 1-CM 2 | K    |
|                                           | Steel, hardened                    | External cylindrical<br>grinding<br>Preliminary centerless           | :)             | 36 16          | CM 2-C1              | K    |
|                                           | **                                 | grinding<br>Finishing centerless                                     | ;              | 46 60          | CM 2-C1              | К    |
|                                           |                                    | grinding<br>Internal preliminary                                     | ;)             | 46             | СМ 1-СМ 2            | ·ĸ   |
|                                           |                                    | grinding                                                             | :)             | 60             | CM 1-CM 2            | К    |
|                                           | Cast iron                          | Internal finish grinding<br>Surface grinding with                    | КЧ             | 24 36          | CM 2-C1              | Б    |
|                                           | t act non                          | the wheel face                                                       | 1.4            | 3616           | C1-C2                | 18   |
|                                           | **                                 | External cylindrical<br>grinding<br>Centerless external              | 189            | 3616           | C1-CT1               | K    |
|                                           |                                    | grinding                                                             |                |                | CMT-CM2              | К    |
| Cam shafts                                | steel, not hardened                | Internal grinding<br>Rough grinding of cam<br>shaft forging          | 191            | 3616<br>21     | CT1-CT2              | K;   |
|                                           |                                    | Rough grinding                                                       | { 3            | 36<br>36       | CT1-CT2<br>C1-C2     | B    |
|                                           |                                    | of cams                                                              | - }3           | 3646           | C1-C2                | 18   |
|                                           | Steel, hardened                    | Rough grinding<br>of cams                                            | {3             | 36 - 46        | CM 2-C1              | - 15 |
|                                           |                                    | Finish grinding of cams                                              |                | 60 - 80        | CM 2-C1              | - K  |
|                                           |                                    | Rough grinding                                                       | :)             | 36 + 56        | C1-C2                | . 17 |
|                                           |                                    | of journals<br>Finish grinding                                       | Э              | 46 - 60        | CM 2-C1              | К    |
| Cards of textile                          | Steel, not hardened                | of journals<br>Cam face grinding<br>External cylindrical<br>grinding | ;)             | 36 - 16 $36$   | C1-C2<br>CT1-CT2     | K    |
| machines<br>Castings                      | Malleable iron.                    | Profiling of card rows<br>Hand rough grinding                        | )<br>()        | 80 -100<br>16  | CT2                  | B    |
|                                           | annealed                           | Rough grinding (with                                                 | Э              | 16             | CT1                  | Б    |
|                                           | Malleable iron.                    | swing frame)<br>Hand rough grinding                                  | Э              | 24             | CT 3                 | Б    |
|                                           | not annealed                       | Rough surface grinding                                               |                | 24             | CM2                  | 15   |
| Castings                                  | Malleable iron                     | Rough grinding<br>(floor stands)                                     | э              | 2436           | CT 2-CT 3            | К    |
| (small size)<br>Castings (medium<br>size) | Steel                              | Roughing for revealing<br>faults of castings                         | :)             | 1636           | C2-CT3               | Б    |
| Castings (large                           |                                    | Rough grinding (floor<br>stands)                                     | э              | 16 24          | CT1-CT3              | 1 15 |
| size)<br>Chain links for<br>agricultural  | Cast iron                          | Rough grinding                                                       | { K            | 16 24<br>16    | CT1-CT2<br>CT3-T1    | 15   |
| machinery                                 | Malleable                          | Rough grinding                                                       | { <del>}</del> | 1625<br>1625   | C2-CT1<br>CT1-CT2    | 15   |
|                                           | iron, annealed<br>Steel, manganese | Rough grinding                                                       | . {3           | 16-24<br>16-21 | CT2-CT3<br>CT3-T1    | 1    |





| 1                                  | 2                 | 3                                              | 4              | 5                  | 6                    | 7        |
|------------------------------------|-------------------|------------------------------------------------|----------------|--------------------|----------------------|----------|
| Chisels                            | Steel, carbon     | Rough grinding                                 | 9              | 24                 | CT1-CT2<br>C2-CT1    | 18       |
| Chisels, handled                   | Steel, carbon and | Sharpening<br>Surface grinding with            | 3              | 36-46<br>24-36     | C 2-CT 1<br>M 3-CM 1 | K        |
|                                    | high speed        | the wheel face                                 | { <del>3</del> | 24-36<br>36-46     | CM 2-C1              | : 15     |
|                                    |                   | Grinding of edges<br>Hand sharpening           | 9              | 36-46<br>36-46     | C1-C2<br>CM 2-C1     | K        |
| Choppers                           | Steel, hardened   | Rough surface grinding                         | į              | 16-24              | CT1-CT2              | 15       |
| Chromium plated                    |                   | Sharpening<br>Preliminary external             | GG             | 2436<br>60         | CM2                  | B        |
| parts                              |                   | Preliminary external<br>cylindrical grinding   | i              |                    |                      |          |
|                                    |                   | Finish external cylindri-<br>cal grinding      | ac             | 150                | CMI                  | 15       |
| Circular forming                   | Steel, high speed | Sharpening (with cup                           | эв             | 60                 | CMI                  | 18       |
| tools                              |                   | wheels)                                        | 1              |                    |                      | 1        |
|                                    |                   | Lapping (with cup<br>wheels)                   | 163            | 180                | C.5                  | Б        |
| Circular saws,<br>segmental        |                   | Preliminary surface                            | Э              | 24                 | C1-C2                | 15       |
| (metal cutting)                    |                   | grinding with the<br>wheel face                |                |                    |                      |          |
|                                    |                   | Finish surface grinding                        | a              | 46                 | CM 1-CM 2            | - 15     |
|                                    |                   | with the periphery of<br>the wheel             |                |                    |                      |          |
|                                    |                   | Gumming                                        | . 5            | 3616               | C2-CT1               | Б        |
| Circular saws<br>(woodworking)     | Steel, carbon     | Gumming                                        | ă              | 36                 | ci-cri               | 16       |
| Circular saws                      | Steel             | Surface grinding (with                         | а              | 24-36              | CM2-C1               | В        |
| (metal cutting)                    |                   | segmental wheels)                              |                |                    | C 31 2=0, 1          | : 15     |
| Circular thread                    | Steel, carbon and | Gumming                                        | .9.            | 36 - 46            | C2-CT1               | Б        |
| chasers                            | high speed        | External cylindrical grinding                  | ЭБ             | 60-80              | CM 1-CM 2            | K        |
|                                    | ,,                | Thread grinding:                               | i              |                    |                      |          |
|                                    |                   | pitch up to 1 mm<br>,, from 1 mm to            | aG<br>aG       | 320 M28<br>240 320 | C1-C2<br>CM2-C1      | - K      |
|                                    |                   | 1.5 mm                                         |                | 2411-120           | CM 2-C1              | 1        |
|                                    |                   | 1.5 mm to                                      | ЭБ             | 180-240            | CM 1-CM 2            | - 13     |
|                                    |                   | 2.5 mm<br>2.5 mm to                            | 516            | 120-180            | М 3-СМ 1             | K        |
| Collets                            | Steel, carbon     |                                                |                |                    |                      |          |
|                                    |                   | Internal grinding<br>Cutting of grooves        | 3              | 4660<br>46         | CM 1-CM 2<br>CT      | - B      |
| Columns of radial drilling machine | Cast iron         | External cylindrical                           | 161            | 46                 | ci-cs                | R        |
| Connecting rods                    | Steel             |                                                | э              | 01 110             |                      |          |
|                                    | **                | Surface grinding of faces<br>Internal grinding | - 3            | 24-36<br>46        | CM 2-C1<br>CM 2-C1   | - B      |
|                                    |                   |                                                |                |                    |                      |          |
|                                    |                   | Ditto (finishing)<br>Grinding of eyes          | 3              | 60<br>36           | CM 1-CM 2<br>CM 2-C1 | IV<br>IV |
| Control pins                       | Silver steel      | Centerless external                            | ä              | 60                 | CM 2-Ci              | . it     |
| Copper parts                       | Copper            | grinding<br>External cylindrical               | 169            | 36                 | Macari               |          |
|                                    |                   | grinding                                       |                | 40                 | M 3-CM 1             | 11       |
|                                    | "                 | Surface grinding:<br>with cup wheels           | кч             |                    |                      |          |
|                                    |                   | with the wheel face                            | 104            | 24<br>36           | M 3                  | - K      |
| Core drills for                    | Steel, high speed | Cutting-off<br>Sharpening the front            | K41:0          | 46-60              | CT<br>CT             | В        |
| blind holes                        | oreer, man speed  | face of teeth (with                            | ЭБ             | 60                 | CM 2                 | K        |
|                                    |                   | dish wheels)                                   |                |                    |                      |          |
|                                    | **                | Ditto, lapping<br>Relief grinding (with cup    | 163<br>36      | 180                | C2<br>CM 2           | 16       |
|                                    |                   |                                                |                |                    |                      | К        |
|                                    | ,,                | Ditto, lapping<br>Beyeling the corners of      | 163            | 180                | C.5                  | H        |
|                                    |                   | the teeth with sticks                          | ЭБ             | 240                | 0.5                  | K        |
| Core drills for through holes      | **                | Sharpening (with cup                           | ЭБ             | 46                 | CM2                  | К        |
|                                    |                   | wheels)<br>Lapping                             | 163            | 180                | C2                   | 13       |
| Core drills with inserted blades   |                   | Grinding the face of the                       | 5              | 60                 | CM 2                 | R        |
| meerica mades                      | ,,                | teeth<br>Sharpening (with cup                  | ЭБ             | 60                 |                      | 1        |
|                                    |                   | Wileels)                                       | .715           | 60                 | CM 2                 | 13       |
| İ                                  | "                 | Lapping (with cup<br>wheels)                   | 153            | 180                | C2                   | В        |
| ore drills,                        | ,,                | Sharpening (with cup                           | эв             | 60                 | CM 2                 | K        |
| lamellar                           |                   | wheels)                                        |                | - 1                | · M·Z                | ١.       |
|                                    | **                | Lapping (with cup<br>wheels)                   | 183            | 180                | C.5                  | Б        |
| Ore drills,<br>stepped             |                   | Grinding of the first sten                     | э              | 46                 | C1                   | 16       |
| · · · ppcu                         |                   | Relief grinding (with cup                      | ne.            | 0.0                |                      |          |
| -                                  |                   |                                                | ЭБ             | 60                 | CM2                  | К        |
|                                    | "                 | Lapping of teeth cutting                       | 183            | 180                | C2                   | Б        |
| ,                                  |                   | edges (with dish wheels)                       | 1              | j.                 |                      |          |

| 1                                         | 2                               | 3                                                            | 4              | 5                    | 6                     | 7   |
|-------------------------------------------|---------------------------------|--------------------------------------------------------------|----------------|----------------------|-----------------------|-----|
| ore drills,<br>stepped                    | Steel, high speed               | Relief lapping (with cup wheels)                             | 153            | 180                  | C3                    | 1   |
| ore drills with                           | Steel, carbon and<br>high speed | External cylindrical grinding                                | э              | 4660                 | CM 2-C1               | 1   |
|                                           |                                 | Cutting of flutes<br>Sharpening (with cup                    | 36<br>316      | 80100<br>4660        | CT1-CT2<br>CM1-CM2    | 1   |
|                                           | :                               | wheels)<br>Lapping (with cup                                 | 163            | 180                  | C 2                   | ì   |
| rankcases (auto- tractor engines)         | Grey iron                       | wheels)<br>Rough surface grinding                            | 189            | 16 - 21              | C1-C2                 | 1   |
| rankshafts<br>(automobile)                | Steel, hot hardened             | Rough grinding of pins<br>and journals                       | Э              | 1621                 | CT 2-CT 3             | B   |
| (Mariania)                                |                                 | Preliminary grinding<br>of pins                              | Э              | 396                  | ста-ста               | i   |
|                                           | Steel, hardened                 | Preliminary grinding of                                      | Э              | 36                   | CT1-CT2               | 1   |
|                                           | **                              | pins and journals<br>Finish grinding of pins<br>and journals | Э              | 46 - 60              | C2-CT1                | 1   |
| 1                                         | **                              | Preliminary grinding of                                      | Э              | 16                   | C2-CT1                | 1   |
|                                           |                                 | Finish grinding of journals                                  | Э              | 16 60                | C2-CT1                | 1   |
|                                           |                                 | Grinding of flywheel<br>journal                              | Э              |                      | C1-C2                 | i   |
|                                           | :                               | Cheek profile grinding<br>Regrinding of journals             | 3              | 36 46<br>36 46       | CM 2-C1<br>C2-CT1     | 1   |
| Cutlery                                   | Steel, carbon and<br>stainless  | Grinding of tang<br>Sharpening (preliminary)                 | 9              | 36 56<br>36 56       | C2-CT2<br>C2-CT1      | 1   |
|                                           |                                 | Sharpening (finishing)                                       | {3             | 6080<br>6080         | CM 2-C1<br>CM 1-CM 2  |     |
| Cutters for en-<br>graving machines       | Steel, carbon                   | Sharpening                                                   | 8              | 4660                 | CM 2-CT               | i   |
| Cutters for panto-<br>graph machines      | Steel, high speed               | Sharpening                                                   | Э              | 69                   | C1                    | 1   |
| Cylinder block                            |                                 | Preliminary honing                                           | { K9<br>  K3   | 120110               | C1-C2                 | 1   |
| Cylinder liners .                         | 43.44.75.00                     | Finish honing<br>Surface grinding of                         | 183            | M 28-M 20            | M 3-CM 1<br>CM 2      | 1   |
| (auto-tractor<br>motors)                  | Cast iron                       | flanges<br>External cylindrical                              | 9              | 36- 16               | CM2-C1                | 1   |
|                                           | ; "                             | grinding<br>Internal grinding                                | э              | 16                   | CM1-CM2               | l,  |
|                                           |                                 | Honing (preliminary)<br>Honing (finishing)                   | 189<br>183     | 120-140<br>M 28-M 20 | CI-CT!<br>MG-CMI      | i   |
| Cylinder liners                           | Steel, nitrated                 | Internal preliminary                                         | {36            | 36                   | C3                    | i ı |
| (diesel engines)                          |                                 | grinding<br>Internal finish grinding                         | 183<br>183     | 120-220<br>M 28-M 20 | CM 1-CM 2<br>M 3-CM 1 |     |
| Dies for die easting                      | Steel                           | Honing<br>Surface grinding with                              | 3              | 24-36                | M3-СМ1                | l   |
| Dies for dieheads                         | Steel, high speed               | the wheel face<br>Sharpening<br>Lapping                      | 96<br>183      | 46<br>180            | CM1-CM2<br>C2         |     |
| Dies for diestocks                        | Steel, carbon and               | Surface grinding with                                        | {3             | 36-46<br>2436        | CM 1-CM 2<br>C1-C2    |     |
|                                           | high speed                      | the wheel face<br>Surface grinding<br>Thread grinding        | ЭБ             | 46 60                | 1 CM 2-C1             |     |
|                                           |                                 | Thread grinding<br>Sharpening                                | ас<br>{}<br>6} | 240 320<br>60        | CM1-C2<br>C1-C2       | H   |
| Double angle                              | Steel, high speed               | Sharpening of cutting                                        | 6 f<br>ae      | 46-60<br>46          | CM 1-CM 2<br>CM 1     |     |
| milling cutters                           |                                 | edges<br>Relief grinding                                     | ЭB             | 60                   | CM 2                  | ŀ   |
|                                           |                                 | (with cup wheels) Lapping (with cup and dish wheels)         | 163            | 180                  | C2                    | 1   |
| Drills (up to                             | Steel, carbon and               | Resharpening (hand)                                          | Э              | 60 80                | C1-C2                 |     |
| 10 mm diameter)<br>Drills (over           | high speed                      | Resharpening (hand)                                          | Э              | 3616                 | CM 2-C1               | 1   |
| 10 mm diameter)<br>Drills<br>Drawing dies | Cemented carbides<br>Steel      | Sharpening<br>Preliminary surface                            | 163            | 46-80<br>2436        | CM 1-CM 2<br>C2-CT 1  | i   |
|                                           |                                 | grinding<br>Finish surface grinding                          | а              | 60 80                | CM 2-C1               | -   |
|                                           | Steel, hardened                 | Hand internal grinding<br>Internal grinding                  | )<br>(1)       | 46-60                | C1-CT1<br>CM1-C1      |     |
| D                                         | Cemented carbides               | Internal grinding<br>External cylindrical                    | 183            | 4680                 | CM1-CM2<br>C1-C2      |     |
| Drums of textile machines                 | Grey iron<br>Cemented carbides  | grinding                                                     | 163            | 60                   | CM1-CM2               | ļ   |
| Face milling<br>cutters                   | Cententer carpides              | side diameter and faces) Relief grinding                     | 163            | 46                   | ма-см1                |     |
| with inserted<br>blades                   |                                 | (with cup wheels)                                            |                | 1                    | 1                     | i   |



|                                 | 3                                | 3                                                                       | 4             | 5                  | 6                      |       |
|---------------------------------|----------------------------------|-------------------------------------------------------------------------|---------------|--------------------|------------------------|-------|
| Face and end<br>milling cutters | Steel, carbon and<br>high speed  | wheel face                                                              |               | 46 60              | М 3-СМ 1               |       |
|                                 |                                  | Sharpening with the<br>wheel face                                       | ЭВ            | 4660               | M 3-CM 1               |       |
|                                 | . "                              | Sharpening of cutting<br>edges (with cup and<br>dish wheels)            | 96            | 60                 | CM 2                   | 1     |
|                                 | **                               | Lapping of cutting edges<br>Hand radius grinding<br>with sticks         | - 163<br>- 56 | 180<br>210         | C.5<br>C.5             | 1     |
| Fire bars<br>Files              | Cast iron<br>Steel, not hardened | Rough grinding                                                          | 184           | 16 21              | CT2-CT3                | : 1   |
|                                 | ester in moral metal met         | Cutting-off burrs                                                       | 9             | 1624               | CT1-CT2<br>CT1-CT2     | - 1   |
|                                 | : ::                             | Rough grinding<br>Surface grinding with<br>ring wheels                  | 3             | 21-36<br>36        | CT1-CT2<br>CM1-CM:     | 2     |
|                                 | **                               | External centerless<br>grinding of round files                          | ; 3           | 36~~46             | C2-CT1                 | ,     |
| Flat irons                      | Cast iron                        | Surface grinding                                                        | {   R9        | 1624<br>1624       | CM 2-C2<br>M 3-CM 1    |       |
| Flywheels                       | **                               | Surface grinding with<br>the wheel face                                 | itsti         | 94                 | C1-C2                  | i     |
| Forgetongs                      | Steel, not<br>hardened           | Rough grinding                                                          | - Qiri        | 16-24              | CM 2-C1<br>CT 2-CT 3   | 1     |
| Forgings                        | Steel                            | Sharpening<br>External cylindrical                                      | - D           | 2436<br>36 -46     | CT1-CT2<br>C1-CT2      | - 1   |
|                                 |                                  | grinding<br>Centerless external                                         | a             | 36 16              | Ct                     | ,     |
|                                 |                                  | grinding<br>Rough grinding                                              | a             | 1624               | CT1-CT3                |       |
| rame saws                       | Steel, carbon                    | Surface grinding<br>Gumming                                             | ä             | 16 - 21            | CM 2-C1                | l     |
| auge blocks and angle gauges    | Steel, hardened                  | Preliminary surface                                                     | ä             | 3616               | C 1-C2<br>CM 1-CM 2    | 1     |
| Bir Birdeca                     |                                  | grinding with the<br>periphery of the wheel                             |               |                    |                        |       |
|                                 | **                               | Preliminary surface<br>grinding with the                                | :)            | 2426               | CM 1-CM 2              | 13    |
|                                 | .,                               | wheel face<br>Finish surface grinding                                   | эв            | 16                 | М 3-СМ 1               | ь     |
| iauges (profile)                | Steel, carbon and<br>high speed  | Preliminary profile<br>grinding                                         | Э             | 4660               | C1-C2                  | is is |
|                                 | Steel, carbon                    | Finish profile grinding<br>Preliminary surface<br>grinding              | ЭБ<br>Э       | 150 -220<br>46     | CM 2-C1<br>CM 1        | 16    |
| ears                            | Steel, not hardened              | Finish surface grinding<br>Surface grinding of rim                      | 9             | 60                 | C2                     | Б     |
|                                 | ,,                               | and hub<br>Hub bore internal                                            | .,            | 24 36              | CT1-CT3                | 15    |
|                                 | Steel, hardened                  | grinding                                                                |               | 36 46              | CM 1-CM 2              | К     |
|                                 |                                  | Surface grinding of rim<br>and hub (with the<br>periphery of the wheel) | Э             | 36 16              | CM 1-CM 2              | K     |
|                                 |                                  | Surface grinding of rim<br>and hub (with the<br>wheel face)             | <b>{3</b>     | 24-36<br>24-36     | MO-CM 1<br>CM 2-C1     | B     |
|                                 | **                               | Hub bore internal<br>grinding                                           | Э             | 36 - 46            | CM 1-CM 2              | ы     |
|                                 | .,                               | Tooth grinding                                                          | (9)           | 4660               | М 3-СМ 1               | К     |
|                                 | Cast iron                        | Tooth rough grinding                                                    | 151           | 4660<br>24         | CM 1-CM 2<br>CT 1-CT 3 | - E   |
| ear cutters                     | Steel, high speed                | after casting<br>Preliminary sharpening                                 | э             | 46                 | CM 1-CM 2              | - K   |
| ar shaper<br>cutters            |                                  | Finish sharpening<br>Surface grinding with                              | 9<br>96       | 60 -80<br>36 -16   | M 3-CM 1<br>M 3-CM 1   | - K   |
| cutters                         |                                  | the wheel face<br>Surface grinding with                                 | ас            | 60 -80             | CM1-CM2                | K     |
| i                               | ,,                               | the periphery of the<br>wheel<br>Tooth grinding:                        | 1             |                    |                        |       |
|                                 |                                  | module 1 mm                                                             | ЭБ            | 120 -140           | CM 1-CM 2              | К     |
|                                 |                                  | module 2 mm<br>module 3—4 mm                                            | 36<br>36      | 80 -100<br>60 -80  | CM 1-CM 2<br>M 3-CM 1  | K     |
|                                 |                                  | module 5—6 mm<br>Sharpening                                             | ac<br>ac      | 46 -60<br>46 -60   | M 3-CM 1<br>M 3-CM 1   | K     |
|                                 |                                  | Surface grinding (with<br>the wheel face)                               | эв            | 36 -46             | CM 2-C1                | B     |
| ì                               | OH-290 grade)                    | Surface grinding (with the periphery of the wheel)                      | ав            | 60 -80             | CM 1-CM 2              | В     |
|                                 | "                                | Tooth grinding:<br>module 1 mm                                          | 163<br>163    | 120140             | CM 1-CM 2              | Б     |
|                                 |                                  | module 2 mm<br>module 3—4 mm                                            | 163<br>3B     | 100 -120<br>60 -80 | CM 1-CM 2<br>CM 2-C1   | ä     |
| 1                               | 1                                | module 5—6 mm                                                           | ac            | 60                 | C1-C2                  |       |

| cutters                                 | (OH-262 and                            |                                                                   |             |                |                        |        |
|-----------------------------------------|----------------------------------------|-------------------------------------------------------------------|-------------|----------------|------------------------|--------|
| Hammer heads                            | OH-290 grade)<br>Steel, hardened       | Rough grinding                                                    |             | 2436           | CT1-CT2                | К      |
| Transmet meads                          |                                        | Surface grinding (with<br>the periphery of the                    | <b>5</b> ,  | 36 16          | CM 2-CM 1              | ik     |
|                                         | **                                     | wheel;<br>External cylindrical<br>grinding                        | Э           | 36             | C1-C2                  | к      |
| Hand hammers<br>Hand taps for           | Steel, hardened<br>Steel, high speed   | Rough grinding<br>Relief grinding of tap                          | 3)<br>3G    | 24<br>46 —60   | CT 2-CT 3<br>CM 2      | B      |
| aluminum                                |                                        | chamfer<br>Sharpening                                             | 96          | 60             | CM2                    | - 13   |
| Hobs                                    |                                        | Lapping<br>Face undercutting                                      | 163         | 180<br>4660    | C3                     | , Б    |
| HODS                                    |                                        | Internal grinding                                                 | 3           | 46-60          | CM 1-CM 2<br>CM 1-CM 2 | K      |
|                                         |                                        | Profile tooth grinding                                            | οβ          | 60-80          | CM 2-C1                | 18     |
|                                         |                                        | Sharpening                                                        | D: 0B       | 46-60          | CM 1-CM 2              | ik     |
| Hubs of rear<br>auto-tractor<br>wheels  | Steel, case<br>hardened                | Internal grinding of hub<br>cup                                   | Э.          | 4660           | CM 1-CM 2              | K      |
| Ingots                                  | Alloy steel and<br>high speed steel    | Rough grinding                                                    | ()          | 16 21          | CT1-CT2                | Б      |
|                                         |                                        | Rough grinding (with<br>portable grinders)                        | 9           | 24             | - CT1                  | Б      |
|                                         | Stainless steel                        | Rough grinding<br>Rough grinding (with                            | ;)          | 16-36<br>24    | C2-CT1<br>CT1          | Б      |
| Involute gear                           | Steel, high speed                      | portable grinders)<br>Sharpening of cutting                       | эв -        | 60             | CM 2                   | к      |
| cutters                                 |                                        | edges (with dish<br>wheels)<br>Ditto, lapping (with dish          | 163         | 180            | C 2                    | Б      |
| Involute gear                           |                                        | wheels) External tooth grinding                                   | ЭБ          | 60             | CI                     | К      |
| cutters (fine<br>module)                |                                        | (outside diameter)                                                |             |                | ` '                    |        |
|                                         | **                                     | Sharpening of cutting edges                                       | aG          | 16             | CM 2-C1                | К      |
|                                         | ::                                     | Relief grinding<br>Lapping of cutting edges<br>(with dish wheels) | E3          | 60<br>180      | CM 2<br>C 2            | Б      |
| Inserts for thread<br>micrometers       | Steel, hardened                        | External grinding of<br>centers at an angle<br>of 60°             | Э           | 4660           | C.1-C.5                | К      |
| Inside micro-<br>meters                 | Steel, hardened                        | Radius grinding of<br>measuring surfaces                          | 96          | 60             | CM 2-C1                | К      |
| Keys                                    | Steel                                  | Surface grinding                                                  | :)          | 24 - 36        | C 2-CT 1               | Б      |
| Knives of<br>machines                   | Steel, hardened                        | Surface granding with<br>the wheel face                           | 9           | 21-36          | CM 2-C1                | Б      |
|                                         | **                                     | Cutting-off                                                       | 9           | 4660           | CT                     | B      |
|                                         |                                        | Sharpening                                                        | - (2)       | 36-46          | CM 2-C2<br>CM 1-C1     | - B    |
| Knives for                              | Steel, not                             | Surface grinding with                                             | 19          | 36 46<br>24 36 | CM 2-C1                | K      |
| mowers and<br>combines                  | hardened                               | the wheel face                                                    |             |                |                        |        |
| Lathe centers                           | Steel, hardened<br>Steel, hardened     | Sharpening<br>Point grinding                                      | 9           | 36—46<br>60—80 | CM 2-C1<br>CM 2-C1     | B<br>K |
|                                         | and high speed<br>Cemented<br>carbides | Point grinding                                                    | 163         | 80             | М 3-СМ 1               | к      |
| Links (locomotive)                      | Steel                                  | Rough grinding<br>Internal grinding                               | 9           | 16-24<br>36-46 | CT1-CT2<br>CM1-C1      | Б      |
| Link blocks                             | Steel, case                            | Internal grinding                                                 | 9           | 36             | CM 1-CM 2              | iì     |
| (locomotive) Needles of sewing machines | hardened<br>Steel, carbon              | Pointing                                                          | Э           | 60-80          | CT 2-CT 3              | К      |
| Machine tool<br>carriages               | Cast iron                              | Surface grinding with<br>the wheel face                           | 1841:<br>OB | 24-36          | C1-C2                  | Б      |
| ·                                       | 1                                      |                                                                   | КЧ:<br>ЭБ   | 36-16          | CM 1-CM 2              | к      |
| Machine tool                            |                                        | External cylindrical pre-<br>liminary grinding                    | Э           | 46             | C1                     | К      |
| quills                                  |                                        | External cylindrical<br>finish grinding                           | э :         | 80             | CT                     | В      |
|                                         | Charl and                              | External extindrical                                              |             | te en          | CMOCO                  |        |

Steel, high speed (OH-262 and OH-290 grade) Steel, hardened

Gear shaper cutters

Machine tool spindles

Magnets Measuring rulers Micrometer frames Steel, not hardened Steel, hardened Steel

Steel, hardened Steel, not hardened

4 1

ЭБ





External cylindrical pre-liminary grinding External cylindrical finish grinding External cylindrical grinding External cylindrical grinding surface grinding with the wheel face Surface grinding Surfaceignding Surfaceignding

46---60 CM 2-C 2 K

36 46-60 CM1-CM2 K
3 16-24 C1-C2 B
3 36-46 CM1-CM2 K
3 24 C2-CT1 K

| 1                                | 2                                         | 3                                                                                               | 4                   | 5                          | - 6                      | 7           |
|----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|----------------------------|--------------------------|-------------|
| Micrometer<br>frames             | Steel, not<br>hardened<br>Steel, hardened | Surface grinding with<br>the face of the wheel<br>Surface grinding with<br>the periphery of the | {}                  | 24 +36<br>24 -36<br>46 -60 | CM 1-C1<br>C1-C2<br>CM 1 | K<br>B<br>K |
|                                  | **                                        | wheel<br>Surface grinding with                                                                  | э                   | 24                         | CM 1-CM 2                | Б           |
| Micrometer drums                 | Steel, not                                | the face of wheel<br>External cylindrical                                                       | ю                   | 46 - 60                    | CM 2-C1                  | К           |
| Micrometer                       | hardened<br>Steel, hardened               | grinding<br>External cylindrical pre-                                                           | Э                   | 16                         | CM 1-CM 2                | К           |
| inserts                          |                                           | liminary grinding<br>External cylindrical                                                       | ав                  | 60 - 80                    | CM 1-CM 2                | K           |
|                                  | **                                        | finish grinding<br>Centerless external                                                          | э                   | 16                         | C1                       | 118         |
|                                  | **                                        | grinding<br>Internal grinding                                                                   | ac<br>ac            | 60 - 80<br>46 - 60         | CM 2-C 1<br>CM 1-C 1     | K           |
| Micrometer screws                | Steel, not hardened                       | Face grinding<br>Preliminary grinding of<br>faces and anvils                                    | 3                   | 46 -60                     | C1-C2                    | R           |
|                                  | Steel, hardened                           | Finish grinding of faces<br>and anvils                                                          | Э                   | 60                         | CM 1-CM 2                | 11          |
|                                  | **                                        | External cylindrical<br>ercliminary grinding                                                    | <b>•</b>            | 46 -60                     | CM 2-C2                  | К           |
|                                  |                                           | External cylindrical<br>finish grinding                                                         | э. эв               | 60 - 80                    | CM 2-C1                  | К           |
| Micrometer<br>thimbles           | Steel, not<br>hardened                    | External cylindrical<br>grinding                                                                | O :                 | 60                         | CM 2-C1                  | К           |
| thinnes                          | naroeneu<br>                              | Face grinding and<br>chamfering                                                                 | Э                   | 60                         | CM 2-C1                  | К           |
| Milling cutter<br>blades         | Steel, carbon and<br>high speed           | Sharpening<br>Cutting-off burrs                                                                 | 3                   | 36 - 16<br>36 - 46         | C1-C3<br>C1-C3           | B<br>K      |
| mades                            |                                           | Face grinding<br>Grinding of cutting edges                                                      | )<br>)B             | 36 -46<br>46 - 60<br>120   | cri<br>cri               | ii<br>K     |
| Morse taper                      | Steel, hardened                           | Resharpening<br>External cylindrical                                                            | 36                  | 160                        | CH-C2<br>CM1-CM3         | ii<br>li    |
| sockets                          |                                           | grinding<br>Internal preliminary                                                                | э                   | 16                         | CM1-C1                   | 16          |
|                                  |                                           | grinding<br>Internal finish grinding                                                            | эБ                  | 60 - 80                    | CM1-C1                   | К           |
| Pen-knives                       | Steel                                     | Grinding of tang and<br>back, rounding off<br>back                                              | Э                   | 46 -60                     | CR-CT1                   | В           |
|                                  |                                           | Sharpening (preliminary)                                                                        | 9                   | 60 - 80<br>140 - 186       | C1-C2                    | 17          |
| Pistons (auto-                   | Cast iron                                 | Sharpening (finishing)<br>Lapping of cutting edge<br>External cylindrical                       | - 5<br>184          | 220 - 280<br>36 - 16       | CM1-C1<br>CM1-CM2        | ii<br>K     |
| tractors)                        |                                           | grinding<br>External centerless                                                                 | 101                 | 36 -16                     | CM 2-C1                  | 18          |
|                                  | Steel                                     | grinding<br>External cylindrical                                                                | ю                   | 46                         | CM 1-CM 2                | К           |
|                                  | Aluminum                                  | grinding<br>External cylindrical                                                                | 1691                | 36 - 16                    | М 3-СМ 1                 | К           |
|                                  |                                           | grinding<br>Centerless cylindrical                                                              | 084                 | 46                         | М 3-СМ 1                 | К           |
|                                  | **                                        | grinding<br>Centerless cylindrical                                                              | ( )B                | 16 60<br>100               | M 3-C M 1<br>M 3         | 16          |
| Piston pins                      | Steel, not                                | grinding (finishing)<br>External centerless                                                     |                     | ::6                        | C2-CT1                   | K           |
| (auto-tractors)                  | hardened<br>Steel, hardened               | grinding<br>External centerless                                                                 | :)                  | 36 16                      | CM 2-C1                  | К           |
|                                  |                                           | preliminary grinding<br>External centerless                                                     |                     | 60 80                      | C2-CT2                   | к           |
|                                  |                                           | grinding<br>External centerless                                                                 | :)                  | 180                        | C1-C2                    | Б           |
|                                  |                                           | finish grinding<br>Lapping (1st operation)                                                      | 13:06               | 220                        | CT1<br>CT1               | Б           |
| Piston rings (auto-              | Cast iron                                 | Lapping (2nd operation)<br>Centerless external and                                              | 36;33<br>P31<br>(6) | 320<br>21—36<br>21—36      | CT1-CT2                  | - K         |
| tractor engines)                 | ,,                                        | internal rough grinding<br>External cylindrical                                                 | Ku                  | 25 36<br>36 -56            | CT 2-CT 3<br>CM 2-C 1    | R           |
|                                  | **                                        | grinding Preliminary bilateral surface grinding of faces                                        | ${Bq \brace G}$     | $\frac{24 - 36}{24 - 36}$  | C 2-CT 1<br>C 2-CT 1     | B           |
|                                  | ,,                                        | Surface grinding with<br>the periphery of the<br>wheel                                          | :)                  | 46 -60                     | СМ4-С4                   | К           |
| Piston rings                     | Malleable iron                            | Finish surface grinding<br>Rough external and                                                   | 189<br>3            | 100                        | C2<br>CT1                | K           |
| (aircraft and<br>diesel engines) |                                           | internal centerless<br>grinding                                                                 |                     |                            |                          | ••          |
|                                  | **                                        | Preliminary surface                                                                             |                     | 236                        | CTI                      | Б           |

| 1                                             | 2                            | 3                                                                                     | - 1           | 5                  | 6                     | 7      |
|-----------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------|--------------------|-----------------------|--------|
| Piston rings<br>(aircraft and                 | Malleable iron               | Finish surface grinding of faces                                                      | Э             | 60- 80             | C1-C2                 | К      |
| diesel engines)<br>Piston rod<br>(locomotive) | Steel                        | Lapping of faces<br>External cylindrical                                              | 163; 515<br>5 | 76<br>220          | C1<br>CMQ-C1          | Б      |
| Plain milling<br>cutters (with                | Steel, high speed            | Sharpening (with cup<br>and dish wheels)                                              | 516           | 60                 | CM 1-CM 2             | к      |
| coarse (eeth)                                 |                              | Lapping (with cup and dish wheels)                                                    | 13            | 180                | C2                    | 13     |
| Plough-frame<br>Plough-shares                 | Steel, not hardened          | Rough grinding<br>Surface rough grinding                                              | 9             | 16 - 24<br>16 - 24 | CT2-CT3<br>CT2-CT3    | B      |
| Plug gauges                                   | Steel, hardened              | External finish grinding<br>of measuring surface<br>(50 - 300 mm in dia-<br>meter)    | ä             | 46 -60             | CM2-C1                | К      |
| Plug gauges, end<br>locking types             | .,                           | External preliminary<br>grinding of measuring<br>surface (50 – 100 mm<br>in diameter) | э             | 16                 | CM 2                  | К      |
|                                               |                              | External finish grinding<br>of measuring surface                                      | Э             | 60                 | CM2                   | К      |
|                                               | **                           | Face finish grinding:<br>diameter 350 mm                                              | Ð             | 16 60              | CM2                   | К      |
| Plug gauge                                    |                              | diameter 50 100 mm<br>External preliminary                                            | 9             | 24 36<br>46        | C1-CM2                | K      |
| inserts                                       |                              | grinding of measuring<br>surface<br>External finish grinding                          | 516           | 60 80              | CM 1-CM 2             | к      |
|                                               |                              | of measuring surface<br>Face grinding                                                 | a ,           | 16 -80             | C1-C2                 | к      |
|                                               |                              | Grinding of centers                                                                   | ä             | 60-80              | टेईन्टिंग<br>टॉन्टर   | к      |
| Prismatic forming                             | Steel, high speed            | Chamter grinding<br>Sharpening (with cup                                              | Э<br>ЭБ       | 16 60<br>60        | CM2                   | K      |
| tools                                         |                              | wheels)<br>Lapping (with cup<br>wheels)                                               | 163           | 180                | C1-C2                 | Б      |
| Prisms for                                    | Cast iron                    | Surface grinding                                                                      |               | 56                 | CM 1-CM 2             | Б      |
| inspection<br>Pulleys                         |                              | Rough grinding after                                                                  | (101)         | 23                 | CT1-CT3               | К      |
|                                               | **                           | External preliminary<br>grinding of rims                                              | Rel           | 24<br>36           | CT 3-T 1<br>M 3-CM 2  | K      |
|                                               | **                           | Ditto, finishing<br>Internal grinding of hubs                                         | 184           | 46 60<br>36        | CM 2-C1<br>CM 1-CM2   | Б      |
| Punches                                       | Steel                        | External cylindrical grinding                                                         | Э             | 46 60              | CM 1-CM 2             | К      |
|                                               | Steel, hardened              | Internal grinding<br>External cylindrical<br>grinding                                 | 9             | 46 60<br>60        | CM 2-C1<br>C1         | K      |
| Rack-shaped<br>cutters                        | Steel, high speed            | Grinding of the tooth<br>working surfaces                                             | ЭБ            | 60                 | CM2                   | К      |
| Tuttes.                                       | .,                           | Sharpening of the faces<br>of the teeth (with cup                                     | 163           | 180                | C.3                   | Б      |
|                                               |                              | wheels)<br>Sharpening of the face<br>recesses of the teeth                            | ЭБ            | 80                 | CM2                   | K      |
| Rails                                         | Steel                        | Surfacing or welds<br>Removing corrugations                                           | . 3           | 16 21<br>16 21     | CT2-CT3<br>CT4-CT3    | Б      |
| Railway car axles                             |                              | External cylindrical grinding                                                         | 9             | 36 16              | CM 1-C1               | К      |
| Railway wheels                                | Steel, not                   | External cylindrical                                                                  | Э             | 16 -23             | CT1-CT3               | Б      |
| and rims                                      | hardened<br>Steel, manganese | rough grinding<br>External cylindrical<br>rough grinding                              | Э             | 16 24              | CT 2-T 1              | К      |
| Razors                                        | Steel, not<br>hardened       | Grinding of tang. taking-<br>off burr, swaging and<br>grinding of back edges          | Э             | 46 - 60            | C2-CT1                | К      |
|                                               | Steel, hardened              | Edge profiling<br>Back profiling                                                      | 2             | 16                 | C1-CT1<br>CM2-C1      | K      |
|                                               |                              | Preliminary sharpening                                                                | - 3<br>- 36   | 100 120<br>60 80   | CM 1-CM 2             | K      |
| Reamer blades                                 | Steel, earbon and            | Final sharpening<br>Surface grinding with                                             | - 60          | 140180<br>2436     | CM 1-CM 2<br>CM 2-C2  | В      |
| reamer planes                                 | high speed                   | the wheel face<br>Grinding of edges, faces                                            | {}<br>}       | 36 16<br>36 -16    | M 3-CM 1<br>CM 1-CM 2 | K      |
|                                               | **                           | and relieving                                                                         |               |                    | C1-C2                 |        |
| Reamers (hand,<br>cylindrical and             | Steel, carbon                | Sharpening<br>Sharpening (with cup<br>wheels)                                         | 9B            | 36 - 46<br>- 60    | CM 2                  | K      |
| tåper)                                        |                              | Lapping of cutting edges<br>Hand lapping of cutting                                   | 163<br>36     | 180<br>240         | C 5                   | B<br>K |
|                                               |                              | edges with sticks                                                                     |               |                    |                       |        |





| 1                                       | 2                                      | 3                                                                                                                                | 4            | 5 .                     | 6                                 | 1.7      |
|-----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|-----------------------------------|----------|
| Reamers (hand,<br>cylindrical with      | Cemented carbides                      | Sharpening of cutting<br>edges (with cup<br>wheels)                                                                              | 163          | 60                      | М :                               | К        |
| inserted blades)                        |                                        | Lapping of cutting edges<br>Hand lapping of cutting                                                                              | 163          | 180<br>220              | CM 1<br>C1                        | B<br>K   |
| Reamers                                 | Steel, carbon and                      | egdes with sticks<br>Cutting-off                                                                                                 | Э            | 46 - 60                 | CT1-CT2                           | Б        |
| (machine)                               | high speed                             | Surface grinding of<br>cutting edges with the                                                                                    | Э            | 36 -16                  | M 3-C M 1                         | К        |
|                                         | **                                     | wheel face<br>Ditto, with the peri-<br>phery of the wheel                                                                        | а            | 46 -60                  | CM 1-CM 2                         | 16       |
|                                         | ***                                    | External cylindrical<br>preliminary grinding                                                                                     | ЭБ           | 3646                    | C2-CT1                            | К        |
|                                         | **                                     | External cylindrical<br>finish grinding                                                                                          | ;)           | 46- 60                  | CM 1-C1                           | К        |
|                                         |                                        | Flute grinding<br>Relieving                                                                                                      | 9            | 4669<br>4669            | C1-C2<br>CM1-CM2                  | K        |
|                                         |                                        | Sharpening of cutting<br>edges                                                                                                   | Э            | 46- 60                  | CM 1-CM 2                         | 17       |
| Reamers (shell)                         | Cemented carbides<br>Steel, high speed | Ditto<br>Sharpening of cutting<br>edges (with cup<br>wheels)                                                                     | 9B           | 60 -80<br>60            | M3-CM4<br>CM3                     | K        |
|                                         | **                                     | Lapping of cutting edges<br>Hand lapping of cutting                                                                              | 13<br>36     | 180<br>210              | C 2                               | К        |
| Reamers (shell,<br>inserted blade)      |                                        | edges with sticks<br>Grinding of the front<br>taper part, straight<br>part and the rear<br>taper part of the<br>reamer (with cup | Э            | ño                      | CM 2                              | К        |
|                                         |                                        | wheels)<br>Sharpening of cutting                                                                                                 | ЭΒ           | 60                      | CM 2                              | К        |
|                                         | **                                     | edges<br>Lapping of cutting edges                                                                                                | 163          | 180                     | C 2                               | Б        |
|                                         | **                                     | (with cup wheels)<br>Hand lapping of cutting                                                                                     | ав           | 240                     | C 2                               | К        |
| Rifle barrels                           | Steel                                  | edges with sticks<br>External cylindrical                                                                                        | ю            | 46                      | C1                                | 13       |
| Ring gauges<br>(setting up)             | Steel, hardened                        | grinding<br>Internal preliminary<br>grinding:                                                                                    |              |                         |                                   |          |
| . *                                     |                                        | diameter 3—15 mm<br>diameter 15—10 mm<br>diameter 40—120 mm<br>Internal finish grinding:                                         | ЭБ<br>Э<br>Э | 60-80<br>46-80<br>46-60 | C2-CT4<br>C1-CT3<br>CM2-C4        | K<br>K   |
|                                         |                                        | diameter 3—15 mm<br>diameter 15—40 mm                                                                                            | ЭБ<br>Э      | 80-100<br>46-60         | C1-C2<br>CM2-C1                   | K        |
| Riveted joints                          | Steel                                  | diameter 40—120 mm<br>Snagging after riveting                                                                                    | (3)          | 4660<br>2436            | CM 1-CM 2<br>C1-CT 2<br>CT 2-CT 3 | 16       |
| Rolled dies                             | Steel, carbon and                      | Thread grinding-                                                                                                                 | 36           | $^{24-36}_{-120-180}$   | C1-C2                             | . Б<br>К |
|                                         | high speed                             | —1st operation<br>Thread grinding—<br>—2nd operation                                                                             | ав           | 240-280                 | C1                                | К        |
| Roller bearing                          | Bearing steel                          | Thread finish grinding<br>External cylindrical                                                                                   | ac           | . 320-M 28<br>46        | CM 2-C1<br>CM 2-C1                | R        |
| races                                   | **                                     | preliminary grinding<br>External cylindrical<br>finish grinding                                                                  | Э            | 60-80                   | CM 2-C1                           | К        |
|                                         | **                                     | External centerless<br>grinding                                                                                                  | Э            | 6080                    | CM4-C4                            | К        |
|                                         | **                                     | Internal grinding<br>(bores less than 15 mm)                                                                                     | Э            | 60-80                   | C 2-CT 1                          | к        |
|                                         | **                                     | Internal grinding<br>(bores over 15 mm)                                                                                          | ЭБ           | 46 - 60                 | CM1-C1                            | К        |
| Rollers (cylindric-<br>al) for bearings | Bearing steel,<br>not hardened         | External centerless<br>grinding of rods                                                                                          | Э            | 16                      | C1-C2                             | К        |
|                                         | Bearing steel,<br>hardened             | Preliminary external centerless grinding                                                                                         | Э            | 4660                    | C1                                | к        |
|                                         |                                        | External centerless<br>grinding (semi-finishing)                                                                                 | 9            | 6080                    | CT                                | В        |
| Rollers (cylindric-                     | Bearing steel,                         | Ditto (finishing)<br>Preliminary surfacing                                                                                       | 6            | . 100 120<br>46 60      | CT<br>C1                          | B        |
| al and spiral)<br>for bearings          | not hardened<br>Bearing steel,         | of ends<br>Finish surfacing                                                                                                      | {}           | - 46<br>80              | C1-CT1                            | B        |
| Rollers (spherical)                     | hardened<br>Bearing steel,             | Preliminary external                                                                                                             | э            | 80                      | CTI                               | К        |
| for bearings                            | hardened ,.                            | centerless grinding<br>Semi-finish external                                                                                      | Э            | 100                     | CT                                | В        |

| 1                                          | 2                               | 3                                                                         | 4             | , ä                     | - 6                          | 7       |
|--------------------------------------------|---------------------------------|---------------------------------------------------------------------------|---------------|-------------------------|------------------------------|---------|
| Rollers (spherical)<br>for bearings        | Bearing steel,<br>hardened      | Finish external centerless<br>grinding                                    | э             | 120                     | CT                           | В       |
| Rollers (taper)                            | Bearing steel.                  | Preliminary centerless                                                    | (5)           | 46                      | CT1                          | К       |
| for bearings                               | not hardened<br>Bearing steel,  | taper grinding<br>Semi-finish centerless                                  | : 19          | 60<br>100               | CT                           | B       |
|                                            | hardened                        | taper grinding                                                            |               |                         |                              |         |
|                                            | Bearing steel,<br>hardened      | Finish centerless taper<br>grinding                                       | Э             | 120                     | CT                           | В       |
|                                            | "                               | Grinding of taper roller<br>bases                                         | Э             | 80                      | CT1-CT2                      | К       |
| Rolls, Cold mills                          | Chilled iron                    | Regrinding<br>External cylindrical                                        | - K9<br>- K9  | 4060<br>36              | C1-C2<br>C1-CT1              | B       |
|                                            | **                              | rough grinding<br>External cylindrical<br>grinding (satin finish)         | 18Ч           | 4660                    | C1-C2                        | Б       |
|                                            | **                              | External cylindrical<br>grinding (extra fine<br>finish)                   | 164;<br>163   | 220                     | CM 2-CM 1                    | ь       |
|                                            | Steel,<br>not hardened          | External cylindrical<br>rough grinding                                    | Э             | 16 -24                  | C2-CT1                       | ъ       |
|                                            | "                               | External cylindrical grinding                                             | Э             | 3646                    | C1-CT1                       | Б       |
|                                            | Steel, hardened                 | Regrinding<br>External cylindrical<br>rough grinding                      | 913           | 60 -80<br>3616          | CM 2-C1<br>C1-C2             | K       |
|                                            | **                              | External cylindrical<br>grinding (satin finish)                           | 96            | 100 -120                | СМ 1-СМ 2                    | К       |
|                                            | "                               | External cylindrical<br>grinding (extra fine<br>finish)                   | ЭБ; КЗ        | 220240                  | CM 1-CM 2                    | Б       |
|                                            | Steel, high speed<br>           | Regrinding<br>External cylindrical                                        | ЭБ<br>Э       | 60 - 490<br>3646        | CM 1-CM 2                    | K       |
|                                            | **                              | preliminary grinding<br>External cylindrical<br>finish grinding           | ac .          | 80100                   | CM 4-CM 2                    | К       |
| Rolls, Hot mills                           | Chilled iron                    | Regrinding<br>External cylindrical<br>rough grinding                      | 184<br>184    | 3646<br>1624            | C1-CT2<br>CT2-CT3            | Б       |
|                                            | **                              | External cylindrical preliminary grinding                                 | кч            | 24 -36                  | CT1-CT2                      | Б       |
|                                            |                                 | External cylindrical<br>finish grinding                                   | 189           | 46 -60<br>6080          | C1-C2                        | Б<br>К; |
| Delle Desemble                             |                                 | Hand surfacing by sticks                                                  | 101           | 24                      | CM 2-C1                      | Б<br>Б  |
| Rolls, Paper mills                         | Brass or copper                 | Regrinding<br>External cylindrical<br>rough grinding                      | ivi           | 36 46                   | CM 1-CM 2                    | Б<br>К  |
|                                            | **                              | External cylindrical<br>finish grinding                                   | 164           | 100 -150                | М 2-М 3                      |         |
| Round split<br>thread dies                 | Steel, carbon and<br>high speed | Surface grinding<br>Chamfering                                            | 9<br>9        | 24 36<br>60 80<br>60 80 | M3-CM1<br>CT1-CT2<br>CT1-CT2 | K       |
| Safety razor<br>blades                     | Steel, hardened                 | Sharpening<br>Roughing:<br>1st operation                                  |               | 180                     | M3                           | : Б     |
|                                            | **                              | Semi-finishing:<br>2nd operation                                          | ə; ə <b>s</b> | 220210                  | CM 1                         | Б       |
|                                            | **                              | Final finishing:<br>3rd operation<br>Resharpening                         | 36<br>36 ;6   | M 14<br>220210          | CT1-CT2<br>C1-C2             | Б       |
| Saw blades                                 |                                 | Sharpening:<br>coarse pitch                                               | э             | 4660                    | C2-CT1                       | Б       |
| Scrapers                                   | Steel, carbon                   | fine pitch<br>Sharpening of cutting                                       | 9B            | 80 120<br>46            | CM 2-C1<br>CM 2-C2           | K       |
| Screw drivers<br>Shear blades              | Steel, hardened                 | edges<br>Sharpening<br>Sharpening (with                                   | 3             | $\frac{36-46}{36}$      | C1-CT1<br>CM2-C1             | К       |
| (power metal<br>shears)<br>Side and face   | Steel, high speed               | segmental wheels)<br>Ditto (with ring wheels)<br>Grinding of blades (out- | ac            | 36 -46<br>60            | CM 1-CM 2<br>C1              | Б       |
| milling cutters<br>with inserted<br>blades |                                 | faces) Sharpening of cutting                                              | ав            | 60                      | CM 2                         | K       |
|                                            |                                 | edges (with cup<br>wheels)                                                | 163           | 189                     | C 2                          | Б       |
| Side milling                               | .,                              | Lapping of cutting edges<br>(with cup wheels)<br>Sharpening of cutting    | 96            | 60                      | CM2                          | К       |
| cutters                                    |                                 | edges (with cup wheels)<br>Ditto, lapping (with cup                       |               | 180                     | C2                           | Б       |
| !                                          |                                 | wheels) Lapping of cutting edge                                           | ЭБ            | 240                     | C2                           | к       |
| į                                          | ",                              | radius (with sticks by<br>hand)                                           |               |                         | ı                            | 1       |





| 1                                              | 2                               | 3                                                                | 4           | 5                   | 6                        | 7            |
|------------------------------------------------|---------------------------------|------------------------------------------------------------------|-------------|---------------------|--------------------------|--------------|
| Skates                                         | Steel.                          | Grinding of runner side                                          | Э           | 3646                | CM 2-C1                  | Б            |
|                                                | not hardened                    | Hand sharpening                                                  | э           | 36-46               | C1-C2                    | К            |
| Slot milling                                   | Steel, high speed               | External tooth grinding                                          | Э           | 60                  | CM 2                     | К            |
| cutters                                        |                                 | (outside diameter) Flute cutting and sharpening of cutting       | ЭБ          | 4660                | C 1                      | 16           |
| Snap gauges                                    | Steel.                          | edges<br>Surface grinding with                                   | (a)         | 24                  | C2-CT1                   | $\mathbf{K}$ |
| Snap gausce                                    | not hardened,<br>stamped        | the wheel face<br>Surface grinding, with<br>the periphery of the | 6           | 25<br>46—60         | CT1-CT2<br>CM1-CM2       | B            |
|                                                | ,,                              | wheel<br>Surface grinding of<br>working measuring                | э           | 60                  | CM 1                     | К            |
| Spades                                         | Steel                           | surfaces<br>Pointing                                             | 0<br>184598 | 21 :                | CT 2-CT 3<br>C 1-C 2     | Б<br>Б       |
| Spindle-stock<br>housings of<br>machine tools  | Cast iron                       | Surface grinding with<br>the wheel face                          | 101;315     | . 1                 |                          |              |
| Spline shafts                                  | Steel.                          | External cylindrical                                             | • э         | 36 - 46             | C2-CT1                   | К            |
|                                                | not hardened<br>Steel, hardened | grinding<br>External cylindrical<br>grinding                     | а           | 46                  | CM 2-C1                  | . К          |
|                                                |                                 | Centerless external                                              | Э           | 46                  | C1-C2                    | К            |
|                                                |                                 | grinding<br>Surface spline grinding                              | 9           | 4669<br>1624        | CM 2-C2<br>CT 2-CT 3     | K            |
| Springs, coil                                  | Steel                           | Rough grinding<br>(squaring ends)<br>(Grinding of small size     |             | 60                  | CI                       | · K          |
|                                                | **                              | coil                                                             |             |                     | CTI                      | - 13         |
|                                                |                                 | Ditto, of medium size                                            | 9           | 36                  |                          |              |
|                                                |                                 | Ditto, of large size coil                                        | 3           | 21<br>21            | CT 2<br>CT 2             | - K          |
| Springs, leaf                                  | '                               | Grinding of eyes Chamfering                                      | 1 3         | 16 25               | CT2-CT3                  | 17           |
| Springs, rail cars                             | : ::                            | Rough grinding<br>(squaring ends)                                | 9           | 16 - 25             | CT 2-CT 3                | В            |
| Squares                                        | Steel, hardened                 | Surface grinding with<br>the face of the wheel                   | Э           | 21                  | СМ 2-С 2                 | Б            |
| Straight and<br>helical gear<br>shaper cutters | Steel, high speed               | Sharpening of the faces<br>of the teeth                          | ЭБ          | 60                  | CMT                      | 11           |
| (disc type)                                    |                                 | Lapping the faces of the                                         | 153         | 180                 | · C2                     | Б            |
|                                                |                                 | teeth .                                                          |             |                     |                          |              |
| Strikers of scal-<br>ing hammers               | Steel, hardened                 | Centerless external<br>grinding<br>Surface grinding              | 9           | 4660<br>46          | CM 1-CM 2<br>- CM 1-CM 2 | 16           |
| Surface plates for<br>inspection               | Cast iron                       |                                                                  | {}          | 36                  | C1-C2                    | Б            |
| Taps                                           | Steel, carbon and<br>high speed | Rough grinding                                                   | 9           | 36                  | CT1-CT2                  | Б            |
|                                                | Steel, hardened                 | Surface grinding of<br>square end                                | э           |                     | C1-C2                    | , K          |
|                                                |                                 | External cylindrical grinding                                    | 9           | 46 60               | CM 2-C2                  | K            |
|                                                |                                 | Shank grinding<br>Cutting of flutes (from                        | 9           | 46 60<br>120        | C1-C2                    | E<br>K       |
|                                                |                                 | solid)<br>Grinding of flutes                                     | э           | \$6 - 60            | C1-C2                    | B            |
|                                                |                                 | Sharpening<br>Thread grinding:                                   |             | 4689                | CM 2-C1                  | K            |
|                                                |                                 | pitch up to 1.0<br>, 1.01.5 mm                                   | 96<br>96    | 320 M 28<br>280 320 | C1-C2<br>CM2-C1          | K            |
|                                                |                                 | . 1.5—2.5 mm                                                     | ; 56        | 180240              | CM 1-CM 2                | 13           |
|                                                |                                 | 2.54.0 mm                                                        | 96          | 120 180             | CMI                      | : K          |
| Tapered counter-<br>sinks                      | Steel, high speed               | Sharpening of the front face of teeth                            | 96          | 46                  | CM 2                     |              |
| em Ke                                          |                                 | Relief grinding                                                  | ЭБ          | 60                  | CM2                      | К            |
|                                                |                                 | Lapping External actinuteion                                     | 163         | 180                 | C2-CT1                   | B            |
| Textile machinery<br>spindles                  | Steel, not<br>hardened          | External cylindrical<br>grinding<br>External cylindrical         | 9           | 36                  | C1-C2                    | K            |
|                                                | Steel, hardened                 | grinding                                                         |             |                     |                          | 1            |
|                                                |                                 | Centerless external<br>grinding                                  | 9           | 46 60<br>46         | C1-CT2<br>CM1-CM2        | 118          |
| Turead micro-<br>meters                        | **                              | External cylindrical<br>grinding of inserts                      | 1 -         |                     |                          | 1            |
| ********                                       |                                 | External cylindrical<br>grinding of shanks                       | Э           | 60                  | CM 1                     | K            |
|                                                |                                 | Face grinding and                                                | 1 3         | 16                  | CM 2-C1                  | 110          |

| 11                               | 2                          | 3 4 5 6                                         |                | 6                    | 7                     |        |
|----------------------------------|----------------------------|-------------------------------------------------|----------------|----------------------|-----------------------|--------|
| Thread milling<br>cutters (pitch | Steel, high speed          | Thread grinding                                 | 163            | 240-280              | G2-CT1                | 13     |
| 1—3 mm)<br>Thread plug<br>gauges | Steel, hardened            | Cutting of thread (from solid):                 |                |                      |                       |        |
|                                  |                            | pitch up to 0.75 mm                             | {36}           | M 28                 | C 2                   | 18     |
|                                  |                            | -14-15 4 0 4 5                                  | 196            | 320                  | T 2                   | : 13   |
|                                  |                            | pitch 1.0-1.5 mm                                | (36)<br>(36)   | 320<br>220           | C2                    | K<br>E |
|                                  |                            | pitch 1.75 mm                                   | (9E)           | 280                  | T i                   | - 10   |
|                                  | 19                         | Thread grinding<br>(threads precut):            | (96)           | 180                  | CT 3                  | · E    |
|                                  |                            | pitch up to 2,00 mm                             | GG             | 280                  | C1                    | K      |
|                                  |                            |                                                 | ac j           | 220                  | CT 3                  | - 15   |
|                                  |                            | piten from 2.5<br>to 4.0 mm                     | {3E            | 220<br>180           | CM 2<br>CT 2          | B      |
|                                  |                            | pitch from 4,5 up                               | (36)           | 220                  | CM 1                  | K      |
|                                  |                            | to 5.0 mm                                       | 1205           | 150                  | CT2                   | Б      |
|                                  |                            | pitch from 5.5 up<br>to 6.0 mm                  | 36}            | 120                  | CM 1<br>CT 1          | K      |
|                                  |                            | Surfacing of centers                            | 9              | 46—60<br>46—60       | C1-G2                 | K      |
|                                  |                            | Face grinding of measur-                        | əБ             | 4660                 | CM 1-CM 2             | K      |
|                                  |                            | ing sections with the<br>periphery of the wheel |                |                      |                       | 1      |
|                                  |                            | Diffe, with cup wheels                          | ЭБ             | 3646                 | M 3-CM 1              | 10     |
|                                  |                            | Preliminary eylindrical                         | 96             | 46                   | CM 1-CM 2             | K      |
|                                  |                            | grinding of shanks and<br>undercutting of faces |                |                      |                       |        |
|                                  | 19                         | Ditto, finishing                                | ЭБ             | 60                   | CM 1                  | K      |
| hread plug<br>gauges ("go")      |                            | External extindrical                            |                |                      |                       |        |
| ganges ( go )                    | 1                          | finish grinding:<br>diameter 3: –50 mm          | ЭB             | 60-80                | CM 2-C1               | К      |
|                                  |                            | diameter 50-130 mm                              | - ac           | 4660                 | CM 2-C1               | R      |
|                                  |                            | Chamfer finish grinding                         | OB<br>OB       | 80<br>80             | C1<br>C1              | K      |
|                                  |                            | Rounding off thread<br>edges from both sides    | .,,,           | 80                   | . 1                   | К      |
| bread plug                       |                            | External cylindrical                            |                |                      |                       | ĺ      |
| gauges ("not<br>go")             |                            | finish grinding:                                | ас             | 80                   | 614                   | ١      |
| E. /                             |                            | diameter 3—50 mm<br>diameter 50—130 mm          | őb             | 60                   | C1<br>C1              | K      |
|                                  |                            | Thread finish grinding                          | OE             | 180-320              | C2                    | · 16   |
| Chread ring<br>gauges            |                            | Surface grinding (with                          | { <del>3</del> | $\frac{24}{24 - 36}$ | CM 2-C1               | 1 15   |
| Author Co.                       |                            | the wheel face)<br>Surface grinding (with       | 13             | 3646                 | M 3-CM 1<br>CM 1-CM 2 | K      |
|                                  |                            | the periphery of the                            |                |                      |                       |        |
|                                  |                            | wheel)<br>Internal grinding                     | - 216          | 6080                 | M 3-C M 1             |        |
|                                  |                            | Preliminary thread                              | 515            | 100                  | CM 2                  | K      |
|                                  |                            | grinding                                        |                |                      |                       | 1      |
|                                  |                            | Finish thread grinding.                         | ЭБ             | 150                  | C2                    | 16     |
|                                  |                            | pitch 2-3 mm<br>pitch 3-5 mm                    | ЭБ             | 120                  | C1                    | i ii   |
| Threading tools                  | Steel, carbon,<br>hardened | Surface grinding (with                          | Э              | 3646                 | M 3-CM 1              | 16     |
|                                  |                            | cup wheels)<br>Sharpening                       | Э              | 4660                 | CM 2-C1               | K      |
|                                  | Steel, high speed          | Sharpening of cutting                           | ас             | 60                   | CM 2                  | ic     |
|                                  |                            | edges and relieving                             |                |                      |                       |        |
|                                  |                            | (with cup wheels)<br>Lapping (with cup          | 163            | 180                  | C2                    | 13     |
|                                  |                            | wheels)                                         |                |                      |                       |        |
|                                  | **                         | Hand lapping (with                              | 96             | 240                  | CI                    | K      |
| Tubes                            | Steel                      | sticks)<br>Internal rough grinding              | Э              | 16- 25               | CT1-CT2               | 110    |
|                                  |                            | and end surfacing                               |                |                      |                       | i      |
|                                  | **                         | Cylindrical external grinding                   | Э              | 46                   | CM 2-C1               | К      |
|                                  | **                         | Centerless external                             |                | 4660                 | C1-C2                 | 110    |
|                                  |                            | grinding                                        |                |                      |                       |        |
|                                  |                            | Culting-off                                     | 8              | 36 46<br>46          | CT 1-CT 3             | - B    |
|                                  | Steel, stainless           | Culting-off                                     | 6              | 60                   | čř                    | ; B    |
|                                  | chrome-molib-<br>denum     |                                                 |                |                      |                       | 1      |
|                                  | Aluminum or                | Cutting-off                                     | ю              | 24 36                | CT                    | В      |
|                                  | brass                      |                                                 |                |                      |                       |        |
|                                  | Cast iron                  | Internal rough grinding                         | {189<br>[184]  | 16- 24               | CT 2-CT 3<br>CT 3-T 1 | 18     |
|                                  | Copper                     | and end surfacing<br>Cylindrical external       | 183            | 16- 21<br>3616       | CM1-CM2               | - 18   |
|                                  |                            | grinding                                        |                |                      |                       |        |
| Furning tools                    | Cemented carbides          | Cutting-off                                     | 174<br>163     | 60-80<br>36-46       | CM1-CM2               | B      |
|                                  | t emented carbides         | Preliminary wet sharpen-                        | . no           | 30-46                | CMT-CM2               | . 15   |



| 1                                           | 5                             | 3                                                                            | 4          | 5                  | 6                 | 7   |
|---------------------------------------------|-------------------------------|------------------------------------------------------------------------------|------------|--------------------|-------------------|-----|
| Turning tools                               | Cemented carbides             | Finish wet sharpening                                                        | 163        | 60 - 80            | CM 1-CM 2         | K   |
|                                             |                               | (with cup wheels) Preliminary sharpening (with the periphery of              | 163        | 3656               | CM4-CM2           | Б   |
|                                             |                               | the wheel) Finish sharpening (with the periphery of the                      | 163        | 6080               | м з-см 1          | К   |
|                                             |                               | wheel)<br>Lapping                                                            | 163        | 180<br>36-46       | C1<br>C1-C2       | Б   |
|                                             | Steel, carbon and             | Grinding of tool shank<br>Hand lapping of cutting                            | öβ         | 240                | 61-62             | K   |
| Turning tools for                           | high speed                    | edges with sticks<br>Sharpening                                              | - 0        | 60                 | C1-C2             | К   |
| light work<br>Ditto, for                    |                               | Ditto                                                                        | :)         | 1660               | C1-C2             | 1c  |
| medium work<br>Ditto, for heavy             |                               | Ditto                                                                        | а          | 3616               | C2-CT1            | -17 |
| work<br>Curning profile<br>tools            |                               | Hand sharpening                                                              | .)         | \$660              | CM1-C1            | К   |
| Cwist drills                                | Steel, carbon, not            | Machine sharpening<br>External cylindrical                                   | 3          | 4660<br>3646       | CM1-CM2<br>C3-CT4 | K   |
|                                             | hardened<br>Steel, carbon and | grinding<br>Point thinning                                                   | <b>:</b> ) | 60                 | 01-02             | К   |
|                                             | high speed                    | Cutting-off (dry)<br>Cutting-off (wet)                                       | 3          | 36 -16<br>60       | CT1-CT2<br>CT-T   | B   |
| Twist drills<br>(0.5—5 mm<br>diameter)      | ::                            | Centerless external<br>grinding                                              | ä          | 6080               | CM 2-C1           | ič  |
| (tameter)                                   |                               | Relief grinding<br>Sharpening of cutting<br>edges                            | ))<br>(16) | 80<br>100140       | C1-C2<br>CM1-CM2  | K   |
| l'wist drills<br>(5—15 mm<br>diameter)      |                               | Centerless external<br>grinding                                              | Э          | 1660               | 0.1-0.5           | 17  |
| diameter)                                   |                               | Grinding of taper shank is<br>Sharpening of cutting<br>edges                 | 9          | \$660<br>\$660     | C1-C2<br>C1-C2    | K   |
| Fwist drills<br>(15—40 mm                   |                               | Centerless external<br>grinding                                              | :)         | \$660              | C1-C2             | К   |
| diameter)                                   |                               | Centerless grinding of<br>taper shanks                                       | Э          | \$6 ~60            | C.M3-C1           | К   |
|                                             | ".                            | Grinding of flutes<br>Sharpening of cutting<br>edges                         | 5          | \$6 60<br>\$6 - 60 | C1-C2<br>C1-C2    | K   |
| fwist drills (over<br>40 mm dia-<br>meter)  |                               | Centerless external grinding                                                 | Ð          | 1660               | C1-CT1            | R   |
| meters                                      |                               | Centerless grinding of<br>taper shanks                                       | 9          | 46                 | CM 2-C1           | К   |
|                                             |                               | Grinding of flutes<br>Sharpening of cutting                                  | 3)         | 16<br>36           | C1-C5             | R   |
| l'wist drills with                          | Steel, high speed             | edges<br>Point thinning (hand)                                               | 96         | 46                 | CM 1-CM 2         | K   |
| taper shanks<br>Universal joint<br>knuckles | Steel                         | Preliminary surface<br>grinding of faces                                     | :)         | 36                 | CT1               | K   |
| RIIII RII                                   |                               | Finish surface grinding<br>of faces                                          | :)         | \$660              | 0.5               | K   |
|                                             |                               | External cylindrical<br>grinding of shoulders                                | Э          | 60                 | CT2               | R   |
|                                             |                               | Centerless external grinding of journals                                     | :)         | 60                 | CT2               | К   |
| Valves, (auto-<br>tractor engines)          |                               | Preliminary grinding of<br>valve rod faces                                   | Э          | 24 - 36            | CM 2-C 1          | : Б |
|                                             |                               | Finish grinding of valve<br>rod faces                                        | Э          | 3616               | CM 1-CM 2         | В   |
|                                             |                               | Chamfer grinding<br>Preliminary centerless<br>grinding                       | 9          | 4660<br>3646       | C1-C2<br>C2-CT1   | - K |
|                                             |                               | Finish centerless grinding<br>Centerless grinding of<br>radius and adjoining | 9          | 60<br>80           | CI-C2<br>BT1      | R   |
| Valve seats                                 | Cast iron                     | rod taper<br>Chamfer finish grinding<br>Preliminary grinding                 | 6<br>P3    | 100<br>46          | CT2               | K   |
| inin andis                                  | Alloy steel                   | Finish grinding                                                              | ŘЧ<br>ЭБ   | 150                | CM 2              | K   |
|                                             | Stellii.                      | Preliminary grinding<br>Finish grinding<br>Preliminary grinding              | 36<br>36   | 150<br>80          | CM 2<br>CM 1      | K   |
|                                             | "                             | Finish grinding                                                              |            | 120-150            | M3                | R   |

| 1                                              | 2                         | 3                                             | 4   | 5      | ' 6       | 7  |
|------------------------------------------------|---------------------------|-----------------------------------------------|-----|--------|-----------|----|
| Vernier caliper                                | Steel, hardened           | Finish grinding                               | :)  | 60-80  | CM 1-CM 2 | K  |
|                                                |                           | Chamfer grinding                              |     | 1660   | CM 2-C1   | 18 |
| Welds                                          | Steel                     | Weld surfacing                                | :)  | 16 24  | CT1-CT2   | 15 |
| Wheel rims<br>(automobile)                     |                           | Rough grinding after<br>welding               | - 0 | 4.1    | cha-cha   | 15 |
| Wire for thread<br>measuring                   | Silver steel,<br>hardened | External centerless pre-<br>liminary grinding | 916 | 6080   | CM 2-C1   | К  |
|                                                |                           | External centerless<br>finish grinding        | 516 | 150    | СИ 1-СИ 2 | W  |
| Work rest blades<br>for centerless<br>grinders | Steel, high speed         | Grinding of angular top<br>of blade           | а   | 46 60  | CM 1-CM 2 | К  |
| Wrenches                                       | Steel                     | Surface grinding (hand)                       | :)  | 16. 24 | CT1-CT3   | 15 |
|                                                |                           | Rough grinding of<br>contour surfaces         | 9   | 24- 36 | CT2-CT3   | 15 |
|                                                | Malleable iron            | Rough grinding of openings                    | 123 | 16- 21 | CT 1-CT 2 | 17 |

Table 65
GRINDING WHEEL RECOMMENDATIONS FOR NON-METALLIC MATERIALS

| 1   2   3   4   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Finish grinding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Cutting-off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Surface grinding   101   10-21   CAL2-CAL2-CAL2-CAL2-CAL2-CAL2-CAL2-CAL2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Bakelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date      |        |
| External cylindrical grinding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     |
| Finish surface grinding   151   50 - 50   CA12-50   CA12-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA14-50   CA   |        |
| Cultime of   Hand rough grinding with slicks   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150     |        |
| Commont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Surface grinding with the wheel face   134   275   CM1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Control   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutt   |        |
| Coal         surface grinding with the wheel faces state or grinding with the periphers of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of the wheel of                                 |        |
| Surface grinding with the periphery   159   36   CMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| External cylindrical grinding   151   36   CM2556   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151   151      | 17     |
| Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off   Cutting-off      | - R    |
| Concepte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 6    |
| Cork         Surface grinding         151         56         CMT           becorative vitrified         Surfacing of ends         19         15-24         CMLC           plates         cutting-off         RQ         16-24         CT1-C           Ebonite         External cylindrical grinding         151         36-36         CMLC           Cutting-off         Cutting-off         CT1-C         CT1-C         CT1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Diates   Culting-off   K9   16-24   CT1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M 2 B  |
| Ebonite External cylindrical grinding BH 36-46 CM4-C Cutting-off RH 36-46 CT4-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Cutting-off Rt 36—46 CT1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Electrodes Surface grinding EU 24-36 CM4-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| Cutting-off E9 25 CT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Б      |
| Fibre Surface grinding with the wheel face 134 : 16 CM1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| External cylindrical grinding 434 36 CM 1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Cutting-off 134 36—46 CT1+C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Fireproof materials Surfacing of ends Eq. (52) CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G CM2-G C |        |
| Cutting-off R9 25 CT1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Finish surface grinding ISU 60-80 CMI-C<br>External cylindrical grinding ISU 36-46 CMI-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Internal grinding 184 46- 80 CM 1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Face odging (optical glass) 315 100- (80   C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Б      |
| Face edging (show-window plates) 315 80- 120 C1-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 6    |
| Face edging (various glass parts) K9 80- 100   CM2-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Cutting-off (lew speedwet) KY 80- 100 CM 2-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 B    |
| Cutting-off (optical glass) 163 120-180 CM1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2 B   |
| Glass (lenses) Edge grinding 3B 220 CT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M 2 16 |
| Glass (mirrors) Preliminary face edging 153 80 CM 1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M T K  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Cutting-on the company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K      |
| Glass (tumblers) Facet grinding 120 120 170 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K      |





|                     |                                                     |              |         |                    |   | onta.  |
|---------------------|-----------------------------------------------------|--------------|---------|--------------------|---|--------|
| 1                   | 2                                                   | ] 3          | 4       | 5                  | 1 | 6      |
| Glass (windshield)  | Preliminary face edging                             | - 96         | 80      | C2                 |   | K      |
|                     | Finish face edging                                  | 96           | 150-180 | CT1                |   | K      |
|                     | Edging                                              |              | 100     | CT2                |   | H      |
|                     | Cutting-off (low speed—wet)                         | 101          | 80-100  | CM 1-CM 2          |   | Б      |
| Granite             | Surface grinding with the wheel face                |              | 16-24   | M 3-CM 1           |   | K      |
|                     | Surface grinding with the periphery<br>of the wheel | 164          | 30      | CM 1-CM 2          |   | K      |
|                     | Grinding of irregularly shaped parts                | 189          | 36      | C1-C2              |   | 13     |
|                     | Cutting-off                                         | 189          | 25-36   | CT2-CT3            |   | B      |
| Gypsum              | Cutting-off                                         | ikii         | 24      | 01-03              | , | ii .   |
| Horns               | External cylindrical grinding                       | 189          | 36      | C2-CT1             | 1 | Ĭš.    |
| Insulators          | Preliminary surface grinding                        | 101          | 36      | CM 2-C1            |   | 15     |
|                     | Finish surface grinding                             | 174          | 4660    | CM 1               |   | B      |
|                     | Cutting-off                                         | KH           | . 36    | CT1-CT2            | 1 | Б      |
| Leather             | Hand surface grinding                               | KT           | 2436    | M 3-CM 1           |   | 11     |
| Limestone           | Surface grinding                                    | 104          | 36      | CM 2-C1            |   | Б      |
|                     | Cutting-off                                         | 109          | 24      | CT 1-CT 2          |   | 13     |
| Marble              | Rough surface grinding                              | 164          | 12-16   | CM 2-C 1           |   | 15     |
|                     | Semi-finish surface grinding                        | 179          | 1624    | CM 1-CM 2          |   | 15     |
|                     | Finish surface grinding:                            |              | 00 10   |                    |   |        |
|                     | 1st operation<br>2nd operation                      | 104          | 3646    | CM 2-C1            |   | 15     |
|                     | 3rd operation                                       | F31          | 80-100  | CM 1-CM 2          |   | B      |
|                     | External cylindrical preliminary                    | 164          | 120280  | CM 1-CM 2<br>C1-C2 |   | R      |
|                     | grinding                                            | 11.1         | 10-24   | C1-C2              |   | I.     |
|                     | External cylindrical finish grinding                | 134          | 36-46   | CM 1-CM 2          |   | K      |
|                     | Cutting-off                                         | iki          | . 21    | CT 1-CM 2          |   | ii     |
| Millstone           | Cutting of wide grooves                             | Kti          | 24      | C1-C2              |   | K      |
|                     | Cutting of narrow grooves                           | 133          | 4660    | CT2-CT3            |   | B      |
| Plastics            | External cylindrical grinding                       | 189          | 24~-36  | CM 1               |   | Б      |
|                     | Surface grinding with the wheel face                | 174          | 2436    | CM 2-C1            |   | Б      |
|                     | Surface grinding with the periphery                 |              |         |                    |   |        |
|                     | of the wheel                                        | Kd           | 2436    | CM 1-CM 2          |   | Б      |
| Porcelain           | Cutting-off                                         | 101          | 1624    | CT4-CT2            |   | 15     |
| Forcerain           | Preliminary surface grinding with<br>the wheel face | 164          | 16-36   | CM 1-CM 2          |   | K      |
|                     | Finish surface grinding with the                    | 161          | 4680    | CM 1-CM 2          |   | Б      |
|                     | wheel face                                          | 14.1         | 10      | CM I-CM 2          |   | 1,     |
|                     | Centerless external grinding                        | 1/9          | 36-46   | CM 1-CM 2          |   | 13     |
|                     | External cylindrical grinding                       | ikii         | 3646    | CMI                |   | ii     |
|                     | Cutting-off (wet)                                   | 1391         | 3646    | C2-CT 1            |   | ii .   |
| Quartz (fused)      | External cylindrical grinding                       | КЧ           | 36-46   | CM 2-C1            |   | ii.    |
|                     | Surface grinding                                    | 164          | 36      | CM 1-CM 2          |   | 14     |
|                     | Cutting-off                                         | 104          | 36-46   | CT1-CT2            |   | Б      |
| Roof slate          | Surface grinding                                    | 164          | 3646    | CM 1               |   | li .   |
|                     | Profile grinding                                    | 179          | 36-46   | CM 1               |   | R      |
| Rubber rolls for    | Cutting-off                                         | 184          | . 24    | CT2-CT3            |   | Б      |
| typewriters         | External cylindrical grinding                       | UKH          | 24      | CM                 |   | В      |
| Sandstone           | Cutting-off                                         | , į КЧ<br>КЧ | 16      | CT1-CT2            |   | 15     |
| Slate               | Surface grinding                                    | 194          | 46      | CM2                |   | B<br>B |
|                     | Cutting-off                                         | 164          | 24-36   | CT1-CT3            |   | ß      |
| Stones (artificial) | Surface grinding with the wheel face                | 184          | 16-24   | CMT-CM3            |   | R      |
|                     | Surface grinding with the periphery                 | ièi          | 24- 36  | CM 2-C I           |   | 6      |
|                     | of the wheel                                        |              |         |                    |   | ••     |
|                     | Cutting-off                                         | 101          | 16-24   | CT2-CT3            |   | Б      |
| Tile                | Rough surface grinding                              | 104          | 3646    | C1-C2              |   | K      |
|                     | Cutting-off (dry)                                   | 104          | 24      | CTI                |   | Б      |
| Wood thank          | Cutting-off (wet)                                   | 164          | 16-24   | CT1-CT2            |   | Б      |
| Wood (hard)         | Centerless external grinding                        | - 194        | 24-36   | CM1-CM2            |   | K      |
|                     |                                                     |              |         |                    |   |        |

#### STORAGE AND BALANCING OF GRINDING WHEELS

Special attention should be paid to the careful unpacking of the wheels. When unpacked, the wheels should be properly checked to make sure that no damage has occurred during the transit. Before checking it is necessary to clean and dry the wheels. As an additional precaution every wheel should be sounded before mounting with a mallet to reveal any damage caused to the wheel in transit. A clear sound (except in the case of resinoid and rubber bonded wheels) proves the wheel is undamaged.

It should be borne in mind that grinding wheels are very fragile and may be easily damaged by undue handling which may later lead to wheel bursts.

The wheel storage place should be dry and of fairly even temperature. In storage the wheels should be sateguarded against damaging knocks. Small wheels are best stored in boxes or drawers and larger wheels — in the tree.

Small wheels are best stored in boxes or drawers and larger wheels—in shelves.

All wheels over 250 mm in diameter pass a balancing test at the manufacturers' plant. However, it is strongly recommended to run every wheel at full working speed on its machine prior to commencing work. This test as well as the mounting should be earried out by a qualified and reliable workman. Nohody should be allowed to stand in front of the machine during the test. Wheel guards must be securely fixed prior to test.

Peripheral speeds of the wheels are determined depending on the shape of the grinding wheel, the type of bond and the mode of feed used in the operation. They should not exceed the figures shown in Table 66.

Table 66 Maximum permissible peripheral speeds

(GOST 3881-53)

|                                                                                              |                |         |                               | Peripheral speed,<br>m per sec |                       |                |
|----------------------------------------------------------------------------------------------|----------------|---------|-------------------------------|--------------------------------|-----------------------|----------------|
| Shape of abrasives                                                                           | Type<br>symbol | GOST    | Feed of abrasive<br>or work   | Vitri-<br>fied<br>bond         | Resi-<br>noid<br>bond | Rubber<br>bond |
| 1                                                                                            | 2              | 3       |                               | 5                              | 6                     |                |
|                                                                                              |                | Wheel   | s                             |                                |                       |                |
| Straight wheels with square                                                                  | Ш              | 2424-52 | Hand                          | 30                             | 40                    | 35             |
| profile                                                                                      | Ш              |         | Mechanical<br>or automatic    | 35                             | 40                    | 35             |
| Straight wheels specially<br>made for high speed<br>grinding on special<br>machines for:     |                |         |                               |                                |                       |                |
| Rough grinding                                                                               | Ш              |         | Hand                          | 42                             | 50                    | -              |
| operations External cylindrical grinding using wheels of 300 up                              | Ш              |         | Mechanical<br>or automatic    | 50                             | 50                    | 12             |
| to 750 mm in diameter<br>Internal grinding ope-<br>rations using wheels<br>of 30 up to 90 mm | 1111           |         | Mechanical<br>or automatic    | 50                             |                       |                |
| in diameter Thread cutting and thread grinding                                               | Ш              |         | Automatic                     | 55                             | 55                    |                |
| Straight wheels with 40° .<br>taper (two sides)<br>Straight wheels with 45                   | 2 H<br>3 H     |         | Mechanical<br>or automatic    | 35                             | 35                    | -              |
| taper (one side)<br>Straight wheels with small                                               | 4 11           |         | J<br>Automatic                | 30                             | 35                    |                |
| taper (one side) Straight wheels recessed, one side Straight wheels taper                    | HB             |         | Mechanical<br>or automatic    | 35                             | 35                    |                |
| recessed one side<br>Straight wheels corrugated<br>Steelbacked straight wheels               | HP<br>HH       |         | Hand, mechanical or automatic |                                | 35                    |                |



|                                                                                                                                       |                                                  |                       |                              |     | (  | iontd |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|------------------------------|-----|----|-------|
| 1                                                                                                                                     | ş                                                | 3                     | 4                            | - 5 | 6  | 7     |
| Cutting-off wheels                                                                                                                    | Д                                                | 2424-52               | Hand or<br>mechanical        |     | 50 | 50    |
| Cylinder wheels                                                                                                                       | $1\mathrm{K},2\mathrm{K}$                        |                       | Mechanical                   | 25  | 30 |       |
| Straight cup wheels<br>Flaring cup wheels                                                                                             | 411                                              | ,.                    | } Hand                       | 25  | 30 |       |
| Straight cup wheels<br>Flaring cup wheels                                                                                             | 9H<br>9K                                         |                       | Mechanical                   | 30  | 35 |       |
| Dish wheels                                                                                                                           | 1 T, 2 T                                         |                       | Hand                         | 25  | 30 |       |
| Dish wheels                                                                                                                           | 3 T                                              | **                    | Mechanical<br>or automatic   | 30  |    |       |
| Grinding wheels for needles<br>Steel centered wheels                                                                                  | 11<br>M                                          |                       | Mechanical<br>Mechanical     | 25  | 10 |       |
| Cylindrical<br>Augular<br>60 Taper<br>Arched<br>Taper with a rounded top<br>Spherical<br>Spherical with a cylindrical<br>side surface | FIL<br>FS<br>F 60<br>FCB<br>FIL<br>FIII<br>FIIII | 2247-52               | Hand                         | 25  | 25 |       |
| Square<br>Round<br>Honing<br>Honing                                                                                                   | BKB<br>BKp<br>BX<br>BXB                          | Sticks<br>2456-52<br> | Mechanical<br>  or automatic | 20  | 20 |       |
| flat<br>lonvex-concave<br>loncavo-convex<br>lonvex-flat<br>flat-convex<br>frapezoidal                                                 | CH<br>1 C<br>2 C<br>3 C<br>4 C<br>5 C            | Segment 2464-52       | Mechanical or automatic      | 30  | 30 |       |

Note, Permissible peripheral speed for diamond impregnated wheels of different bonds and shapes  $-\!\!-\!\!-30$  m per sec.

Grinding wheels operate at very high speeds. Owing to this, in case of unbalance of the wheels and flanges, great dynamic forces may arise, setting up vibrations of the machine and thus causing chatter marks on the work. This condition steadily progresses as the bearings are affected.

Unbalance of wheels and flanges necessitates a frequent retruing of the wheels, which results in increased wear of the wheels and truing tools. Furthermore, unbalance of wheels and flanges is very dangerous as it may lead to wheel bursts.

may lead to wheel bursts.

Consequently, in order to obtain a good surface finish on the work to be ground, to avoid an undue wear of the spindle bearings and to avoid possible accidents it is absolutely necessary to properly balance the wheels and their flanges prior to mounting on the machine.

At the manufacturer's plant all wheels of 250 mm in diameter and over, having a width from 8 mm up, are subjected to static balancing.

There are 4 different groups of balancing, Table 67 shows the permissible limits of unbalance according to the diameter and width of the wheel.

Permissible unbalance, according to four groups of balancing

(GOST 3060-45)

|                         | External diameter in min |     |                                |     |      |     |     |     |     |     |     |      |  |  |
|-------------------------|--------------------------|-----|--------------------------------|-----|------|-----|-----|-----|-----|-----|-----|------|--|--|
| Width of<br>wheel in mm | Groups of<br>unbalance   | 250 | 300                            | 350 | \$00 | 150 | 500 | 600 | 650 | 750 | 900 | 1100 |  |  |
|                         |                          |     | Permissible unbalance in grams |     |      |     |     |     |     |     |     |      |  |  |
| up to 25                | 1                        | 7   | 9                              | 10  | 12   | 15  | 15  | 18  | 20  |     |     |      |  |  |
| •                       | . 2                      | 20  | 25                             | 30  | 35   | 35  | 40  | 50  | 55  |     |     |      |  |  |
|                         | 1 2 3                    | 30  | 35                             | 40  | 45   | 50  | 60  | 70  | 75  |     |     |      |  |  |
|                         | 4                        | 45  | 55                             | 65  | 75   | 85  | 95  | 110 | 115 |     |     |      |  |  |
| from 25                 | 1 .                      | 9   | 12                             | 12  | 15   | 18  | 18  | 20  | 25  | 30  | 35  | 40   |  |  |
| up to 50                | 2                        | 25  | 30                             | 35  | 50   | 15  | 50  | 60  | 65  | 7.5 | 90  | 110  |  |  |
| тр то от                | 3                        | 35  | 45                             | 50  | 55   | 65  | 7.5 | 85  | 90  | 105 | 130 | 155  |  |  |
|                         | Ä                        | 60  | 70                             | 80  | 90   | 100 | 115 | 135 | 145 | 170 | 200 | 250  |  |  |
| from 50                 | 1                        | 10  | 12                             | 15  | 18   | 20  | 25  | 25  | 30  | 35  | 40  | 45   |  |  |
| up to 75                | 2                        | 30  | 35                             | 40  | 4.5  | 50  | 60  | 70  | 75  | 85  | 105 | 130  |  |  |
| up (0. 70               | 3                        | 40  | 50                             | 60  | 65   | 7.5 | 85  | 100 | 110 | 125 | 150 | 180  |  |  |
|                         | 4                        | 65  | 80                             | 90  | 105  | 120 | 135 | 160 | 175 | 200 | 240 | 296  |  |  |
| from 75                 | 1                        | 12  | 12                             | 15  | 18   | 20  | 25  | 30  | 30  | 35  | 15  | 50   |  |  |
| up to 100               | 2                        | 35  | 40                             | 4.5 | 50   | 60  | 70  | 80  | 85  | 100 | 115 | 140  |  |  |
| .,                      | 3                        | 45  | 55                             | 65  | 75   | 85  | 95  | 110 | 120 | 140 | 165 | 200  |  |  |
|                         | 1                        | 75  | 90                             | 105 | 120  | 135 | 150 | 180 | 195 | 220 | 270 | 325  |  |  |
| from 100                | 1                        | 13  | 15                             | 18  | 20   | 25  | 30  | 35  | 35  | 40  | 50  | 5.   |  |  |
| up to 125               | 2                        | 35  | 45                             | 50  | 55   | 65  | 70  | 85  | 95  | 105 | 130 | 160  |  |  |
|                         | 3                        | 50  | 60                             | 70  | 80   | 90  | 100 | 120 | 130 | 150 | 180 | 220  |  |  |
|                         | 4                        | 80  | 100                            | 115 | 130  | 145 | 165 | 200 | 210 | 245 | 295 | 360  |  |  |
| from 125                | 1                        | 15  | 18                             | 20  | 25   | 2.5 | 30  | 35  | 40  | 45  | 50  | 60   |  |  |
| up to 150               | 2                        | 40  | 50                             | 55  | 60   | 70  | 80  | 95  | 105 | 115 | 140 | 170  |  |  |
|                         | 3                        | 55  | 70                             | 80  | 90   | 100 | 110 | 130 | 140 | 165 | 200 | 240  |  |  |
|                         | 4                        | 90  | 100                            | 120 | 140  | 160 | 180 | 210 | 230 | 260 | 320 | 390  |  |  |
| from 150                | 1                        | 18  | 20                             | 20  | 25   | 30  | 35  | 40  | 10  | 45  | 55  |      |  |  |
| up to 200               | 2                        | 45  | 55                             | 60  | 70   | 80  | 90  | 105 | 110 | 130 | 155 | 100  |  |  |
|                         | 3                        | 60  | 75                             | 85  | 100  | 115 | 130 | 150 | 160 | 185 | 225 |      |  |  |
|                         | - 1                      | 100 | 120                            | 140 | 160  | 180 | 200 | 240 | 260 | 300 | 360 | -    |  |  |

At the works of the manufacturers the balancing of the wheels is carried out according to different groups depending on the grinding process in view, i.e. wheels with a grain size No. 120 and liner are balanced according to group No. 1, wheels with a grain size Nos. 60, 80 and 100—according to group No. 2, wheels with a grain size No. 36 and No. 46—according to group No. 3, and wheels with a grain size Nos. 12, 16, 20, and 24—according to group No. 4.

Abrasive papers and cloths are a kind of abrasive tool made of good quality paper or cloth backing to one side of which abrasive grains are glued in a uniform layer.

Abrasive pages and all the side of which abrasive grains are glued in a strength of the side of which abrasive grains are glued in a strength of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the si

uniform layer.

Abrasive papers and abrasive cloths are used for the rubbing down of filler, paint and lacquer surfaces and for general utility work.



Table 67

For the manufacture of backing, extra strong kinds of paper or cloth, such as coarse calico, nankeen, diagonal, serge, etc., are used. Abrasives with a paper backing are called "abrasive paper" and those with a cloth backing are called "abrasive cloth".

The paper used for the backing should have a high tensile strength, an adequate density and a minimum clongation. One square meter of such paper has a basic weight from 100 to 200 grams. The density of the paper is selected according to the job in view.

To increase the mechanical strength of the cloth the latter is subjected to special treatment, which consists in coating one side of the cloth with a thin and dense layer of a special compound.

Abrasive cloth has an extensive field of application. It is chiefly used for finishing metals, wood, leather, hones and other materials. It is also applied for cleaning rust, for taking off oil paint, lacquer and enamel, as well as for rubbing down fillers.

rubbing down fillers.

rubbing down fillers.

Coarse grained abrasive cloth is used for roughing and fine grained cloth-for finishing operations.

Flint, glass, electrocorundum, silicon carbide (green and black), crushed and cleaned from extraneous materials, are used for the manufacture of abrasive papers and cloths.

Depending on the kind of abrasive materials used the abrasive papers and cloths are subdivided as follows:

Flint (symbol—Kp),

Glass (symbol—Kp).

Flectrocumdum (symbol—A)

Electrocorundum (symbol—3), Silicon carbide green (symbol—K3), Silicon carbide black (symbol—K4).

Flint abrasive paper and cloth is mainly used for veneer, leather shoes, etc. Glass abrasive paper and cloth is used for wood, felt, parts of electrical

machinery, etc.

machinery, etc.

Electrocorundum papers and cloths are used for metals with a high tensile strength such as steel, malleable iron, hard bronze, etc.

Silicon carbide papers and cloths are used for brittle or very soft materials, such as iron, bronze, aluminium and plastics.

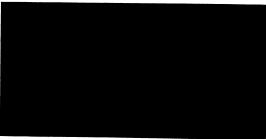







Fig. 27

Abrasive papers and cloths are supplied in rolls and sheets (figs. 26, 27).

Abrasive cloth is manufactured in the following sizes:

Sheets-210 + 285; 615 + 725; 635 + 725; 660 + 725; 575 + 775;

595 + 775; and 615 + 775 mm.

Rolls-width 725 and 775 mm:

length 30 m when the grain size is No. 36 and coarser;

length 50 m when the grain size is No. 66 and finer.

Abrasive paper is manufactured in the following sizes:

Sheets-720 + 780; 620 + 900 mm.

Rolls-width 720 and 900 mm;

Rolls-width 720 and 900 mm;

length 50 m when the grain size is No. 36 and coarser;

length 50 m when the grain size is No. 66 to No. 100;

length 100 m when the grain size is No. 120 and liner.

In accordance with GOST No09-52 abrasive cloth is manufactured with the following grain sizes as given in Table 68.

Table 68

| Type and      | 3   | Ofath sizes |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |
|---------------|-----|-------------|----|--|--|--|-----|------|-----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
|               | 1   | 44.         | 20 |  |  |  | 471 | ÷.,  | *40 | 70 | 80 | 20 | 100 | 120 | 150 | 180 | 220 | 230 | 280 | 320 |
|               |     |             |    |  |  |  |     | Ro   | 11- |    |    |    |     |     |     |     |     |     |     | _   |
| P 725         | BT* |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |
| P 775         | H   |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |
| P 775         | CT  |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |
|               |     |             |    |  |  |  | :   | Shoo | -1- |    |    |    |     |     |     |     |     |     |     |     |
| J1210 & J1725 | БТ  |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     | 7   |     |     |     |
| 31775         | H   |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |
| 41775         | CT  |             |    |  |  |  |     |      |     |    |    |    |     |     |     |     |     |     |     |     |

\*) BT - Industrial coarse calico, H - Nankeen, CT - Industrial serge



Abrasive paper is manufactured with the following grain sizes, as given

| ľ | a | b | l | e | 69 |
|---|---|---|---|---|----|
|---|---|---|---|---|----|

|                                                         |                        |    |    |    |     | ,   | irait | ı siz | es  |      |     |     |      |
|---------------------------------------------------------|------------------------|----|----|----|-----|-----|-------|-------|-----|------|-----|-----|------|
| Type and size                                           | Backing (weight)       | 36 | 16 | 60 | 80  | 100 | 120   | 150   | 180 | .220 | 240 | 280 | 3120 |
| Sheets /1 720<br>,, /1 900<br>Rolls P 720<br>P 900      | 100-120<br>gr per sq.m |    |    |    | v   |     | ¥     | У     |     | ×    | ×   |     |      |
| Sheets /1 720<br>// /1 900<br>Rolls   P 720<br>// P 900 | 140 200<br>gr per sq.m |    | >  |    | is. | з   | 4     | v     |     |      | >   | ж   | ÷    |

Each roll or sheet is marked in a legible manner with:

the manufacturer's trademark;

symbol, type and size;

backing:

abrasive material;

grain size.

#### Example:

a) An abrasive cloth with a backing of industrial coarse calico and having electrocorundum as abrasive material, with a grain size No. 46, size of rolls 775 mm  $\pm$  50 m, is marked as follows:

b) An abrasive cloth with a backing of nankeen in sheets 775  $\pm$  575 mm having flint as abrasive material, with a grain size No. 60, is marked as follows: "HJ 775  $\times$  575 Kp 60".

Abrasive cloth in sheets is packed into batches of 100 sheets each. The batches, in their turn, are packed into bales. With No. 36 grain size and coarser the bales are made up of 8 batches, with grain size Nos. 46, 54 and 60—of 20 batches and with grain size No. 80 and liner—of 30 batches.

The rolls are wrapped in thick paper. The abrasive papers and cloths should be kept in dry storage places at a temperature from 5 to 25°C and at a relative humidity of  $50{-}60^{\circ}_{o}$ .

The selection of abrasive paper and cloth is determined by the operation in view, material to be polished or ground, and method of grinding (by hand

Abrasive papers and cloths with grain size Nos. 24, 36 and 46 are used for removing old layers of paint, glue, varnish, burr, rust and for rubbing down

Abrasive papers and cloths with grain size Nos. 60, 80 and 100 are applied for preliminary grinding operations.

Abrasive papers and cloths with grain size Nos. 120, 150, 180, 220, etc. are used for finishing operations.

When making microsections, the following grain sizes of abrasive papers and cloths are used:

- a coons are used;
  a) Nos. 60-80- for rough grinding;
  b) Nos. 120-140- for preliminary grinding;
  c) Nos. 220-280- for finish grinding;
  d) Nos. M 28-M 20- for superfinishing.

#### WATERPROFF SILICON CARBIDE PAPER

Waterproof silicon carbide paper is widely used for wet grinding opera-

Waterproof silicon carbide paper is an abrasive tool, consisting of water-proof paper backing to the surface of which the best quality silicon carbide powder or micropowder free from extraneous material is glued by means of

powder of microscopic and a waterproof bond.

Waterproof paper is supplied in sheets of 310 - 230 mm having the following grain size: 100, 120, 150, 180, 220, 230, 280, 320 and M28.

Each sheet of waterproof paper is marked with the manufacturer's trade

Each sheet of waterproof paper is more mark, type of paper and grain size.

Waterproof paper is packed into batches containing 50 sheets each. These batches, in their turn, are made up into bales and wrapped in paper. The bales are made up of 10 batches.

Depending on its grain size the waterproof paper is used for the following

No. 100 grain size for rubbing down the upper layer of tillers on coarse

surfaces (castings, etc.);

naces (castings, etc.);
Nos. 120-150- for rubbing down oil fillers;
Nos. 180-220- for polishing oil prime coatings on steel and wood;
Nos. 240-280- for polishing paint layers;
Nos. 320-M 28- for superlinishing nitro-varnish coatings.

Waterproof paper is particularly useful for polishing surfaces coated with nitro-varnish.

#### FIBRE ABRASIVE DISCS

Fibre abrasive discs consist of abrasive cloth, mostly coarse granted,

glued to a fibre disc.

Fibre abrasive discs can be run at comparatively high peripheral speeds

or no to no meper sec.

For the manufacture of these discs high quality abrasive materials, special sorts of cloth, line fibre with a thickness of 0.3-0.4 mm and highly viscous glues are used.

Fibre discs are mostly made with a diameter of 250 mm and a hole of

Fibre discs are mostly made with a diameter of planting diameter.

23 mm in diameter.

Fibre abrasive discs are mainly made of electrocorundum with grain sizes Nos. 16, 24, 36, 46, and in rare cases No. 60 and No. 80. Silicon carbide with grain size Nos. 16, 24 and 36 is also used for the manufacture of tibre discs.

Fibre discs are marked with the manufacturer's trademark and grain size. Fibre discs are packed in batches of 100 pieces each.

Fibre discs are widely used for weld surfacing prior to painting.





#### VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

#### "STANKOIMPORT"

#### EXPORTS AND IMPORTS:

Machine Tools

Metal-Working Machinery

Wood-Working Machinery

Rolling Mills (imports)

Measuring Instruments and Apparatus (for Metal industry)

Testing Machines and Instruments (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for metal and woodworking)

Metal and Wood Cutting Tools

Mechanic's Tools

Chucks

Sintered Carbide and Hard-Alloy Products

Abrasives

Ball and Roller Bearings

Microscopes of all types

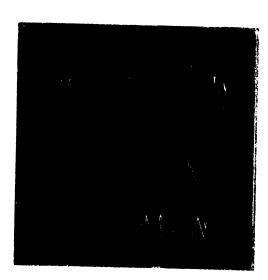
Motion-Picture Equipment and Accessories

Geodetic Instruments and Equipment

Photocameras, Binoculars, Magnifiers, Lenses

Crude Optical Glass Blocks and Blanks

All inquiries and correspondence to be forwarded to:


VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE "STANKOIMPORT"

32/34, Smolenskaja-Sennaja pl., Moscow, U.S.S.R.

For cables: Stankoimport Moscow

Design and specification of the abrasives given herein are subject to change without notice.

Vneshtorgizdat. Order No. 3041



STANKOIMPORT



Sanitized Conv. Approved for Release 2010/10/19 : CIA-RDR81-010/3R000800160002-0



VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

STANKOIMPORT

USSR

Moscow

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

otion picture equipment and accessories manufactured in the U.S.S.R. embody the latest achievements in this field, and are perfect in design and workmanship.

Superior materials, modern design and skilful workmanship ensure outstanding performance and durability of the motion picture equipment and accessories.

High operating merits are combined with a finely-styled outer appearance, excellent finish, light weight and convenience in handling.

#### CONTENTS

|                                                             | Page |
|-------------------------------------------------------------|------|
| Motion Picture Cameras                                      | 5    |
| Rodina" (KCX) 35-mm Motion Picture Camera for Newsreel and  |      |
| Expeditionary Filming                                       | 7    |
| Moskva" (KC-32) 35-mm Motion Picture Camera for Synchronous | 10   |
| Filming                                                     | 10   |
| KC-50B 35-mm Motion Picture Camera for Newsreel Filming     | 14   |
| IIKC-2 Camera Tripod                                        | 15   |
| IIC-3 Camera Tripod                                         | 17   |
| Sound Film Recording Equipment                              | 19   |
| K3IIY Portable Sound Film Recorder                          | 21   |
| K3YC Stationary Sound Film Recorder                         | 29   |
| KII3-1 Film Re-recording Equipment                          | 36   |
| Laboratory Equipment                                        | 43   |
| Ю П-1 Automatic Developing Machine                          | 45   |
| KII 3-2 Film Sample Printer                                 | 48   |
| YKA Sound Film Printers                                     | 51   |
| MM-11 Film Renovation Machine                               | 55   |
| PYII-1 Cutting Machine                                      | 57   |
| КСП-3 Film Stapler                                          | 59   |
| 35-3MA-3 Sound Editor                                       | 60   |
| 35-MMIIC-3 Subtitle Making Machine                          | 62   |
| 85-CIIA-2 Semi-Automatic Film Splicing Machine              | 65   |
| 85-CO-1 Synchronizer                                        | 67   |
| l6-ПСП 16-mm Film Splicer                                   | 68   |
| 35-ПСП-3 35-mm Film Splicer                                 | 69   |
| ΦC-2 Film Inspection Bench                                  | 70   |
| 35-MOΓ-3 Horizontal Film Rewinder                           | 71   |
| Motion Picture Projectors and Equipment                     | 73   |
| 'Ukraina" 16-mm Portable Sound-on-Film Projector            | 75   |
| KIIC-M 35-mm Portable Sound-on-Film Projector               | 79   |
| KIIT-1 35-mm Stationary Sound-on-Film Projector             | 83   |
| K3BT-3 Sound-reproducing Amplifying Device                  | 88   |

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

KYCY-52 Sound-reproducing Amplifying Device ..... PY-65 Switching Rack .... ТРД-50 Reactive Arc Transformer ...... 98 ЭПП Portable Diffuse Reflection Screen ..... 101 K9C-4 Mobile Power Plant ...... 111 ЛШП-35 Perforation Pitch Inspection Rule ...... 119 РИФ-3 Sound Track Measuring Instrument ...... 121 ИН-3 Inspection Kit ...... 122 РД-5 Apparatus for Diffused Light Illumination ...... 133 



MOTION PICTURE CAMERAS

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDR81-010/3R000800160002-0

## "RODINA" (KCX) 35-mm MOTION PICTURE CAMERA FOR NEWSREEL AND EXPEDITIONARY FILMING

The "Rodina" Motion Picture Camera (Fig. 1) is designed to perform newsreel and expeditionary filming with black-and-white as well as colour 35-mm film.



Fig. 1. Motion Picture Camera "Rodina"

New design of the intermittent film mechanism ensures high-precision registration of separate picture frames within the film channel, and allows use of the camera for special and trick filming.

Special design of the friction clutch permits use of magazines of 120-metres and 300-metres film capacity (Fig. 2). Quick change lens mounts provide ease and facility in the interchange of lenses.

or lenses.

Picture composition and visual control during the filming process are achieved by means of a magnifying view-finder.

Control of filming speed is provided by a tachometer with dial divisions in picture-frames per second.

#### SPECIFICATIONS

| Film size                             | . 35 mm                                               |
|---------------------------------------|-------------------------------------------------------|
| Path of film travel within camera     | in three planes                                       |
| Film gate dimensions                  | . 16 × 22 mm                                          |
| Shutter aperture angle                | 0° to 160°                                            |
| Magazines                             | single compartment type of 120 and 300-meter capacity |
| Film length and picture-frame counter | dwyna tyma with new auti                              |
| counter                               | drum type with zero setting                           |



Fig. 2. Motion Picture Camera "Rodina" with 300-metre capacity magazines



Fig. 3. Motion Picture Camera "Rodina", right-side view

| Camera-to-tripod attachment Interlocking devices to effect stoppage | by means of 3/s" screw<br>in case of film breakage, termination<br>of film roll, or slackening of film |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| View-finder                                                         | tension parallaxless magnifier of 5.5-time magnifying power                                            |
| Set of coated photographic lenses in                                | 28 25 50 75 and 100 mm familion                                                                        |

| Minimum focal length of photo<br>graphic lens | . 28 mm                          |
|-----------------------------------------------|----------------------------------|
|                                               | screen; by focusing scales       |
| Tachometer readings                           | per second                       |
| Normal operation temperature con              | -                                |
| ditions                                       | . from + 40° to - 25° C          |
| Power drive                                   | . 12 V. 60 W D C electric motor  |
| Camera run                                    | . reversible                     |
| Exposure speed                                | . 8 to 48 picture frames per sec |
| Noise level                                   | . 50 + 2 db                      |
| Overall dimensions of camera in               | 1                                |
| operating position with electric              | •                                |
| motor (length $\times$ height $\times$ width) | . 650 × 280 × 260 mm             |
| Weight of camera (less tripod and             | 1                                |
| film)                                         | 14 kg with hand drive            |
|                                               | 16.2 kg with motor drive         |
| Weight of camera set in carrying              |                                  |
| cases (less storage battery)                  | 35 kg                            |
| Weight of storage battery                     | 11.5 kg                          |
|                                               |                                  |

#### "MOSKVA" (KC-32) 35-mm MOTION PICTURE CAMERA FOR SYNCHRONOUS FILMING

The "Moskva" Camera (Fig. 4) is designed to perform synchronous filming of images and simultaneous sound-track record-



Fig. 4. Motion Picture Camera "Moskva"

ing by means of a recorder on 35-mm film and is adapted for studio and outdoor work.

studio and outdoor work.

Specially silenced to eliminate mechanical noises the camera permits simultaneous sound-recording, provided the microphone is stationed not less than 1 metre from the camera front.

High-precision performance of the intermittent film mechanism allows use of the camera for special (trick) filming.

Focusing of the photographic lens is achieved by ground glass, film, or focusing scales; simultaneous compensation of parallax and focusing of the view-finder lens are automatic.

A left-side view of the camera is given in Fig. 5, and a diagram of film threading in Fig. 6.

On-and-off switching of the camera is achieved by means of a switch mounted on the power-supply line.



Fig. 5. Motion Picture Camera "Moskva", left-side view

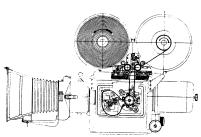



Fig. 6. Film Threading Diagram for "Moskva" Camera

Camera power supply is fed through a 220 V autotransformer from 220 or 380-volt 50-cycle A. C. mains. Voltage variations in the mains are compensated by a regulator switch in the autotransformer. transformer.

Lighter weight and smaller overall dimensions add greatly to the camera's operating merits over other known synchronous motion picture cameras.

Handy location of all operation and control elements on the back and right side-walls of the camera, and the design of the easily removable parts (intermittent film mechanism, sprocket assembly, etc.) as well as the interchangeability of the detachable parts in all cameras of this type ensure operation efficiency and convenience in inspection and cleaning.

#### 

| Path of film within camera in one plane                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Exposure speed 24 picture frames per sec                                                                                              |
| Noise level not over 29 db                                                                                                            |
| Accuracy of picture frame registra-                                                                                                   |
| tion in the film channel 0.008 mm                                                                                                     |
| Film gate dimensions 16 × 22 mm                                                                                                       |
| Shutter aperture angle 0 to 170°                                                                                                      |
| View-finder detachable, with automatic parallax compensation and lens focusing                                                        |
| Magazines single compartment type, in pairs of 300-metre capacity each                                                                |
| Set of coated lenses 28, 35, 50, 75, 100 mm focal length                                                                              |
| Minimum focal length of photo-                                                                                                        |
| graphic lens 24 mm                                                                                                                    |
| Power drive three-phase 220 V, 150 W, 1,500 r.p.m. synchronous motor                                                                  |
| Speed of reduction gear shaft 1,440 r.p.m.                                                                                            |
| Camera run reversible                                                                                                                 |
| Interlocking devices to effect stoppage in case of film breakage, slackening of film tension or idling of intermittent film mechanism |
| Focusing of photographic lens by ground glass, by film,                                                                               |
| by focusing scales                                                                                                                    |
| Camera to tripod attachment by means of 3/8" screw                                                                                    |
| Overall dimensions of camera in working position 1,120×585×470 mm                                                                     |
| Distance between optical axis and base of camera housing 169.7 mm                                                                     |
| Weight of camera (less tripod and                                                                                                     |
| film) 62 kg                                                                                                                           |
| Weight of camera set in carrying cases                                                                                                |
|                                                                                                                                       |

### The motion picture camera is supplied with the following accessories:

Focusing magnifier; light-protective device with filter-holder; 6 magazines of 300-metre capacity; belt tensioning and switching mechanism; carrying cases for magazines and motor; switch. Photographic lenses (PO coated type) with 1:2 relative aperture and focal lengths of 28, 35, 50, 75 and 100 mm (5 lenses). IM-35 three-phase, 220 V, 150 W electric motor.

7C-II View-finder.
KAT-24-I auto-transformer in jacket.
Set of tools.
Description of camera and instructions for maintenance.
Carrying cases (Fig. 7).



Fig. 7. Motion Picture Camera "Moskva", packed in carrying cases

The motion picture camera "Moskva" is additionally supplied with a  $\hbox{IIICK-2}$  tripod on special order.

12

#### КС-50 Б 35-mm MOTION PICTURE CAMERA FOR NEWSREEL FILMING

The KC-50 B 35-mm Motion Picture Camera (Fig. 8) is designed for filming of newsreel and documentary films.

The camera has 3 interchangeable lenses mounted on a revolving turret, and a rotating view-finder; the focal lengths of the view-finder lenses are proportionate to their corresponding



Fig. 8. KC-50 B Motion Picture Camera

photographic lenses. Focusing of the lenses is achieved by means of a distance collar on each of the lens mounts.

A spring-drive mechanism enables to conduct continuous filming up to a 16.5-meter film run.

Filming can be performed with the camera being hand-held or with the camera set on a tripod.

The camera is equipped with a hand drive; one revolution of the hand crank corresponds to the exposure of eight picture

The camera has a special carrying case for convenient transportation.

Accessories and necessary tools are provided with the camera.

#### SPECIFICATIONS

Distance range Overall dimensions of camera: Weight of camera....

#### IIIKC-2 CAMERA TRIPOD

The IIIKC-2 Tripod (Fig. 9) is designed for motion picture cameras of various types for studio and outdoor filming.



Fig. 9. IIIKC-2 Tripod

The tripod is adapted for use on different soils and rough surfaces, in premises with smooth and hard floors, as well as on special vehicles and trucks.

The tripod comes in a set, and the use of its components in different combinations gives the camera a height ranging from  $300\ mm$  to  $1,\!800\ mm$ .



Fig. 10. Tripod Head with Auxiliary Platform

#### The set includes:

Tripod head (Fig. 10)
Auxiliary platform (Fig. 10)
Normal length tripod legs (Fig. 11)
Short length tripod legs (Fig. 11)
Low mount supports (Fig. 11)



Fig 11 Tripod Legs

The tripod head allows vertical and horizontal panoraming. Special levers are provided to regulate the friction devices of the tripod head. Vertical panoraming is facilitated by spring compensators set in the tripod head.

Control of the tripod motions is achieved by means of a single handle (bar). For convenience of operation the handle may be attached to the right or left side of the tripod head, telescoped, and swung into any desired position.

Two lock levers, one for vertical tilt, the other for horizontal, are provided to secure the tripod head in any operating position.

The motion picture camera is secured to the tripod head with a  $^3/_8$  '' screw or by means af a special dovetailed auxiliary platform (Fig. 10).

The tips of the oaken telescopic tripod legs are fitted with double-spurred shoes. When telescoped, the legs are fitted in position by a double-action clamp.

tion by a double-action clamp.

For convenience in transportation the tripod set is provided with jackets.

#### SPECIFICATIONS

| Height of tripod may be varied:         |
|-----------------------------------------|
| main tripod 1,000—1,800 mm              |
| small tripod 600—1,050 mm               |
| low mount support 300— 360 mm           |
| Motions of the tripod head:             |
| horizontal motion endless over 360°     |
| downward tilting to any angle up to 45° |
| upward tilting to any angle up to 35    |
| Tripod is designed to support           |
| cameras weighing up to 100 kg           |
| Weight of tripod:                       |
| head                                    |
| main tripod 10.5 kg                     |
| small tripod 9.3 kg                     |
| support 5.2 kg                          |
| auxiliary platform 2.3 kg               |
| overall weight of tripod 38.8 kg        |
|                                         |

#### IIIC-3 CAMERA TRIPOD

The IIIC-3 Tripod (Fig. 12) is designed for both silent cameras and cameras provided with a sound recorder in filming indoors and outdoors.

The camera is secured to the tripod by means of an auxiliary platform and a special clamping device.

#### The tripod set includes:

An inertia type head with an worm and gear device.

Normal length legs.

Short length legs.

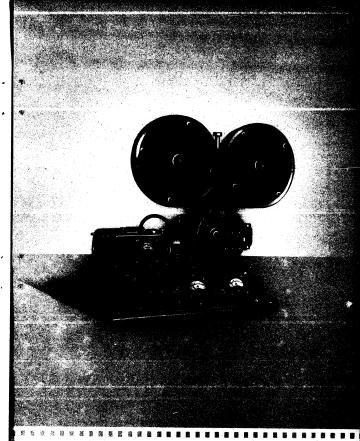
Leg-supporting shoes to ensure stability of the tripod on smooth and hard surfaces.

Two tripod jackets.

Two sets of tripod legs allow the wide height-range from  $0.5\ \mbox{to}\ 1.8\ \mbox{metres}.$ 

The tripod head is equipped with a device ensuring inertia, worm and gear and free motions.




Fig. 12. IIIC-3 Tripod

A special brake regulates the movement and stoppage of the camera during inertia panoraming. The tripod head design permits horizontal circular panoraming (360°) and vertical panoraming with an up-and-down range



Fig. 13. IIIC-3 Tripod Head

of  $40^{\circ}$  each. The design ensures easy and quick adjustment of the tripod head to the legs. The tripod is adapted to support cameras weighing up to 30 kg. Finelly styled, light-inweight, packed in compact jackets, the tripod is convenient for transportation and storage. Weight of the tripod — 18 kg.



SOUND FILM RECORDING EQUIPMENT

#### K3IIY PORTABLE SOUND FILM RECORDER

The K3IIV Portable Sound Film Recorder is designed to perform synchronous sound recording on 35-mm film by the photographic method in expeditionary conditions.

Several models of portable sound recorders are available at present for recording on normal or double-area sound tracks, and enable connection of the recorder to different supply lines under training lead conditions. varying local conditions.

The table below includes brief characteristics of the models available and their sets.

The K3IIY Sound Recorder contains:

33II Recording Device (Fig. 14) which is designed for recording on 35-mm film by means of the variable area method. Recording is of normal or push-pull noiseless sound track type of standard or double area.

High uniformity of film travelling speed is ensured by a rotary speed stabilizer.



Fig. 14. 33II Recording Device

The light modulation system of the recording device allows for recording with white and ultra-violet light.

High-efficiency recording is provided by the frequency range of the dayles.

the device.
The recording device is mounted and secured in a solid carrying case convenient for transportation.

Removal of the easily detachable case cover and installation of the motor and magazines are sufficient to bring the device into

Overall dimensions of recording device (height  $\times$  length  $\times$  width)  $600 \times 720 \times 300$  mm Weight of recording device . . . . . 54 kg

1 y 50-A Preamplifier (Fig. 15), which mixes and preamplifies incoming signals from two microphones.

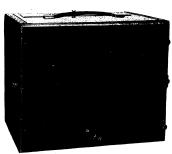



Fig. 15. 1 y 50-A Preamplifier

The amplifying range of the device permits use of microphones of the lowest response.

The provided correction range of the frequency characte-

ristics in the preamplifier and the main amplifier covers recording requirements in the studio and outdoors.

The electromechanical properties of the volume indicator

The electromecnanical properties of the volume indicator mounted in the preamplifier enable to maintain complete visual control of the volume of signals recorded.

The electrical characteristics of the transformers in the preamplifier ensure a remarkably low noise level of the amplifying channel, and do not, therefore, limit the dynamic range of the recording

recording.

The preamplifier is mounted in a metal portable case and is readied for use by a simple connection of its cables. Removal of the easily detachable front cover gives access to the control board.

Overall dimensions of preamplifier (height  $\times$  length  $\times$  width) . . . . 305  $\times$  350  $\times$  293 mm Weight of preamplifier . . . . . 15 kg

12 Y-3 Main Amplifier (Fig. 16), which achieves the subsequent

amplifying of signals coming in from the preamplifier and makes provisions for the possibility of compression of the output volume. The main amplifier is mounted in a metal cabinet containing frames for recorder and intermediate amplifiers. Clamps on the cabinet side walls are provided to secure the cabinet in a truck.



Fig. 16. 12 Y-3 Main Amplifier

The cabinet front cover is easily removable to give free access to the tubes. The frame is mounted on loops, and special hinges afford free access to the amplifier parts.

Overall dimensions of the amplifier (height  $\times$  length  $\times$  width) . . . .  $712 \times 535 \times 365$  mm Weight of amplifier . . . . . . . 41 kg

Power-supply Device, which supplies motion picture camera and sound-recorder electric motors with three-phase current and feeds D. C., high and low voltage circuits of the preamplifier, the main amplifier and the exposure lamp of the sound recorder. Four types of power supply devices — KIICY-1, KIICY-2, KIICY-3 and KIICY-4 are available. Regardless of the type of Power-supply device, stabilized supply is ensured for D. C. circuits of high- and low voltage.

a) The KIICY-2 Power-supply device (Fig. 17) is operated on high-capacity storage batteries and is used where no A. C. mains are available.

are avalable.

50-cycle frequency of the three-phase current is constantly maintained irrespective of battery discharge in the bounds of normal operating conditions. Battery capacity provides for 12 hour operation without reloading.

All parts of the equipment for converting and distributing the electric power supplied from the batteries are mounted in a duralluminum frame.

aluminum frame.

To provide transportation convenience the frame is secured in a solid case of special design.

Inspection and adjustment of the rotary converters is facili-

tated by the sliding guides on which they are mounted.



Fig. 17. КПСУ-2 (КПСУ-4) Power-supply Device

The side walls of the case may be swung aside to allow free access to the switch panels.

b) The KIICY-4 Power-supply device is intended for the same purposes as the KIICY-2 device with the difference that the alternating current it converts is of 60-cycle frequency.



Fig. 18. КПСУ-1 (КПСУ-3) Power-supply Device

c) The KIICY-1 Power-supply device (Fig. 18) is intended for use when the K3IIY sound recorder is supplied from 220 or 380 V three-phase 50-cycle mains.

To make it portable the KIICY-1 power-supply device is divided into two functionally related parts. The first contains the general stabilizer and exposure lamp rectifier, the second — the power-supply rectifier of the amplifying channel.

Both parts are of similar construction, styled of duraluminum frames mounted in soil cases provided with binged covers.

frames, mounted in solid cases provided with hinged covers.

d) The KIICY-3 Power-supply device is intended for the same purposes as device KIICY-1, with the difference that it operates on 60-cycle frequency mains.

1 V-101 Public Address Amplifier (Fig. 19), which intensifies orders relayed from the camera-crew during mass outdoor filming.



Fig. 19. 1 Y-101 Public Address Amplifier

The public address amplifier is styled as a light metal chassis covered with a casing. The hinged rear cover of the casing provides free access to the tubes.

Overall dimensions of the amplifier (height × length × width) . . . . . Weight of amplifier . . . . . . . ... 245 × 312 × 190 mm ... 6 kg

25 A-1 Loudspeaker (Fig. 20), which reproduces instructions from the camera-crew during mass outdoor filming.

The loudspeaker consists of a head provided with a permanent

magnet and mounted in a solid wooden case with a grip for transportation. A metal grid protects the head against mechanical damages and a hood of light fabric keeps out the dust.

Overall dimensions of loudspeaker (height × length × width) . . . . 430 × 432 × 201 mm Weight of loudspeaker . . . . . . . 12 kg

## TABLE

## of K3Hy Sound Recorder Sets

|                   | Communi-<br>cation<br>phones    | УНАФ-42 М                                               | УНАФ-42 М                               | УНАФ-42 М                                                                                            | УПАФ-42 М                                                                            |
|-------------------|---------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                   | Micro-<br>phone                 | 8 A-5                                                   | 8 A-5                                   | 8 A-5                                                                                                | 8 A-5                                                                                |
|                   | Loud-<br>speaker                | 25 A-1                                                  | 25 A-1                                  | 25 A-1                                                                                               | 25 A-1                                                                               |
| Main units of set | Public<br>address<br>amplifier  | 1 9-101                                                 | 1 3-101                                 | 1 У-101                                                                                              | 1 3-101                                                                              |
| Main un           | Power-<br>supply<br>device      | кпсу-2                                                  | кпсу-1                                  | кпсу-2                                                                                               | KHCY-1                                                                               |
|                   | Main<br>amplifier               | 12 Y-8                                                  | 12 y-3                                  | 12 <i>y</i> -3                                                                                       | 12 V -8                                                                              |
|                   | Preampli-<br>fier               | 1 Y 50-A                                                | 1 <i>y</i> 50-A                         | 1 <i>y</i> . 50-A                                                                                    | 1 <i>Y 50-A</i>                                                                      |
|                   | Recording<br>device             | 3/1-H8                                                  | 3:3II-1/B                               | 3311-2                                                                                               | 3311-2                                                                               |
| Model             | Characteristics<br>of the model | Basic type. Designed for supply from storage batteries. | Designed for supply<br>from A. C. mains | Recording device adapted to record sound tracks of double area. Power supply from storage batteries. | Recording device for double area sound tracks. Designed for supply from A. C. mains. |
|                   | Symbol                          | КЗПУ-2                                                  | КЗПУ-3                                  | K311У-4                                                                                              | K3IIY-5                                                                              |

| УНΑФ-42 M                                                                                                                            | Y HA Φ-42 M                                                                                                                    | VIIAФ-42 M                                                     | YHAФ-42 M                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|
| 8 A-5                                                                                                                                | % A-5                                                                                                                          | 8 A-5                                                          | 8 A-5                                                                 |
| 25 A-1                                                                                                                               | 25 A-1                                                                                                                         | 25 A-1                                                         | 25 A-1                                                                |
| 1.9-101                                                                                                                              | 1 3-101                                                                                                                        | 1 3 -101                                                       | 1 3-101                                                               |
| KHCV-2                                                                                                                               | KHCV-1                                                                                                                         | MICX-4                                                         | KIICV-8                                                               |
| 12 y-3                                                                                                                               | 12 У-3                                                                                                                         | 12 V-3                                                         | 12 У-3                                                                |
| 1 <i>Y</i> 50-A                                                                                                                      | 1.V 50-A                                                                                                                       | 1 Y 50.A                                                       | 1.Y 50-A                                                              |
| 3311-1/13                                                                                                                            | 3311-176                                                                                                                       | 33II-1/B                                                       | 33II-1/B                                                              |
| Special set of optics and spare parts allows change-over to double area sound tracks in studio. Power supply from storage batteries. | Special set of optics and spare parts allows change-over to double area sound tracks in studio. Power supply from A. C. mains. | Similar to K3IIV-6 with power supply frequency being 60 cycles | Similar to K3IIV-7 with power supply from A. C. mains being 60 cycles |
| КЗПУ-6                                                                                                                               | КЗПУ-7                                                                                                                         | кэпу-в                                                         | КЗПУ-9                                                                |



8 A-5 Dynamic Microphone, with an 11-A-8 type tripod, is used with the public address amplifier when instructions are being relayed. The solid design of the 8 A-5 dynamic microphone ensures reliable performance in expeditionary conditions.

Two YHAD-42M Communication Telephones, which serve for communications between the sound-recording operator and

for communications between the sound-recording operator and the sound-recording room.

Any requirements liable to arise with the use of the K3IIV Sound Recorder in expeditions have been taken into consideration in the design of the units.



Fig. 20. 25A-1 Loudspeaker

Switching and inter-connecting of separate parts of the re-corder are achieved by means of connector cables with connection plugs. Cable extension is provided to allow the preamplifier, the motion picture camera and parts of the public address channel to be moved to distances up to 100 metres from the remaining equipment (usually installed on a truck).

equipment (usually installed on a truck).

For railroad transportation and storage of spare parts and service tools the amplifying section of the recorder is provided with three sturdy cases.

Weight of set, complete with carrying cases — approx. 1,050 kg.

#### K3YC STATIONARY SOUND FILM RECORDER

The K3YC Stationary Sound Film Recorder performs synchronous sound recording on 35-mm film by the photographic method in studios.

In order to meet requirements of recording sound tracks of normal, as well as double area, and connection of the device to different supply lines under varying local studio conditions, several models of stationary sound film recorders are available.

The table below gives brief characteristics of available sound recorder models and their sets.

The K3YC Sound Recorder includes the following units:

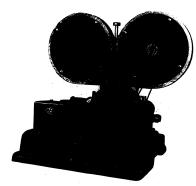



Fig. 21. 3K Recording Device

**3K Recording Device** (Fig. 21), which records sound tracks on 35-mm film by the variable area method. Recording is of the normal or push-pull noiseless method with standard or double area sound track.

The speed stabilizer (magnetic drive) used with the device ensures unfailing uniformity of film speed past the exposure slit. The light modulation system of the recording device allows for recording with ultra-violet and white light.

Reliability of construction and the high-precision workmanship of its parts provide lasting service, the device being readied for operation by simple insertion of magazines and threading of film. Correct setting of exposure lamp and magnetic drive exciter coil is achieved by means of rheostats, which ensure smooth adjustment controlled by adequate instruments.

Overall dimensions of recording device (height  $\times$  lenght  $\times$  width)  $640 \times 560 \times 550$  mm Weight of recording device . . . . . 102.3 kg

12 V-5, type 2 Preamplifier (Fig. 22), which mixes and preamplifies incoming signals from the microphones, and allows simultaneous connection of four microphones. The amplifying range permits use of microphones of any type, even under most unfavourable conditions.



Fig. 22. 12Y-5, type 2 Preamplifier

The adjustment range of the frequency characteristics in both preamplifier and main amplifier makes provisions for the requirements of recording in studios.

The electro-mechanical properties of the level indicator mounted in the preamplifier enable full visual control of the volume of signals recorded.

The extremely low level of interferences throughout the amplifying channel is achieved by the electric characteristics of the amplifier input transformers and the type of shields used with them, thus limiting the dynamic range of the recording only by the quality of the film used.

The preamplifier is styled as a panel supported by a movable table equipped with swivel rollers. The device is ready for operation after simple connection to the switchboard by means of connecting cables.

Overall dimensions of preamplifier (height  $\times$  length  $\times$  width) . . . . 1,010 $\times$ 890 $\times$ 600 mm Weight of preamplifier . . . . . . 92.2 kg

12 Y-4, type 2 Main Amplifier (Fig. 23), which is intended for subsequent amplifying of signals from the preamplifier, and for compressing and limiting the output volume. The main amplifier includes a monitor amplifier channel and a loudspeaker, which enable perfect monitoring of the recording.

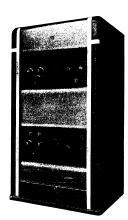



Fig. 23. 12Y-4, type 2 Main Amplifier

Control.

The main amplifier is styled as a metal cabinet accomodating the chassis of both recorder and intermediate amplifiers; the front panel of the cabinet is easily removable to give access to the tubes. Free access to the amplifier parts is provided by the hinged chassis and special rods, allowing to swing the chassis off.

Overall dimensions of the amplifier (height  $\times$  length  $\times$  width) . . . . . 912  $\times$  525  $\times$  365 mm Weight of amplifier . . . . . . . 50 kg

30



12 M-3 Power-supply Device (Fig. 24), which supplies all high and low voltage D. C. circuits with stabilized rectified current.

with stabilized rectified current. Power is fed to the device from standard 127/220 V,50-cycle A.C. mains.

The power-supply device ensures the unfailing stabilization of rectified current in a wide range of line voltage variations.

The rectifiers and stabilizers of the power-supply device are mounted in a single cabinet.

Overall dimensions of the powersupply device (height × length × width) . 1,240×640×400 mm Weight of device . . . . . . 151 kg

7 K-7 Switchboard Panel

Fig. 24. 12M-3 Power-supply Device (Fig. 25), which serves the power-supply device. The switchboard panel is installed in the recording-room and provides for remote switching of the power-supply device and control of its operations.

Overall dimensions of panel (height  $\times$  length  $\times$  width)  $490 \times 550 \times 550$  mm Weight of panel . . . . 22.6 kg

Switching Equipment, which consists of the 6 K-50 main switching unit (Fig. 26), two 6 K-18 studio panels (Fig. 27 and 28), a set of connecting cables and designed for centralized switching of preamplifier and recorder.



, · · Ş

Fig. 25. 7K-7 Switchboard Panel

Overall dimensions of the 6K-50 main switching unit (height  $\times$  length  $\times$  width).  $\times$  Hordth  $\times$  width).  $\times$  Weight of main switching unit  $\times$  20 kg Dimensions of the 6K-18 panel  $\times$  30  $\times$  482  $\times$  103 mm each Weight of each panel  $\times$  23 kg

Communication System, which is designed for telephone communications between studio and central recording-room.

25 A-7 Monitor Loudspeaker (Fig. 29), which serves for monitoring recording being made in central recording-room.

Overall dimensions of loudspeaker (height  $\times$  length  $\times$  width) . . . . . 600  $\times$  700  $\times$  300 mm Weight of loudspeaker . . . . . . . 9.3 kg



Fig. 26. Switching Unit

 $25\ A\text{-}6$  Monitor Loudspeaker (Fig. 30), which enables high-standard audio checking in a special demonstration room thanks to the electroacoustical properties of the speaker.



Fig. 27. 6K-18 Switching Panel



Fig. 28. 6K-18 Switching Panel

Overall dimensions of loudspeaker (height  $\times$  length  $\times$  width) . . . .  $860 \times 720 \times 439$  mm Weight of loudspeaker . . . . . . . . 41 kg

32

# TABLE of K3VC Sound Film Recorder Sets

|        | Model                                                                                                                   |                     |                            |                         | Main Units of the Set                                 | e Set                            |                              |                        |
|--------|-------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|-------------------------|-------------------------------------------------------|----------------------------------|------------------------------|------------------------|
| Symbol | Characteristics<br>of the model                                                                                         | Recording<br>device | Preamplifier               | Main<br>amplifier       | Power supply<br>device                                | Switching<br>equipment           | Communi-<br>cation<br>system | Monitor<br>loudspeaker |
| K3VC-5 | Basic model                                                                                                             | 3K-4                | 12 <i>V</i> -5,<br>model 2 | 12 y-4,<br>model 2      | 12 M-3, model 2<br>with 7 K-7, model 2<br>switchboard | 6 K-50 with two<br>6 K-18 panels | Available                    | 25 A-7 and<br>25 A-6   |
| K3VC-6 | Recording device with optical system for double area sound track recording                                              | 3K-5                | 12 V-5,<br>model 2         | 12 V-4,<br>model 2      | 12 M-3, model 2<br>with 7 K-7, model 2<br>switchboard | 6 E-50 with two<br>6 E-18 panels | Available                    | 25 A-7 and<br>25 A-6   |
| K3VC-7 | Recording device has set of optics and spare parts, which allow change-over to double area sound tracks for studio work | 3Æ4                 | 12 V-5,<br>model 2         | 12 V-4,<br>model 2      | 12 M-3, model 2<br>with 7 E-7, model 2<br>switchboard | 6 E-50 with two<br>6 E-18 panels | Available                    | 25 A-7 and<br>25 A-6   |
| K3VC-8 | Similar to K3yC-5, but<br>supplied with power from<br>60-cycle frequency mains                                          | 3K-6                | 12 <i>V-5,</i><br>model 2  | 12 <i>V</i> -4, model 2 | 20 B-6 with 50 K-2<br>switchboard                     | 6 K-50 with two<br>6 K-18 panels | Available                    | 25 A-7 and<br>25 A-6   |
| K3yC-9 | Similar to K3yC-7, but<br>supplied with power from<br>60-cycle frequency mains                                          | 3K-6                | 12 y·5,<br>model 2         | 12 V-4,<br>model 2      | 20 B-6 with 50 K-2<br>switchboard                     | 6 K-50 with two<br>6 K-18 panels | Available                    | 25 A-7 and<br>25 A-6   |

The main wiring of the recorder is of the stationary type. Detachable wiring consists of flexible cables provided with special connectors to ensure dependable connections.



Fig. 29. 25A-7 Monitor Loudspeaker



Fig. 30. 25A-6 Monitor Loudspeaker

Weight of the complete sound recorder set packed in carrying cases is about 1,100 kg.  $\,$ 

·····(倒);

#### KII3-1 FILM RE-RECORDING EQUIPMENT

The KII3-1 Re-recording Equipment is adapted for sound re-recording on 35-mm film from photographie sound tracks and magnetic tapes as well as for sound recording of announcer's speech.

The equipment provides for simultaneous high-standard sound re-recording from eight sound tracks recorded on 35-mm film.

The equipment provides a wide range of independent volume control and adjustment of signal frequency characteristics of the re-recorded sound from 50 to  $8,\!000$  cycles.

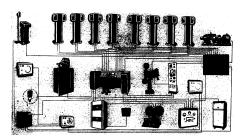



Fig. 31. General Scheme of K $\Pi$ 3-1 Re-recording Equipment

The interlock drive system of the equipment ensures travelling of the film through the sound reproducing device and projector at a speed of 24 picture frames per sec with power frequency of 50 cycles.

The complete set includes the following units (Fig. 31): Eight sound reproducing devices. Re-recording control panel. Interlock drive system.

Loudspeaker communication and command system. Recorder device. Sound reproducing unit and accessories. Projector.

4 P-1 Sound Reproducing Device (Fig. 32) of the K $\Pi$ 3-1 rerecording equipment has a new design: besides the film-transporting mechanism with an

ing mechanism with an optical scanning system it is provided with a photoelectronic multiplier and a stabilized power supply source for exposure lamp and amplifler.

The mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pownther with the mechanism is pow

The mechanism is power-driven by the 5 M-1 motor of the interlock system.

A smooth-surface drum of reduced diameter provides for a high degree of stabilization of film-travelling speed. High-standard performance of the device and

of him-traveling speed.
High-standard performance of the device and the possibility for sound reproducing from any kind of sound track are achieved by the system

of optical scanning.

The device provides passage for film loops with a diameter from 2 to 15 metres.

Swift rewinding of 300-metre film roll in 1.5 minutes is an important service feature.



Fig. 32. 4P-1 Sound Reproducing Device

70 K-1 Re-recorder Control Panel (Fig. 33) centralizes the main units controlling re-recording operations, such as: adjustment of volume and frequency characteristics of 8 channels; switching of input circuits and their supplementary adjusters, amplifier adjusting devices and limiting filters, signal and loudspeaker communication system, etc.

Ease in transportation is a special feature of the panel design: it may be dismantled into three separate parts and easily assembled again on arrival.

Easy access is provided for inspection and repairs of panel parts. Highly identical channel characteristics and reduced response of adjuster link coils to exterior magnetic fields is achieved by the use of asylferrous rings in the design of filters and coils.

É

The channel layout is of the two-way system using mixing transformers, and achieves high values of transitory channel



Fig. 33, 70K-1 Re-recorder Control Panel

Interlock Electric Drive of sound-reproducing devices and the projector is effected by the 4M-4 generator-governor (Fig. 34) driven by a synchronous motor and provides a film-travelling speed of 24 pict. frame per sec, with a 50-cycle frequency of the power supply mains.




Fig. 35. 7K-9 Main Terminal Board

Fig. 36. 80K-1 Control Desk

The drive is fed from the 7 K-9 main terminal board (Fig. 35). Remote control of the drive is achieved by means of the 80 K-1 control desk (Fig. 36) installed in the reproducer booth. Synchronous stoppage of the system may be effected from the re-recorder control panel and the signal panel in the re-recorder booth.

Loudspeaker Communication and Signal System consists of self-contained 11 K-3 communication panels (Fig. 37) situated in adequate operation spots, and various units of communication and signals of the control panels 11 K-2 (Fig. 38).



Fig. 37. 11K-3 Communication Panels



The signal system is intended to relay general and local signals  $% \left\{ 1,2,...,n\right\}$ in accordance with studio routine.

The loudspeaker communication system maintains communications between the main channel control panel and correspond-ing operation locations, as well as direct two-way communica-tions between any of these locations.

Recorder Device used with the KII3-1 re-recording equipment represents a modified set of the K3VC sound recorder serial. It consists of the following units:

3K-4 Sound recording apparatus (Fig. 39). 100У-2 Main amplifier (Fig. 40). 12M-3 Power-supply device (Fig. 41). 6K-50 Switching unit (Fig. 42). 30A-3 Two-band speaker (Fig. 43). 7K-7 Control panel (Fig. 44).

The 7K-7 Control panel for 12M-3 power-supply unit is somewhat modified to meet requirements of supplying the equipment directly from the supply mains or through the main terminal boards.

Sound Reproducing Unit and Accessories used with the KII3-1 re-recording equipment are of the KYCY-52 sound reproducing equipment type, detailed features of which are given in the catalogue

38



Fig. 39. 3K-4 Sound Recording Apparatus

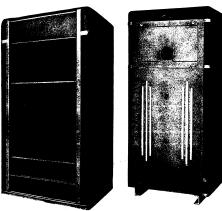



Fig. 40, 100Y-2 Main Amplifier Fig. 41. 12M-3 Power-supply Device

The KIIT-1 Stationary Projector has been somewhat modified for use with the KII3-1 re-recording equipment, the asynchronous electric projector motor being substituted by a 5M-2 self-synchronizing electric motor with a special reduction gear providing



Fig. 42. 6K-50 Switching Unit




Fig. 43. 30A-3 Two-band Speaker

precise conformity of the film-travelling speed within the projector and reproducing device. The projector is equipped with an automatic shutter which cuts the light beam when operation ceases.



Fig. 44. 7K-7 Control Panel

40

For the convenience of small studio outfits a somewhat modified set of re-recording equipment KII3-2 is made available for simultaneous re-recording from four sound reproducing devices.

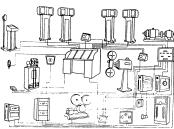



Fig. 45. General Scheme of K $\Pi$ 3-2 Re-recording Equipment

The design of the KII3-2 equipment is similar to that of the KII3-1, but it has only four 4P-1 sound reproducing devices and a 70K-2 re-recorder panel.

A general scheme of KII3-2 equipment is shown in figure 45.

Three-phase A.C. 220 V, 50-cycle mains provide the power supply

supply.

Power consumption is approx. 10 kW.



LABORATORY EQUIPMENT

#### 40II-1 AUTOMATIC DEVELOPING MACHINE

The 40II-1 Automatic Developing Machine (Fig. 46) performs photo-chemical processing of negative and positive 35-mm black-and white film

and-white film.

The film-threading mechanism of the machine is covered with a light-proof metal hood, allowing film processing in a lighted

room.

The machine consists of two self-contained developing systems for both positive and negative films with a multi-loop arrangement of the films.



Fig. 46. 40 $\Pi$ -1 Automatic Developing Machine, view from side of drier cabinet

The frame of the Developing Machine is conveniently furnished with four rollers, allowing easy moving of the equipment. Mechanical damage to film perforations during the processing is eliminated by the use of frictional methods of film transportation.

The Developing Machine is provided with an interlocking device for:

The Developing machine is provided with all machine drive when film breakage occurs in the wet part of the film path, and when the lower rollers of the threading magazine reach their extreme upper position;

b) sounding of warning signal when the feed reel is empty.

A constant temperature of the developing solution at  $20\pm0.3$ °C is automatically maintained by an air-conditioning device (heater and cooling device).

Uniform conditions of film drying are ensured by the smooth adjustment of heating temperatures and incoming air.

The Automatic Developing Machine consists of the following

parts:

Framework on which all assemblies and units are mounted;

Tanks; Wet part of the film-threading path, including film transportation mechanism;

Drier cabinet with transportation and winder mechanisms;



Fig. 47. Developing Machine Control Panel

Air-conditioning system, consisting of: a) filter, b) blower fan with electric motor, c) baffle for controlling air blast entering the drier cabinet, d) air duct to squeegee, e) electric air-heating

apparatus;

Plumbing system, consisting of: a) water conduit to washing tanks and thermostat, b) sewer line for drainage from all tanks, c) hypo line for pumping hypo from the second tank to the first one by means of electrically-driven pump, d) hypo recovery line from first tank of final washing, e) two independent developer lines (negative and positive) with pumps providing circulation of developing solution and thermostat for maintaining constant temperature, f) supply lines of developer systems with replenishment from metering tanks;

Driving mechanism which is an electric motor with variable.

Driving mechanism which is an electric motor with variable speed reduction gear;

Control panel on which are mounted all instruments of control

Hoods for the replenisher metering tank, machine driving mechanism and solution conduits;

Light-proof magazines.

#### SPECIFICATIONS

Output of the Automatic Developing Machine varies from 50 to 300 metres per hour, the developing time varying accordingly from 16 to 2.5 min.

Power supply from three-phase 220 V, A. C. mains. Power consumption — 11 kW.

Time of film processing stages, in minutes:

|                      | For Pos                                                  | sitive Film                                             |                      |
|----------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------|
| Processing Stage     | Basic proces-<br>sing speed of<br>200 metres<br>per hour | Increased<br>processing speed<br>300 metres<br>per hour | For<br>Negative Film |
| Developing           | 4                                                        | 2.7                                                     | 16                   |
| Intermediate rinsing | 1.4                                                      | 0.9                                                     | 5.6                  |
| Fixing               | 4                                                        | 2.7                                                     | 16                   |
| Final washing        | 6.1                                                      | 4                                                       | 24.4                 |
| Drying               | 20                                                       | 13.3                                                    | 80                   |
| Total time           | 35.5                                                     | 23.6                                                    | 142                  |

Overall dimensions of Automatic Developing Machine . . . . . 2,900  $\times$  1,965  $\times$  1,100 mm Weight of machine: without solutions . 1,000 kg with solutions . 2,060 kg

#### КПЭ-2 FILM SAMPLE PRINTER

The Sample Printer (Fig. 48) prints samples from 35-mm negatives on positive film, facilitating correct selection of the exposure and light number for release printing of motion picture films by continuous printing.



Fig. 48. KΠЭ-2 Film Sample Printer

The Sample Printer provides for simultaneous printing of negative lengths of ten picture frames each (Fig. 49 and 50), showing uniform photographic density with ten different illumination intensities corresponding to those of the continuous printer; printing is achieved by contact method. This facilitates the selection of convenient exposure conditions for the printing of each negative film length by visual inspection of the positive sample and comparison of the ten images of different exposure.

Illumination of the printing gate is provided by a single light source. Interposition in the light path of the film-channel gate of

neutral-grey light filters allows for the establishment of different illumination stages.

The exposure time is adjusted by modifying the shutter slit dimensions.



Fig. 49. KΠЭ-2 Printer Head

The head is lowered by hand.
Rewinding of positive film, shutter operations, and lifting of head are effected automatically by pressing a lever.
The Printer is equipped with adequate instruments providing for control of operating conditions and adjustment of printer lamp.



Fig. 50. KII 3-2 Printer Head, rear view

#### SPECIFICATIONS

Capacity of film magazines:
for positive film
for negative film
Illuminating system fed with
Printer lamp
Maximum exposure time 60 metres 300 metres 110—120 V D.C. 300 W. 110 V 0.05 sec | Overall dimensions of printer (length | \times width \times height) | \times 1,360\times 660\times 1,230 mm | \times width \times height) | \times 1,560\times 660\times 1,230 mm |

#### YKA SOUND FILM PRINTERS

Available are three serial models of the YKA Sound Film Printer:

VKA-M — for mass release printing on 35-mm film from density-corrected duplicated negatives of black-and-white motion picture films.

VKA-II — for mass release printing in the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of

yka-u—for mass re-lease printing on posi-tive 35-mm multilayer colour film. yka-T—for routine

printing on 35-mm film of colour and black-and-white motion pictures.

#### Model YKA-M

The YKA-M Printer (Fig. 51) is for mass release printing on 35-mm film of black-and-white motion pictures in mo-tion-picture printing la-



#### Model УКА-Ц

The YKA-II Printer (Fig. 52) is for mass printing on 35-mm multilayer film of colour sound films in motion-picture printing laboratories.

The machine prints from multi-layer colour negatives or duplicated negatives. Change of image printing illumination is produced by the AP automatic device, which shifts a light control band with punched openings and light-filters. Fore filter holders mounted in special recesses in the path of the

cesses in the path of the light beam are provided.



Fig. 52. YKA-II and YKA-T Printer

#### Model VKA-T

The YKA-T Printer (Fig. 52) is for regular printing on 35-mm film of black - and - white sound films in motion-picture printing labora-tories.

tories.

Printing is done from negatives. Change of image printing illumination is achieved by the AP automatic device which chifts a light conthe AP automatic device which shifts a light control band with punched openings. The machine may be adapted for regular printing of colour films if a control band similar to that of the YKA-II model and fore filters are fitted to it.

Reverse drive allows printing without rethreading the nega-

All the models of the YKA Printer are designed on basically similar lines, which facilitates repairs and maintenance.

Spare lamps and necessary tools are supplied with the YKA Printers. On special order the YKA Printers may be provided with the following accessories:

a) Jack-bogie for transportation (Fig. 53).



Fig. 53. Jack-bogie for transportation of YKA Printers

b) IIMJ-3 Light Control Band Puncher (Fig. 54) for punching circular apertures on a 35-mm perforated paper band when making light control bands for  ${\tt YKA-L}$  and  ${\tt YKA-T}$  Printers.



Fig. 54. ПМД-3 Light Control Band Puncher

The Puncher has 20 circular punches of various diameters from 6.2 to 22 mm; the punching is done by hand. c) The MBII-3 Slot Cutting Machine (Fig. 55) for cutting lateral slots in negative films to achieve switchover impulses of the 'light control band in YKA-IĮ and YKA-T Printers.



Fig. 55. MBΠ-3 Slot Cutting Machine

d) The  $\Pi M \Pi$ -1 machine for stapling of light control bands used with YKA- $\Pi$  Printers, the stapling being done by means of metal

#### SPECIFICATIONS

(common to all VKA models)

Path of film travel . . . . Direction of film travel . . . . Speed of film travel . . . 

52

Printing method by contact, over sprockets with bilateral compressed air contacting arrangement 300 metres
Printing lamp 300 with contact printing lamp 500 metres
Adjustment of power supply to printing lamp 500 metres
Power supply of printing lamp 500 with control of power supply to printing lamp 500 metres
Printing lamp 500 with control of power supply to printing lamp 500 means of theostats

Adjustment of sound track printing gate illumination 500 means of diaphragms
Electric drive 1,440 r. p. m., 220 V. 50 cycles asynchronous, three-phase electro motor magnetic starter 500 means of reversible electromagnetic starter 500 means of reversible electromagnetic starter 500 means of a 220/24 V transformer 500 means of a 220/24 V transformer 600 means of printing lamps burn out, 500 pressing clamp of the printing assembly is not secured, 600 meative film (in yKA-M model) tears.

Film cleaning 500 with filtered air provided by the 500 weight of Printer (in carrying cases) 1,000 kg 1,000 kg 100 metres 100 metres 200 metres 100 means of reconstant 100 means of printer (in carrying cases) 1,000 kg 100 metres 100 metres 100 metres 100 means of reconstant 100 means of measuring instruments 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of reversible electromagnetic starter 100 means of measuring instruments 100 means of measuring instruments 100 means of measuring instruments 100 means of measuring instruments 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of measuring instruments 100 means of measuring instruments 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of a 220/24 V transformer 100 means of measuring instruments 100 means of measuring instruments 100 means of mea

#### MM-11 FILM RENOVATION MACHINE

The MM-11 Film Renovation Machine (Fig. 56 and 57) eliminates mechanical damage from the film base, and plastifies it.

Elimination of damage is achieved by the method of superficial dissolving of the film base by highly-volatile solvents, followed by rolling of the base over a glass disk with a matte or glossy surface.



Fig. 56. MM-11 Film Renovation Machine

The essential parts of the machine are: frame, electric drive, winding device for 600 metres of film, cleansing device, post-cleansing drying chamber, pressure rollers, renovation assembly, take-off rollers, post-renovation drying chamber, winding device, mechanism for lifting and lowering of the solvent bath, solvent tank, solvent vapour-exhausting system, control panel.

The cleansing device effects damp cleansing of the film base and dry cleansing of the emulsion side.

Design of the pressure rollers ensures adjustment of the film pressure against the glass disk.
Solvents are fed automatically.



Fig. 57. MM-11 Film Renovation Machine, rear view

Quick lifting and lowering of the bath is achieved by a special mechanism, which also adjusts the humidifying rate of the glass disk and of the solvent level in the bath.

#### SPECIFICATIONS

| Speed of film travel                            | 250 and 500 metres per hour<br>0.52 kW explosion-proof asynchron-<br>ous electric motor |
|-------------------------------------------------|-----------------------------------------------------------------------------------------|
| Film-threading chambers                         |                                                                                         |
| Overall dimensions of machine Weight of machine |                                                                                         |

#### PYII-1 CUTTING MACHINE

The PyII-1 Cutting Machine (Fig. 58) cuts 32-mm film into two 16-mm film strips.

Machine drive is provided by an asynchronous electric motor with reduction gear.

The cutting mechanism consists of two knives fitted on parallel shafts and rotating in opposite directions.

The special design of the knives achieves high-precision film-cutting.

The upper and lower diskshaped knives are protected by hoods for operation safety and prevention of winding of cut film around the knives.

A 165° portion of the lower knife circumference is encircled by the film held down by pressure roller.

Film transportation within machine is performed by the lower knife and two take-up devices.

The film-feed device is installed in the lower part of the machine, consisting of an open spool fastened on a freely-rotating spindle with an adjustable brake. The spool is designed for use with a standard 50-mm core or with a special 100 mm-diameter core.

Over the feeding device is fitted a guide roller which directs the film to a 20-toot sprocket. The sprocket and the two upper take-up devices ensure the necessary film tension around the lower knife.



Fig. 58. PYII-1 Cutting Machine

56

The upper 20-tooth sprocket is intended to align tensioning on the take-up device of both film strips (after cutting) in order to prevent disalignment of the film on the knife.

The moving parts of the machine are mounted on ball bearings.

#### SPECIFICATIONS

SPECIFICATIONS

Speed of film transportation ... 28.9 metres per min or 1,730 metres per hour sper hour for hour sper hour between the per hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sper hour sp

#### KCII-3 FILM STAPLER

The KCII-3 Stapler (Fig. 59) is designed for mechanical splicing of 35 mm motion-picture film ends. Wire staples are used for the splicing. They are loaded into the stapler in 100-piece packages.



Fig. 59. KCII-3 Film Stapler

Pressing of the Stapler handles automatically releases one staple to fasten the film ends.

The Stapler is hand-operated and extremely easy to handle.

#### 35-3MA-3 SOUND EDITOR

The 35-3MA-3 Sound Editor (Fig. 60) is designed for sound editing of 35-mm film and performs the following processes:

Synchronization of basic sound track, music and noises with

Synchronization of sound track and sound film during doubling and editing. Synchronous visual and audible control of film from separate

"picture record" and "sound record" films.

Visual and audible control of the edited film or parts of it.

Visual and audible control of the The essential process of sound editing — synchronization of "picture record" and "sound record" films is achieved in two stages:

a) The "picture record" film is shifted by means of an electrical drive in forward or reverse direction at a speed of 5—30 picture frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while the "sound frames per see while th

rection at a speed of 5—30 picture frames per sec, while the "sound record" film is stationary.

b) Shifting of the "sound record" film relatively to the "picture record" film is accomplished by hand through a differential mechanism in the process of a simultaneous running of both films. This provides great convenience in differential mechanism. great convenience in editing sound films.

The Editor is adapted for simul-

taneous visual and audible control of image and sound track printed on one film. This makes the Editor desirable for foreign-language doubling.

The design of both Editor viewing and sound heads provides for easy threading of the film, and allows winding of film on spools or special hubs, as well as a free travel of the film from the device. Provision is made for editing of film lengths of 3—4 picture frames.



Fig. 60. 35-3MA-3 Sound Editor

Starting, stopping and reversal of sound-head and projector-head electric motors, adjustment of motor speed, switching of amplifier of sound and projector lamps are achieved by means of switches and rheostats conveniently located for operation.

The Editor's projector system does not require a darkened

The Editor's mechanism, its electric drive, amplifier and loudspeaker are mounted on a metal table equipped with four swivel wheels on rubber tires.

Light weight, small overall dimensions and ease in dismant-ling make the device convenient for use in studios and laboratories, and in outdoor conditions

#### SPECIFICATIONS

Power supply . . . . . from 110 V, 50 cycle A.C. mains Power consumption . . . . . 600 W

Projector (viewing) head. Film propelling is achieved by means of a maltese cross mechanism with a 16-tooth transporting sprocket. Precision workmanship of the mechanism parts ensures a noiseless performance.

The image is viewed through a picture-frame gate by means of a magnifier mounted in the gate of the film channel.

The image is magnified to 3 times its size.

Projection lamp - 15 W, 110 V with E-14 socket.

Power drive — 65 W, 110 V, 6,000 r. p.m. commutator motor.
The design of the picture-frame gate provides for easy setting of synchronous control marks on the film.

Sound head. Uniform propelling of the film is achieved by a 16-tooth

sprocket.

Differential gearing allows quick and slow propelling of the "sound record" film. The head also permits use of 17.5-mm films with unilateral perforation (halved 35-mm film).

The design of the film channel gate provides for setting of synchronous control marks on the film.

A current of supersonic frequency is supplied to a 3 W, 4 V exciter lamp from a lamp generator.

The photoelectric cell — of type III-3.

Power divisor—50 W 110 V 50 cepts 1 500 cepts 1 500 cepts 1

Power drive — 50 W, 110 V, 50 cycle, 1,500 r.p.m. asynchronous single-ise condenser-type electric motor.

Film-winding device. Projector and sound heads are provided with reversible winding devices and dismountable reels of 300-metre film capacity. For small film rolls (up to 80 metres) the device has special hubs mounted on swinging brackets.

Amplifier and loudspeaker. The 1Y-7 Amplifier is installed in the metal box of the projector table.

Nominal output volume of the sound frequency is 2.5 W, the non-linear distortion factor not exceeding 3% at 1000-cycle frequency and 5% at 100-cycle frequency.

The band of reproduced frequency ranges from 50 to 8,000 cycles.

The amplifier power-supply voltage is 110 V, 50 cycles. Electronic tubes used with the amplifier are: 6K7 (2 pcs.), 6II3 or 6JI6, YO186, 5JL4c.

The 4-A-18 loudspeaker is fitted on a special bracket above the sound head.

sound nead.

Various accessories and spare parts are supplied with the Editor.

Overall dimensions of the Editor...500×600×1,600 mm

Weight of Editor............100 kg

#### 35-MMIIC-3 SUBTITLE MAKING MACHINE

The Subtitle Making Machine prints subtitles on 35-mm film by the mechanical method with use of clichés.

Main advantages of the mechanical method of subtitle print-ing are: printing on ready-made films and simplicity of technical process allowing printing of subtitles at film-exchange offices.

The complete set includes:

35-MMIIC-3 Subtitle Making Machine for Mechanical Printing (Fig. 61), which consists of the following units: assembly for




Fig. 61. 35-MMIIC-3 Subtitle Making Machine for Mechanical Printing

dampening of the film-emulsion layer by special solvents; assembly for printing subtitles on softened film-emulsion layer by means of heated matrix-clichés; film drying assembly (after printing of subtitles) working on warm air from heating devices and fan; control panel for all elements of operation.

The subtitle printing assembly has a printing mechanism, a light-control band head and a projector device intended for checking quality of printed subtitles.

The design of the machine allows operation of the printing machine by hand, semi-automatically, or automatically.

Subtitle-printing speed ranges from 2 to 15 picture frames

Length of film rolls to be subtitled . 300 metres  $\,$ Projection lamp . . . . . . . . . . . . 21 W, 12–16 V Pilot lamp . . . . . . . . . . . . 8 W, 110 V

35-CIIC-1 Bench for Synchronized Printing (Fig. 62), which produces control bands for automatic subtitle printing on 35-mm film with the 35-MMIIC-3 machine.



Fig. 62. 35-CHC-1 Bench for Synchronized Printing

The bench consists of the following units: synchronizer, control band puncher, and rewinding device

Rewinder reel capacity . . . . . . . . 300 metres Rotation of synchronizer . . . . . . achieved by film tensioning Film travelling . . . . . . . . . . in horizontal plane.

MPK-2 Cliché Cutting Machine (Fig. 63), which is a milling machine designed to cut ready  $120\times160$ -mm cliché plates into separate  $8\times22$ -mm matrixes.



Fig. 63. MPK-2 Cliché Cutting Machine

#### SPECIFICATIONS

| Power supply                         |
|--------------------------------------|
| 35-MMIIC-3 machine total power       |
| consumption 2.7 kW                   |
| Overall dimensions:                  |
| 35-MMΠC-3 machine 1,490×1,670×510 mm |
| 35-CIIC-1 machine 1,300×1,250×600 mm |
| MPK-2 machine                        |
| Total weight of 35-MMIIC-3 sub-      |
| title making machine approx. 650 kg  |

#### 35-CIIA-2 SEMI-AUTOMATIC FILM SPLICING MACHINE

The 35-CIIA-2 Semi-Automatic Film Splicing Machine (Fig. 64) is designed for splicing 35-mm standard perforated or unperforated film. The Semi-Automatic Splicing Machine performs shearing, scraping, splicing, and pressing of spliced film ends.

The machine is for use in film-manufacturing factories, film-printing laboratories and film-exchange offices.



Fig. 64. 35-CΠA-2 Semi-Automatic Film Splicing Machine

The Semi-Automatic Splicing Machine offers speed, ease and high efficiency in the film-splicing process.

Speedy drying of the splices is ensured by a heating device. The machine has illuminators under the path of the film and above the splicing machine head.

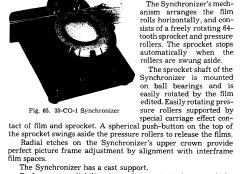
Replaceable ground-glasses (white) and a set of nonactinic red light-filters are provided with the illuminating devices.

64

#### SPECIFICATIONS . . . . from 110 V A. C. mains

Power supply
Straight splice, width of splice
Film rewinding
Geared rewind reel
Commutator motor 3 mm by hand or electric drive

1:3 ratio, acceleration type


110 V, 25 W, 3,600 r. p. m., sealed type 

#### 35-CO-1 SYNCHRONIZER

The Synchronizer (Fig. 65) is intended for synchronous alignment of two and three 35-mm motion picture films with sound and picture records during studio film-editing.

The synchronizer is a portable apparatus conveniently fitted on the Editor table without fastenings. If permanent installation is required special holes are provided to secure it to table with screws.

The Synchronizer's mech-



The Synchronizer's mechanism arranges the film rolls horizontally, and con-

The Synchronizer has a cast support.

Performance reliability is a characteristic feature of the Synchronizer.

66

### 16-IICII 16-mm FILM SPLICER

The portable, easy-to-handle 16-IICII Film Splicer (Fig. 66) of the bench type is intended for splicing of 16-mm positive and negative film in film manufacturing factories, film printing laboratories, studios, film-exchange offices and motion picture theatres.

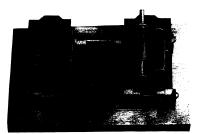



Fig. 66. 16-ПСП Film Splicer

A special device in the Splicer shears off damaged film ends when the film is fitted into the Splicer. Another special device scrapes emulsion off the film ends.

Quick replacement of the blades is facilitated by their construction. The design of the Splicer ensures standard and high-

quality splicing.

Overall dimensions of Film Splicer . . . . 150 × 90 × 51 mm Weight of Film Splicer . . . . . 900 g

### 35-ПСП-3 35 mm FILM SPLICER

The 35-IICII-3 Film Splicer (Fig. 67) is designed for splicing 35-mm positive and negative films in film manufacturing factories, film printing laboratories, studios, film-exchange offices and motion picture theatres.



Fig. 67. 35-IICII-3 Film Splicer

The Splicer effects shearing and scraping of the emulsion off the film ends.  $\begin{tabular}{ll} \hline \end{tabular}$ 

The design of the Splicer ensures standard and high-quality

splicing.

A bottle of cement is fitted in the Splicer frame.

The blades are easily removed for grinding. Overall dimensions of Splicer . . . . 215 $\times$ 130 $\times$ 100 mm Weight of Splicer . . . . . . . . . 4 kg

68

### $\Phi$ C-2 FILM INSPECTION BENCH

The  $\Phi$ C-2 Film Inspection Bench (Fig. 68) is intended for rewinding, visual inspection and current repairs of 16-mm and 35-mm motion picture films.



Fig. 68. ΦC-2 Film Inspection Bench

The Film Inspection Bench consists of the following easily transportable and dismountable parts:

Top board with disks, driving mechanism and drawers.

Lateral bench supports (2 pcs.).

Brace.

Rewinding of 16-mm or 35-mm film rolls is effected by changing the disk cores.

The disks permit accomodation of 600-metre capacity reels of 16-mm film.

of 16-mm film.

The feed and take-up disks are both provided with a breaking device for simultaneous stoppage of the disks.

Rewinding is done by hand.

Easy rotation of the take-up disk is ensured by a gear mechanism.

### 35-MOT-3 HORIZONTAL FILM REWINDER

The 35-MOT-3 Horizontal Film Rewinder (Fig. 69) is intended for rewinding 35-mm film on editing benches and semi-automatic film splicers.

Design of the Horizontal Rewinder allows easy installation on rewinding benches.



Fig. 69. 35-MOΓ-3 Horizontal Film Rewinder

The Rewinder ensures close and uniform rewinding and eliminates film breakage and scratching during the winding process. The removable cores are easily fitted on the spindles of the take-up and feed disks (empty or loaded).

Free access is provided to all friction parts for lubrication.

#### SPECIFICATIONS

| Diameter of feed and take-up disks 300 mm      |
|------------------------------------------------|
| Diameter of cores: for feed disk 48.5 mm       |
| for take-up disk 50 mm                         |
| Accelerating ratio of hand-drive               |
| gearing                                        |
| Overall dimensions of take-up winder           |
| with disk                                      |
| Overall dimensions of feed winder 120 × 310 mm |
| Weight of take-up winder with disk 5.6 kg      |
| Weight of feed winder 1.4 kg                   |
|                                                |

70

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0 MOTION PICTURE PROJECTOR

# "UKRAINA" 16-mm PORTABLE SOUND-ON-FILM PROJECTOR

The Portable Sound-on-Film Projector "Ukraina" (Fig. 70) is adapted for showing 16-mm black-and-white and colour sound films in halls with a seating capacity of 200.

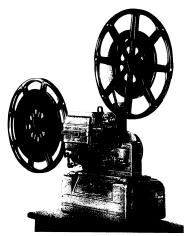



Fig. 70. Sound-on-Film Projector "Ukraina"

Its excellent performance and high technical features make it one of the best modern sound-on-film projectors in their class.

Superb visual and sound projection, powerful light flood, noiseless operation, absolute fire safety, ease in film threading and

convenience in handling, low power consumption, facility in transportation, and a high degree of reliability — these and many more features characterize the unit.



Fig. 71. Set of Sound-on-Film Projector "Ukraina"

Bright illumination of a 5-sq. metre screen is ensured by an efficient light flood of 250 lumens achieved by a lamphouse of special design, lighting optics, high-quality coated lens, and a powerful projection lamp of 400 W.

Use of non-inflammable film allows installation of the Projector directly in the auditorium elimination the need for a service.

or directly in the auditorium, eliminating the need for a special projection booth. This is an additional feature which makes the Projector desirable for schools, clubs, village motion picture theatres and home entertainment.

The Sound-on-Film Projector "Ukraina" includes the following units (Fig. 71):

IIII-16-1 Motion Picture Projector.

КПУ-50 Amplifier (Fig. 72).

KAT-14 Auto-transformer (Fig. 73).

ЭПП-2 Screen.

IIII-16-1 Motion Picture Projector. Power supply of Projector from single phase 110 V or 220 V, 50 cycle A. C. mains. Voltage variations in the mains are controlled by an auto-trans-



Fig. 72. KIIY-50 Amplifier with Loudspeaker

former.

Projector drive — asynchronous single-phase 35 W, 3,000 r.p.m. electric motor.

Film motion achieved by intermittent mechanism at speed of 24 picture frames

per sec.

Light source — 400 W, 30 V projection lamp.

Coated anastigmatic projection lens of 1:1.2 relative aperture and 50-mm focal

length, providing brilliant illumination of 2.5-meter-wide screens. Lens with 35 or 65-mm focal length may also be installed in the Projector.

The efficient light flood with working shutter (without film) is approximately 250 lumens at 2,700-stilb brightness of projection



Fig. 73. KAT-14 Auto-transformer

The 3 W, 4 V exciter lamp is supplied from a selenium rectifier, mounted in the amplifier.

The optical scanning system is cylindrical; light slit dimensions are 1.9×0.018 mm.

Take-up and feed mechanisms ensure standard performance with 120 and 600-metre film reels

Power consumption - 550 W.

. 255 × 450 × 515 mm

KIIV-50 Amplifier with Loudspeaker. Power supply — single-phase 110 V, 50 cycle A. C. mains. Power consumption — 100 W.

Rated output volume of sound frequency –  $10\,\mathrm{W}$ , the nonlinear distortion factor not exceeding 3% on frequencies of 500-1,000 cycles, and not exceeding 6% on boundary frequencies.

The following electronic tubes and auxiliary lamps are used in the unit:

6Ж7, 6Н9м, 6П3 (2 pcs.), 5Ц4С, MH3 (neon indicator), MH-15 (6.3 V, 0.28A incandescent lamp), ФЭУ-2 (photo-electronic multi-

The loudspeaker consists of two heads mounted in a grid-case. The sound coils of both heads are series-connected.

(色)

E ...

The frequency range of the loudspeaker extends from  $100\ \mathrm{to}$  6,000 cycles.

KAT-14 Auto-transformer. The Auto-transformer permits adjustment of voltage variations of supply mains ranging from 65 to 130 V for 127 V mains, and from 165 to 230 V for 220 V mains.

mains.

The Auto-transformer is equipped with a voltmeter for control of voltage at the output terminals.

**3III-2 Screen.** Light and portable, the 3IIII-2 suspension  $2.600\times1.900$  mm screen is most convenient for motion picture showings with the "Ukraina" Projector. The efficient screen surface is coated with a diffusing and reflecting barite layer which ensures a reflection factor of 0.7 to 0.75.



Fig. 74. Sound-on-Film Projector "Ukraina", packed in cases

Light in weight and simple in design the Screen can be quickly hung up for showings and as quickly taken down.

A view of the complete "Ukraina" Sound-on-Film Projector set packed in carrying cases is shown in Fig. 74.

Total weight of the "Ukraina" Sound-on-Film Projector ... 99 kg.

# KIIC-M 35-mm PORTABLE SOUND-ON-FILM PROJECTOR

The improved Portable K $\Pi$ C-M Sound-on-Film Projector (Fig. 75) is designed for demonstrating 35-mm black-and-white and colour films.



Fig. 75. KIIC-M Sound-on-Film Projector

Reliability of the Projector design has been tested by operation in conditions of prolonged travel. This and splendid visual and sound projection plus ease in handling all mechanisms places the projector among the best in its class (Fig. 76 and 77).

A new design of the picture frame correction device has noticeably reduced wear of film and ensures steadiness of screen picture.

78

The Projector is successfully employed in auditoriums with a seating capacity of 200 and is installed directly in the auditorium, eliminating the need of a special projection booth. This and other features make it particularly suitable for use in schools, clubs and village motion picture theatres.

### SPECIFICATIONS

Power supply — from 110 or 220 V 50 cycle A.C. mains. Voltage variations in the mains are controlled by a special auto-transformer.

The Projector is supplied with two powerful specially-coated projection lenses with 52.5-mm diameter, relative apertures of 1:1.9 and 1:2.1, and focal lengths of 90 mm and 120 mm respectively.

Efficient illuminating power of Pro-

. . . 250 to 300 lumens

400 W, 30 V (type K-22) projection lamp



Fig. 76. KIIC-M Sound-on-Film Projector, right-side view with cover removed



Fig. 77. KIIC-M Sound-on-Film Projector, left-side view with cover removed

A 3 W, 4 V exciter lamp for scanning the sound track has a prefocusing socket which ensures perfect alignment of incandescent filament and sound track without adjustment when replacing lamp.

The exciter lamp is power-supplied from D. C. line.

Illuminating lamp of Projector — 8 W, 110 V.

The single-stage antimony-cesium photo-electronic multiplier of the D-Dy-1 type used in the Projector possesses great sensitivity, uniformity of characteristics, a low noise level and outstanding spectral characteristics, which ensure splendid sound reproduction of colour film sound tracks.

Power drive — single-phase, asynchronous, 50 W, 1,425 r. p. m. motor of  $\pm$ 0-50 type.

Deviations in vertical steadiness of image in picture frame gate — not exceeding 0.04 mm, in horizontal steadiness — not exceeding 0.02 mm.

Magazines have film capacity of 300 metres.

Tripod, film rewinding device, tools and necessary spare parts are supplied with the  $K\Pi C\text{-}M$  projector.

The KIIC-M projector is supplied with either a 4-KV-12 amplifying unit with loudspeakers (Fig. 78), or KIIV-50 amplifying unit with loudspeaker (See fig. 72).




Fig. 78. KIIC-M Sound-on-Film Projector, complete set

Nominal output volume of amplifiers 10 W

Peak output volume . . . . . . . . . . . 15 W

Reproduced range of frequencies . . 80 to 6,000 cycles

Amplifiers 4-KY-12 and KIIY-50 are supplied with the following electronic tubes and auxiliary lamps: 6-KK-7, 6H9M, 6H3, (2 pcs.), 5H4C, MH3 (neon indicator), MH-15 (6.3 V, 0.28 A incandescent lamp for KIIY-50 amplifier only).

The amplifiers have a selenium rectifier which supplies power to the Projector's 4 V, 3 W, D. C. exciter lamp.

The amplifiers enable playing of gramophone records with the aid of pick-up.

Power consumption of projector — approx. 660 W.

Amplifiers, connecting cables and accessories are provided with carrying cases for storage and transportation convenience.

## OVERALL DIMENSIONS AND WEIGHTS OF PROJECTOR SET:

The Sound-on-Film Projector KПС-M is shown packed in carrying cases (amplifier excluded) in Fig. 79.

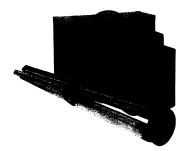



Fig. 79. K $\Pi$ C-M Sound-on-Film Projector, packed in carrying cases

## KIIT-1 35-mm STATIONARY SOUND-ON-FILM PROJECTOR

The modern sound-on-film projector must produce bright and sharp images and provide clear and undistorted sound.

The KIIT-1 Stationary Sound-on-Film Projector (Fig. 80) meets these requirements in full. It is intended for visual and



Fig. 80. KIIT-1 Sound-on-Film Projector

sound projection from 35-mm film with standard sound track. By special order the Projector may be supplied with KYCY-52, K3BT-3 sound reproducing devises.

82

. .

Fig. 81 shows projector head, and Fig. 82 — its kinematic diagram.

The projector possesses the following advantages:

High standard visual projection. The specially-coated projection lens pro-duces pictures uniformly iection. sharp in screen centre as well as screen edge.

Uniform illumination of screen is ensured by a special sphero-elliptical mir-ror fitted in the arc lamp.

The powerful arc lamp with high-intensity car-bons provides a light flood through film gate (shutter open; without film) sufficient to illuminate a screen area of 30 sq. metres at approx. 100-lux illumina-



Fig. 81. KIIT-1 Projector Head

Use of automatic carbon feed in the arc lamp eliminates any perceptible flickering in screen illumination.



Fig. 82. KIIT-1 Projector Head, kinematic diagram

Perfect steadiness of screen picture is ensured by a long film channel with lateral registration and a rigid film aperture frame.

Warping of the film in the film aperture is prevented by a heat-protection filter installed in the film channel.

High Fidelity Sound. Adequate sound optics provide suffi-cient brightness to the sound slit.

An oil stabilizer ensures perfect uniformity of film speed past the sound slit.

Greater Film Protection, While travelling through the Projector the film is not subjected to undue strain.

A heat protection filter placed in the path of the light beam in the film channel and a cylindrical shutter between filter and channel prevent excessive heating of the film.

Fire protection is ensured by automatic fire shutters in shutter box and film channel during breakdowns.

Ease of Operation. Precise alignment of picture frame and film aperture during film threading is made easy by an 8 W, 110 V pilot lamp. A second pilot lamp, which is automatically switched on when the lamphouse gate is open, facilitates maintenance of arc

Carbons are fed automatically. Maintenance of the arc lamp is also facilitated by projection of the positive carbon crater image on the lamphouse screen.

A wide range of feeds and feed ratios of positive and negative carbons, and independent and simultaneous adjustment of carbons by hand permit use of various types of high-intensity and plain carbons

Fire channels can be opened to clean out the carbon deposits.

Cleaning of film channel is facilitated by the easily detachable aperture framing.

On the side of the operator the space between lamphouse and lens is closed off by the shutter box and lensmount shutter. All projector and arc lamp controls are conveniently located and provide ease of operation.

Long Service. Automatic lubrication of the Projector Head mechanism is effected by circulating oil.

The Projector Head mechanism is hooded.

Complete Fire Safety. Fire safety is achieved by:

a) fireproof magazines with fireproof channels;

b) automatic safety shutter in film channel which works when film breakes in path between film channel and drum of the mal-tese cross mechanism;

c) governor controlled automatic safety shutter in shutter box;

d) heat protection filter which eliminates infra-red spectrum portion of the light beam.

### SPECIFICATIONS

The KIIT-1 Projector is adapted for use in club and theatre auditoriums with seating capacity of 2,000.

Operated on high-intensity carbons with an axis brilliancy of 56,000 stilb, the Projector has an illuminating power of 3,000 lumens.

The film run is not enclosed.

The film guides in the film channel are replaceable. Lateral film vibration is limited by cushioning spring insert. Dimensions of film aperture are 20.9 × 15.2 mm.

Cooling of the light beam falling on the film aperture of the film channel is achieved by a heat protection filter cooled by the shutter. Light transmission factor of filter —  $84^{8/6}$ .

Intermittent movement of the film is produced by a maltese cross

Perfect central registration of picture frame and aperture is assured. The shutter has cylindrical shape. Shutter light efficiency factor is approximately 0.5.

84

The sound reproducing system is equipped with a smooth-surface drum with oil speed stabilizer. Exciter lamp — 50 W, 10 V.

Dimensions of sound slit —  $2.15 \times 0.02$  mm.

Photoelectronic multiplier — type ФЭУ-1.

Type II-4 projection lens has relative aperture of 1:2. Focal lengths — 9, 10, 11, 12, 13, 14, 15, 16, 18 cm. (Projector is supplied with one of the lenses at purchaser's choice). Lenses are of specially-coated type, Their light transmitton factor is 85—88 %.

Power drive for Projector's mechanism is provided by three-phase asynchronous 0.25 kW, 1,400 r.p.m., 127/220 V, 50 cycle electric motor of M type.

Automatic lubrication of Projector Head mechanism is achieved by geared oil pump.

Automatic rewinding is of the dry friction type.

Projection light source — an arc lamp of the mirror type. The spheroelliptical mirror has a 360-mm diameter.

High-intensity carbons: the positive carbon with 8-mm diameter, negative carbon with  $7\text{-}\mathrm{mm}$  diameter.

Operation of lamp is achieved by direct current not exceeding 65 amps., voltage at terminals of lamp —  $36-40~\rm{V}.$ 

The carbons are fed automatically. The positive and negative carbon feed ratio ranges from  $1:6\ to\ 1:1.$ 



Fig. 83. KIIT-1 Projector Arc Lamphouse

Carbon feed mechanism is driven by 36—40 V, approx. 15 W D.C. motor. Speed range of motor, controlled by rheostat, is from 3,000 to 2,000 r.p.m. Motor switches on automatically by means of relay on striking the arc.

striking the arc.

The carbon holders are solid cast. The positive carbon holder is adjustable for carbons of various diameters. The position of the negative carbon head is also adjustable. Correct building-up of arc is ensured by energized magnetic arc control. Additional two-way shifting of the negative carbon holder allows for handling of abnormal crater formation.

The lamphouse (Fig. 83) has double lateral doors which slide up when the lamphouse opens.

Kinematic diagram of the arc lamp is given in Fig. 84. A baffle is provided to control ventilation in the hot-air exit pipe.

The glowing carbon tips are projected by means of an optical system on a screen fitted in the upper part of the lamphouse. This affords visual control of the are gap.

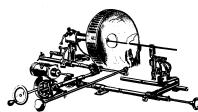



Fig. 84. KIIT-1 Projector Arc Lamp, kinematic diagram

The lamphouse pilot lamp operates on 100 or 220 V current and has an E-27 socket.

Upward and downward tilting range of the Projector optical axis is  $6^\circ$  and  $17^\circ$  respectively.

Capacity of reels . . . . . up to 400 metres of film Overall dimensions of Projector . . .  $640 \times 1,300 \times 1,880$  mm

Height of optical axis from floor level . . . . . . . . . . . . . . . 1,250 mm

Weight of Projector . . . . . . . . . . . . 300 kg

86

#### K3BT-3 SOUND-REPRODUCING AMPLIFYING DEVICE

The new model of the K3BT-3 Sound-reproducing Amplifying Device reproduces sound records from 35-mm film and is adapted for work with pick-up.

The amplifying device is designed for large motion picture auditoriums with 1500 seats.

The two-band Sound-reproducing Device ensures faithful reproducing

reproduction.





Fig. 85. 50Y-4 Amplifier

Fig. 86. 30A-9 Loudspeaker

The two-band amplifying system divides the sound frequency band into high-frequency and low-frequency circuits at the input and achieves subsequent amplifying of the signals in two narrow strip bands whose output is directly connected with high- and lowfrequency two-way loudspeakers.

The outstanding features of the device are: practically no distortion, high output volume, low level of interference, uniform distribution of sound over entire auditorium, and highly reliable performance.

The Sound-reproducing Device consists of the following units: two 50Y-4 amplifiers (racks), (Fig. 85); one of these is a spare unit:

two 30A-9 two-way loudspeakers (Fig. 86); three 80Y-3 photo stages fitted on projectors; a 25A-3 monitor loudspeaker (Fig. 87); two 6K-78 volume control resistors.



Fig. 87. 25A-3 Monitor Loudspeaker

### SPECIFICATIONS

Nominal output volume of amplifier — 40 W.

Reproduced frequency range — from 40 to 10,000 cycles.

Within this range the nonlinear distortion factor does not exceed 2 %. Power supply — from 50 cycle A.C. mains with 127 or 220 rated voltage. Range of voltage regulation is from 85 to 135 V and from 170 to 220 V respectively. Connection of device to line is single-phased. Power supply of the exciter lamp is by rectified and well flattened current. Power of exciter lamp = 50 W, 10 V.

The device operates with three stationary KITT-1 Sound-on-Film Projectors, of which two are operated and one is a spare unit.

Correction of high and low frequencies within operating range is possible.

possible. Supply voltage of the photoelectronic multiplier  $-230 \text{ V} \pm 10^{8}$ /s. Resistance of volume control  $-10,000 \text{ ohms} \pm 10^{8}$ /s. Types of tubes and lamps used: in amplifier -63K7 (12 pcs.), 6f18C (6 pcs.), 6f13 (4 pcs.), r-807 (16 pcs.), 5134C (6 pcs.), 513C (4 pcs.), B1-176 (4 pcs.), MH-7 (4 pcs.), MH-3 (4 pcs.), incandescent lamps 6.3 V, 0.28 A (4 pcs.); in photo-cell stage -63K7 (3 pcs.);

in volume control panel - 5 W, 110 V, incandescent illumination lamp.



The loudspeaker units are adapted to Separately reproduce high and low portions of the operating frequency range.

The loudspeaker set includes two speaker units:

a) low frequency unit, consisting of electrodynamic head of low-frequency speaker (2pcs.), low frequency horn and directional baffles (right and left);

and left);
b) high frequency unit, consisting of electrodynamic head of high frequency speaker (2 pcs.), and high-frequency multicellular horn.

Rated output power of set . . . . 20 W
Frequency of division . . . . . 550 ± 50 cycles

Average response of set . . . . not lower than 35 units
Directional characteristic variations do not exceed 5 db at 8,000 cycles frequency within a horizontal 80° angle and a vertical 30° angle.

Divergence of response does not exceed ½ 6 db.

### КУСУ-52 SOUND-REPRODUCING AMPLIFYING DEVICE

The Stationary Sound-reproducing Amplifying Device KYCY-52 is designed to reproduce sound tracks of 35-mm film and is adapted for work with pick-up.

The amplifying unit is adapted for operation in motion picture theatres and club halls with a seating capacity of 800.



Fig. 88. 70У-5 Amplifier



Fig. 89. 10K-4 Junction Box

The Device includes the following units:

70Y-5 Amplifier (Fig. 88) with hose and 10K-4 junction box (Fig. 89);

22B-3 Rectifier (Fig. 90);

10B-1 Rectifier (Fig. 91);

6K-16 Volume Control Panel (Fig. 92);

69-12 Dividing Filter;

25A-3 Monitor Loudspeaker (Fig. 93);

30A-3 Two-way Loudspeaker (Fig. 94).

90





Fig. 91. 10B-1 Rectifier





Fig. 92. 6K-16 Volume Control Panel Fig. 93. 25A-3 Monitor Loudspeaker



Fig. 94. 30A-3 Two-way Loudspeaker

#### SPECIFICATIONS

Output volume of amplifier —  $40~\mathrm{W}$ . Band of reproduced frequencies ranges from  $60~\mathrm{to}$  8,000 cycles

Nonlinear distortion factor when operating at rated volume does not exceed 2.5  $^{6/6}$  in the 70—5,000 cycles frequency band.

Power supply - from A.C. single-phase 50 cycles mains of 127 or 220

vottage. Regulation of the voltage supply is achieved by the 22B-3 Rectifier, which maintains normal operation of the device when voltage in mains falls from 127 to 85 V, or in 220 V mains to 170 V.

The exciter lamp is supplied with rectified and well flattened current. Exciter lamp -10 V, 50 W.

The device is designed for use with two projectors; two devices may be used with three projectors of the stationary KIIT-1 type and the ΦЭУ-1 photoelectronic multipliers.

An easy switch-over is ensured to the spare amplifying unit, and a spare KIIT-1 projector by the wiring scheme.

spate AIII-1 projector by the wiring scheme.

High and low frequency correction is provided within operating frequency range.

The 30A-3 Two-way Loudspeaker can reproduce high and low frequencies separately and represents a combination of two specific loudspeakers — of high frequency and low frequency response. Division of the operating frequency band is achieved by the 69-12 Filter, inserted between the 70Y-5 Amplifier and 30A-3 Loudspeaker.

Loudspeaker's maximum excitation power (at 25 V excitation voltage) is 65 W.

Photoelectronic multiplier power supply voltage — 230 V gig 10%.

Photoelectronic multiplier power supply voltage — 230 V m 10%. Resistance of volume control — 30,000 ohms.

The following types of tubes and lamps are used:
in 70V-5 Amplifer — 6XT (2 pcs.), 6H7 (2 pcs.), I-807 (4 pcs.), 5I4C
(2 pcs.), MH-3 neon tube;
in 22B-Rectifier — BI-176, 6.3 V, 0.25 A tube;
in 6K-16 Volume Control Panel — 8—15 W, 110 V panel illuminating lamp.

lamp.
Specifications of Two-way Loudspeaker: 

not less than 22 units

Loudspeaker . . . . . . not less than 22 units Directional characteristics of Loudspeaker lie within an angle of  $\pm$  40° with response divergencies not exceeding 6 db. in the frequency band up to 6,000 cycles.

. . . 418 × 398 × 200 mm . . . 232 × 280 × 130 mm . . . 214 × 158 × 158 mm 6Y-12 Dividing Filter . 68-12 Dividing Fitter ... 214  $\times$  158  $\times$  158 mm 30A-3 Two-way Loudspeaker ... 730  $\times$  1,600  $\times$  700 mm Weight of sound-reproducing device 187 kg . 730 × 1,600 × 700 mm



### РУ-65 SWITCHING RACK

The PY-65 Switching Rack (Fig. 95) is used in motion picture theatres and is designed for switching, protection and wiring of power and acoustic power supply lines of units (in projection booth and auditorium).

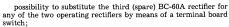
The design provides easy access to the terminal board, fuses and contactors.  $\,$ 

A TC-5 Light Dimmer is installed in the top part of the Switching Rack structure.

The Switching Rack provides for an independent supply of power and light from two separate inputs: "power input" and "illumination input".

The Switching Rack has switching of supply circuits for projector arcs and allows switching of an operating projector arc from one supply circuit to another.

The control panel with a voltmeter is located on the front panel of the Switching Rack at a height convenient for operation.


The electric wiring diagram provides:

power input switch;

three throw-over switches for three-phase on-and-off switching of the auditorium illumination circuit;

interconnecting means of two rectifiers and three projectors:

means of quick connection of any of two operating rectifiers to the third spare projector;



contactors to switch the rectifiers to the power supply circuit, the contactors being controlled from the projectors;

#### SPECIFICATIONS

The Switching Rack is designed to switch  $220/380\ V,\,50$  cycle A. C. line circuits. Normal operation is maintained with voltage variations of + 10  $^{6}/_{6}$  and - 20  $^{6}/_{6}$ .

Overall dimensions of Switching Rack . . . . . . . . 1,450 × 740 × 440 mm 

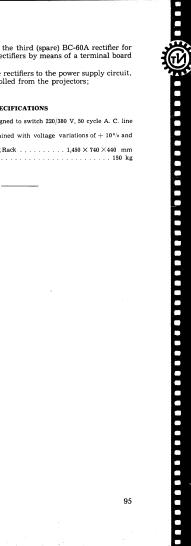





Fig. 95. PY-65 Switching Rack

### KAT-14 AUTO-TRANSFORMER

The KAT-14 Auto-Transformer (Fig. 96) is designed for portable 16- and 35-mm sound-on-film projectors equipped with 400 W, 30 V projection lamps, the power supply coming from a single-phase 127-220 V, 50 cycle, A. C. line.



Fig. 96. KAT-14 Auto-Transformer

The Auto-Transformer's voltage is adjusted by means of a rotary switch without interrupting the electric circuit. The Auto-Transformer is supplied with voltmeter.

Protection from short-circuit is achieved by a fuse.

Switch, voltmeter, fuse and receptacles for connecting cables are mounted on the Auto-Transformer panel and have a hood to protect them from mechanical injuries during transportation.

The Auto-Transformer is adapted for use in various branches of industry for maintenance of constant voltage values of 110 V, 30 V and 5 V.

#### SPECIFICATIONS

| Rated power                                         |
|-----------------------------------------------------|
| Rated output voltages 110 V, 30 V, and 5 V ± 2.5 °. |
| Ranges of voltage variations:                       |
| for 127 V mains from 65 to 130 V                    |
| for 220 V mains from 165 to 230 V                   |
| Rate of voltage adjustment registered               |
| by voltmeter 12 steps of 5-7 V each                 |
| Maximum overheating of winding . 65° C              |
| Overall dimensions of Auto-Trans-                   |
| former                                              |
| Weight of Auto-Transformer 13 kg                    |



. .

### ТРД-50 REACTIVE ARC TRANSFORMER

The TP $\beta$ -50 Reactive Arc Transformer (Fig. 97) supplies motion picture projector arcs with stabilized alternating current.

The Reactive Transformer cuts power consumption to half compared to consumption through a ballast (active) resistance.



Fig. 97. ТРД-50 Reactive Arc Transformer

The Transformer is provided with a steel housing. To ensure cooling of Transformer the housing is perforated and its bottom is open.

Connection of arc lamp to line circuit is achieved through two single-pole arc current regulation switches and terminals which

are mounted on a panel on top of the Transformer. The panel is protected by the housing cover.  $\,$ 

The circuit diagram of the Transformer is shown in Fig. 98; external characteristics in Fig. 99.

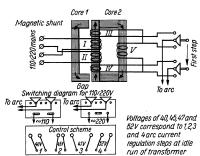



Fig. 98. ТРД-50 Transformer Circuit Diagram

The switches regulating arc current have four steps. Apertures for the leads from "line" and "to arc" are provided in the side walls of the housing.

The Transformer is easily mounted on the projector base.

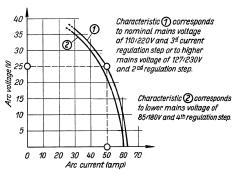



Fig. 99. TPJ-50 External Characteristics of Transformer

98

#### SPECIFICATIONS

#### Power supply line of transformer

| Rated voltage                           |  |  |  |  |  |  |  |  |  |  | 110/220 V         |
|-----------------------------------------|--|--|--|--|--|--|--|--|--|--|-------------------|
| Frequency                               |  |  |  |  |  |  |  |  |  |  | 50 cycles         |
| Phases                                  |  |  |  |  |  |  |  |  |  |  |                   |
| Efficiency                              |  |  |  |  |  |  |  |  |  |  |                   |
| Power factor                            |  |  |  |  |  |  |  |  |  |  |                   |
| Tolerated variations in supply voltage: |  |  |  |  |  |  |  |  |  |  |                   |
| 110 V line                              |  |  |  |  |  |  |  |  |  |  | from 85 to 127 V  |
| 220 V line                              |  |  |  |  |  |  |  |  |  |  | from 180 to 230 V |

| Rated arc voltage                      |                 |
|----------------------------------------|-----------------|
| Rated arc current                      |                 |
| Rated load                             |                 |
| Stability of arc current at variations |                 |
| of arc voltage from 20 to 30 V         |                 |
| Tolerated range of arc current re-     |                 |
| gulation                               | from 40 to 55 A |

| operating cycle 20-minute interval after operation time | 25-minute |
|---------------------------------------------------------|-----------|
|                                                         |           |
| Dimensions of transformer (without                      |           |
| switch handles) 430 × 320 × 230 mm                      |           |
| Overall dimensions of transformer                       |           |
| (with switch handles) $450 \times 320 \times 285$ mm    |           |
| Weight of transformer 45 kg                             |           |

### ЭПП PORTABLE DIFFUSE REFLECTION SCREEN

The portable hang-up screen (Fig. 100) is best suited for film showings indoors (club auditoriums, special demonstrating rooms, etc.).

The screen is hung up on the wall or on other support by rope rings at any desired height from floor level.

The screen is easily and quickly mounted before showing. It is light in weight and simple in design.

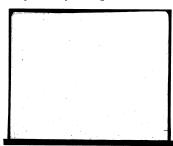



Fig. 100. ЭПП Portable Diffuse Reflection Screen

A special mechanism performs unwinding and rolling up of

screen.
The screen is made of seamless linen fabric coated with special light-reflecting layer.
The screen is provided with a jacket for convenient transport-

ation and storage.

#### SPECIFICATIONS

The portable screen is made available in two models:  $\begin{array}{llll} \text{3III-1} & \text{with efficient surface} & 2.000 \times 1,500 \text{ mm} \\ \text{3IIII-2} & \text{with efficient surface} & 2.000 \times 1,500 \text{ mm} \\ \text{3IIII-2} & \text{with efficient surface} & 2.000 \times 1,500 \text{ mm} \\ \text{5Creen reflection factor} & -0.70-475 \\ \text{Overall dimensions and weight of the folded screen:} \\ \text{Overall dimensions and weight of the models of the folded screen:} \\ \text{200 mm} & 2,700 \text{ mm} \\ \text{Diameter} & 90 \text{ mm} & 100 \text{ mm} \\ \text{Weight} & 9 \text{ kg} & 14 \text{ kg} \\ \end{array}$ 

### TC-5 LIGHT DIMMER

The TC-5 Light Dimmer (Fig. 101) produces smooth dimming and gradual lighting of auditorium.

The Dimmer is an electromagnetic device of static action. All parts of the Dimmer are stationary and not subjected to wear. This outstanding feature places it above all other types of dimmers.



Fig. 101. TC-5 Light Dimmer

Dimming and lighting is achieved automatically on turning a switch handle.  $\,$ 

The Dimmer is made available in two models:

- a) for connection to three-phase 127 or 220 V 50 cycle line;
- b) for connection to three-phase 220 or 380 V 50 cycle line.

#### SPECIFICATIONS

. . . . . . . . . . . 5 kW Rated load . Minimum load . . . . . . . . 2 kW

Normal operation of the Dimmer is maintained at uneven inter-phase load distribution ranging up to  $10\,\%$  and at line voltage variations within limits of  $-20\,\%$  and  $+5\,\%$  of its rated value.

### A3C-9-10 AUTOMATIC FIRE SHUTTERS

The A3C-9-10 Automatic Fire Shutters are designed for instal-The A3C-9-10 Automatic Fire Shutters are designed for installation in projection booth to shut off projection aperture and projection booth windows automatically during fire emergency within booth. The booth is thereby isolated from auditorium and fame and smoke are prevented from reaching the auditorium. A fire alarm and emergency lighting are switched simultaneously. The Automatic Fire Shutter set (Fig. 102) includes equipment for two projectors:

for two projectors:
Two automatic shutters with special protective glass for projection apertures, type A3C-9;



Fig. 102. A3C-9-10 Automatic Fire Shutters

Two automatic shutters with special protective glass for projection booth windows type A3C-10, and push-button switch; Two automatic AB3-3 switches.

The automatic switch is fitted in the projector near the film channel and if film ignites, it achieves automatic disconnection of the power supply line of electromagnets working four automatic shutters.

shutters.

The ЭПУ-1 power supply device feeds circuits of the automatic shutter electromagnets with rectified current and achieves switching of emergency lighting and fire alarm.

The ЭПУ-1 power supply device has a handle for manual switching of the emergency lighting and is provided with pilot lamps

The B-16 push-button switch is fitted at exit of booth and serves for manual switching off of supply to electromagnets of the Automatic Shutters if fire breaks out.

#### SPECIFICATIONS

Power supply — from single-phase 110, 120 or 220 V, 50 cycles A. C. line.

Power supply — from single-phase 110, 120 or 220 V, 50 cycles A. C. line. Normal operation of the device is maintained with variations of line voltage ranging from — 20% to + 10% to - 10%.

The device is designed for permanent connection to line. Surrounding air temperature must not exceed + 35° and relative air moisture not over than 75%.

The device was the device's separate elements allows for combined operation of one, two or three projectors, effected by automatic shutters. The power supply device is designed to feed the emergency lighting circuit up to 500 W lamp power.

The rectifier consists of BC-45-70 selenium bridge and TP-220 transformer. It is designed to supply electromagnets of 6 automatic shutters. Dimensions of the shutter aperture — 150 × 150 mm.

The A3C-9 Automatic Shutter glasses are of the specular type with 85% transparency.

Weight of set of Automatic Shutters approx. 25 kg



### ЛЗ-2 AUTOMATIC SCREEN CURTAIN WINCH

The JI3-2 Automatic Winch effects opening and closing of the screen curtain used for dual purpose of decorating screen and protecting it against dust and dirt.

#### SPECIFICATIONS

Range of regulating curtain opening — from 1 to 10 metres. Speed of curtain's travel — 0.2 metres per sec. An electromechanical control device effects remote operation of the winch from one or several locations. The starting device consists of magnetic starters with push-button controls.

Power of electric motor is 0.52 kW.

Power supply — from 220 or 380 V A.C. mains.

A hand drive is provided to adjust and check operation of the winch mechanism.

Overall dimensions of the winch . .  $600 \times 500 \times 308~mm$ 

### $\Phi$ C-5 FILM STORAGE CONTAINER

The  $\Phi$ C-5 Film Storage Container is two-storied and has twelve separate sections provided with lugs for rolling out film

A special film humidifying divice in the Container ensures film preservation.

### "KIEV-1" MOBILE POWER PLANT

The "Kiev-1" Mobile Power Plant (Fig. 103) is designed to feed portable projectors of the K $\Pi$ C-M, "Ukraina" or of similar types with single-phase alternating current.

The power plant may also be used to feed the lighting system and instruments if their power consumption does not exceed 750 W.

The power plant has small dimensions and light weight. These features add to its mobility.

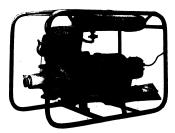



Fig. 103. "Kiev-1" Mobile Power Plant

The power plant consists of a single-phase alternating current generator and a two-stroke cycle internal combustion engine, attached to the generator by a special flange.

A flexible coupling transmits rotary motion from engine to generator. The generator and engine are mounted on a framework which protects the plant from damage.

A fuel tank of approx. 5-litre capacity is fitted in the upper part of the framework.

106

#### GENERATOR SPECIFICATIONS

The 9M-3 Generator is a self-exciting single-phase A.C. electric machine, and has the following characteristics:

Voltage ... 115 V
Current ... 7 A
Power ... 750 W
Frequency ... 50 cycles
Revolutions per min ... 3,000

#### ENGINE SPECIFICATIONS

bustion, with two-channel scavenging.

Constancy of speed is maintained by a centrifugal governor set for 3,000 r.p.m., which corresponds to frequency of 50 cycles.

Power (at rated 3,000 r.p.m.) 2 h.p.

Cylinder boxe ... 52 mm

Cylinder boxe ... 58 mm

Capacity of cylinder ... 123 cm³

Rate of compression ... 6.5

Fuel ... gasoline and oil compound in 1:25

Fuel ... ratio

3,000 r. p. m., which corresponds to frequency of 50 cycles.

Power (at rated 3,000 r. p. m.) 2 h. p.

Cylinder bore 58 mm

Piston stroke 58 mm

Capacity of cylinder 122 cm³

Rate of compression 6.5 mine and oil compound in 1:25 fuel gasoline and oil compound in 1:25 fuel 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine 125 mine

 $\boldsymbol{A}$  set of accessories and tools packed in a special box are supplied with the power plant.

#### K9C-5 MOBILE POWER PLANT

The K9C-5 Power Plant (Fig. 104) is designed to supply 35-mm or 16-mm motion picture projectors of KIIC-M, "Ukraina"

or of similar types with single-phase alternating current.

The power plant may also be used to feed the lighting system and in-struments if their power consumption does not exceed 750 W.

The power plant contains an internal com-bustion engine which drives a single-phase alternating current ge-nerator by means of



To facilitate transportation the power plant may be mounted on four wheels.  $\,$ 

Regulation of voltage of power plant is achieved by a shunt rheostat mounted in the generator panel.

ENGINE SPECIFICATIONS

The JI-3/2 engine is vertical, single-cylinder, four-stroke cycle, gasoline-operated. Centrifugal governor set for 1,500 r. p. m. maintains constancy of speed. Power (at rated 2,200 r. p. m.) . . . . . 3 h. p.

 Power (at rated 2,200 r. p. m.)
 3 h. p.

 Cylinder bore
 65 mm

 Compression rate
 4.5—5.0

 Capacity
 298 cm³

 Cooling—thermosyphon, capacity of tubular radiator
 5 litres

 Fuel supply
 by gravity

 Fuel tank capacity
 4.3 litres

 Fuel consumption
 up to 335 gr per h. p. per hour



Fig. 104. K9C-5 Mobile Power Plant

splash type 1.7 litres type M27B M-12/20 type K-12  $\Gamma$  type 760  $\times$  520  $\times$  510 mm 81 kg Lubrication
Lubrication system capacity
Magneto
Spark plugs
Carburettor
Overall dimensions of engine
Weight of engine

#### GENERATOR SPECIFICATIONS

### GENERATOR SPECIFICATIONS

The 9M-1 generator is self-exciting, single-phase A. C. electrical machine.

Voltage 115 V
Current 7 A
Power 750 W
Frequency 50 cycles
Revolutions per minute 1,500
Exciter voltage 32 V
Exciter current 3.8 A
Shunt rheostar resistance not less than 4.2 ohms
Overall dimensions of generator 480 × 300 × 260 mm
Weight of generator 490 × 300 × 260 mm
Weight of power plant 1,200×665×950 mm
Weight of power plant 1,200×665×950 mm
Weight of power plant 1,80 kg

A ballast resistance to maintain load when the projector is being switched off, a connecting cord, special tools, a set of spare parts and other accessories are supplied with the Power Plant.

### K9C-4 MOBILE POWER PLANT

The K9C-4 Mobile Power Plant (Fig. 105) is designed to supply projector installations with two projectors of the KIIC-M, "Ukraina" and of similar types with single-phase alternating current.

The power plant is installed in a special room fitted for operation of internal combustion engine.

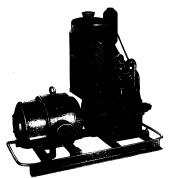



Fig. 105. K9C-4 Mobile Power Plant

The power plant includes an internal combustion engine which drives a single-phase alternating current generator by flexible coupling. Engine and generator are mounted on a rigid base frame.

The power plant is provided with a switchboard installed in the power plant room, and with switchbox, mounted in proximity of projectors.

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

The switchboard has a voltmeter for visual control of power plant voltage, fuses, switches and plug sockets. The switchbox is also provided with fuses, switches and plug sockets.

#### ENGINE SPECIFICATIONS

ENGINE SPECIFICATIONS

The Д6/3 engine is vertical two-cylinder, four-stroke cycle, gasoline-operated type. Constancy of speed is maintained by a centrifugal governor set for 1,500 r. p. m.

Power (at rated 2,200 r. p. m.) ... 6 h. p.
Cylinder bore ... 65 mm

Compression rate 4.5–5.0

Capacity ... 597 cm³

Cooling—thermosyphon, capacity of tubular radiation ... 7 litres

Fan ... with two blades

Carburettor ... 19pe K-12Д

Fuel supply ... by gravity

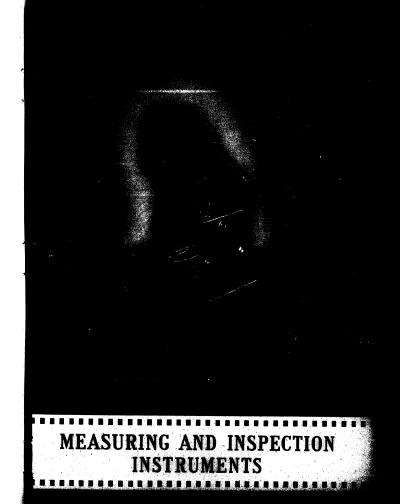
Fuel tank capacity ... 15–18 litres

Fuel consumption ... up to 335 gr per h. p. per hour Magneto ... 19pe MMДC-2

Spark Plugs ... M 12/20 type

Lubrication ... 40 4 450 × 800 mm . 391 cm

7 litres
with two blades
type K-12
by gravity
15—18 litres
up to 335 gr per h. p. per hour
type MM/C-2
M 12/20 type
splash lubricator
670 × 450 × 800 mm
100 kg Overall dimensions of engine . Weight of engine . . . . . . .


### GENERATOR SPECIFICATIONS

The AIIH-28.5 generator is a self-exciting single-phase alternating current electric machine.

current electric machine.

Voltage 120 V
Current 15 A
Power 1,800 W
Revolutions per minute 1,500 W
Revolutions per minute 1,500 W
Frequency 50 cycles
Exciter voltage 54 V
Exciter current 3.6 A
Shunt rheostat resistance 21 ohms + 15 %
Weight of generator 75 kg
Overall dimensions of power plant 1,100×550×900 mm
Weight of power plant 230 kg

The power plant is supplied with ballast resistance to maintain load when shutting off projector, connecting cord, special tools, set of spare parts, fuel tank and other accessories.



112

#### 16-MM-3 FILM LENGTH COUNTER

The Counter (Fig. 106) registers the length of 16-mm film. It is designed to operate on service benches with vertical rewinding devices with both forward and reverse run of film.

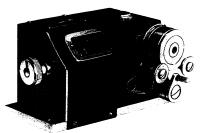



Fig. 106. 16-MM-3 Film Length Counter

 $\boldsymbol{A}$  clearly visible dial shows length of film in hundreds, tens, ones and tenths of metres.

During forward run the counter adds the length of film, during reverse run it subtracts.

Overall dimensions of counter . . . . 119  $\times$  106  $\times$  68 mm Weight of counter . . . . . . . . . . . . 1.2 kg

### 35-MM-3 FILM LENGTH COUNTER

The Counter (Fig. 107) registers the length of 35-mm film. It is designed to operate on service benches with horizontal rewinding devices with both forward and reverse run of film.

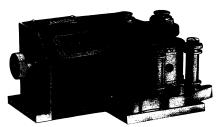



Fig. 107. 35-MM-3 Film Length Counter

The dial shows hundreds, tens, ones and tenths of metres during the forward run. During reverse run length of passing film is subtracted from previously registered length.

Overall dimensions of counter . . . . 137  $\times$  106  $\times$  80  $\,$  mm Weight of counter . . . . . . . . . . 1.5 kg

### CO-301-1 FILM INSPECTION MAGNIFIER



Fig. 108. CO-301-1 Film Inspection Magnifier

The CO-301-1 Film Inspection Magnifier (Fig. 108) is adapted to define the degree of wear of 16 and 35-mm film perforations by alignment with a standard reticule put on the lens surface.

The eye-glass of the magnifier is fitted with a device for focusing a sharp image of the reticule in the  $\pm$  2 dioptric range.

The device is of the portable pocket type.

### SPECIFICATIONS

116

### ЛШП-16 PERFORATION PITCH INSPECTION RULE

The JIIIII-16 Rule (Fig. 109) is adapted to measure the average perforation pitch and the average percentage of shrinkage in 21 picture-frame lengths of 16-mm film.



Fig. 109. JIIIII-16 Perforation Pitch Inspection Rule

The design of the Rule enables to define shrinkage ranging from 0.5 to 1.5  $^{\rm o}/_{\rm o}$  and to inspect films of perforation pitch exceeding 7.62 mm.

Reading: of fixed scale 0.004 mm; of moving scale 0.05  $^0/_0.$  The Rule is of the portable pocket type.

Overall dimensions of Rule . . . .  $150\times50\times20$  mm Weight of Rule . . . . . . . . . 350 g

### ЛШП-35 PERFORATION PITCH INSPECTION RULE

The JIIIII-35 Rule (Fig. 110) is adapted to measure the average perforation pitch and the average percentage of shrinkage in 3—8 picture-frame lengths of 35-mm film.



Fig. 110.  $\,$  JIII  $\!\Pi$  -35 Perforation Pitch Inspection Rule

The Rule is a metal plate with a film bed, pins to secure film, and scale for measuring pitch dimensions and shrinkage percentage

The instrument is of the portable pocket type.

Overall dimensions of Rule . . . . .  $180 \times 50 \times 3 \,$  mm Weight of Rule . . . . . . . . 50 g

### IIKII-2 PERFORATION INSPECTION PROJECTOR

The Perforation Inspection Projector (Fig. 111) is portable, bench-type, and adapted to define degree of wear in 35-mm film perforation tracks.



Fig. 111. ПКП-2 Perforation Inspection Projector

The instrument projects the perforation aperture, film edge and sound track on a lens-screen.

A special reticule on the projector screen allows to define the degree of wear.

#### SPECIFICATIONS

### РИФ-3 SOUND TRACK MEASURING INSTRUMENT

The РИФ-3 bench-type Measuring Instrument (Fig. 112) measures the geometric dimensions of the sound track and its position in relation to film edge.



Fig. 112. РИФ-3 Sound Track Measuring Instrument

The instrument is adapted to control:
distance from sound track axis line to film edge;
width of band to be printed;
width of zero mark lines;
width of negative film sound track.

#### SPECIFICATIONS

120

### ИН-3 INSPECTION KIT

The  $\tt MH-3$  Inspection Kit (Fig. 113) is designed to facilitate inspection and control of motion picture projection installations, and projection apparatus in repair shops.



Fig. 113. WH-3 Inspection Kit

The kit allows for inspection of: the optical light system; radial or end run out of sprockets; axis play; stability of picture frame in the film channel; equalization of screen illumination from two projectors; film tensioning in film channel and film tensioning on take-up frictional device; degree of perforation wear; average perforation pitch; average percentage of film shrinkage; quality of sound and image; dimensions of film channel; position of intermittent sprocket; film gate position.

The complete kit compression:

ittent sprocket; nim gate position.

The complete kit comprises:

a) for 35-mm sound-on-film projectors:
device for installation of optics;
instrument for defining sprocket run out;
gauges for film channel measurements;
masks for light control measurements;
dynamometer for measuring film tensioning
in film channel;

dynamometer for measuring film tensioning in take-up frictional device; sound test-film; image test-film and film loop of 100 % fitness; 125-mm vernier caliper; tape or collapsible meter; magnifier with mount; electric torch with battery;

b) for inspection of 16 and 35-mm film perforations: magnifier for perforation inspection; 16-mm film perforation pitch inspection rule; 35-mm film perforation pitch inspection rule. The kit is provided with carrying case.

Overall dimensions of case . . . .  $400 \times 255 \times 132 \text{ mm}$ Weight of kit . . . . . . . 7.5 kg

123

### ДФЭ-2 PHOTOELECTRICAL DENSITOMETER

The  $\mbox{${\tt H}$}\Phi \mbox{${\tt 9}$-2}$  Photoelectrical Densitometer (Fig. 114) measures photographic densities in transmitted light. The instrument includes the following assemblies: Ferroresonance voltage stabilizer;

optic system with lighting device; amplifier; mirror dial galvanometer; detachable carriage.



Fig. 114. ДФЭ-2 Photoelectrical Densitometer

The voltage stabilizer provides stability within 1% of the output voltage with line voltage variations ranging from 100 to 130 V.

The scheme of densitometer includes:
CUB-3 photoelectric cell;
6Φ5 electronic tube;
6 V, 15 W exciter lamp.
Measurements are facilitated by the detachable carriage construction. One measurement may be made within 2—3 sec.

The Densitometer makes possible special measurements of light intensity.

light intensity.

Easy access to parts of Densitometer is provided by removable lid of the instrument box.

#### SPECIFICATIONS

Power supply — from 120 V, 50 cycle A. C. line, Reading of optical density values is achieved by means of galvanometer pointer deflections.

Galvanometer scale enables direct reading of optical diffusion density.

Optical density measurements from zero to 3.0 are made with an accuracy of:

0.01 with 0.0 to 1.0 density values; 0.02 with 1.0 to 2.0 density values; 0.03 with 2.0 to 3.0 density values.



### ЭПП-4 UNIVERSAL EXPOSURE METER

The  $\Im\Pi\Pi\text{-}4$  Exposure Meter (Fig. 115) is designed to determine exposure time when filming black-and-white and colour film, or photographing with day or artificial light.



Fig. 115.  $\ \, \Im\Pi\Pi$ -4 Universal Exposure Meter

The instrument is portable, pocket-type, supplied with special handy carrying case.

The instrument consists of the following parts:

disk-shaped selenium photoelectric cell; iris diaphragm for adjusting magnitude of the light beam; two attachments: for light measurements and measurements of average and high brilliancies respectively; metering instrument with arrangement for locking of the pointer in the deflected position; calculator with three scales bearing values of exposure-determining factors.

The Exposure Meter consists of two parts — upper and lower, connected with each other by an axis which allows the upper part to move up to an angle of 300° in relation to the lower part.

#### SPECIFICATIONS

127

LIGHTING APPARATUS

### **IIP-60 APPARATUS FOR DIFFUSED LIGHT ILLUMINATION**

The IIP-60 Apparatus (Fig. 116) provides diffused light illumination for normal or newsreel filming.

The apparatus is used to illuminate backgrounds, large groups in foregrounds, sets and actors in action.



Fig. 116. IIP-60 Apparatus for Diffused Light Illumination

The apparatus is portable, safe in operation, simple in design and is used effectively in studio and outdoor sets.

The apparatus is fitted on a tripod or suspended by special attachments.

The apparatus is equipped with a protective wire grid which is quickly and easily attached to it. A special cable is supplied with the apparatus. Its length is  $10 \ \mathrm{metres}$ .

A switch is provided for disconnecting the electric supply line. A set of shutters (Fig. 117) may be supplied with the apparatus on special order.

#### SPECIFICATIONS

|                                 | incandescent 110 V. 5.000 W lamp, or<br>similar 3,000 W lamp |
|---------------------------------|--------------------------------------------------------------|
| Diameter of reflector           | 600 mm                                                       |
| Maximum light intensity         |                                                              |
| (with 5,000 W lamp)             | not less than 30,000 candles                                 |
| Angle of diffusion              | 160°                                                         |
| Reflection factor               | not less than 0.75                                           |
| Overall dimensions of apparatus |                                                              |
| (without tripod)                | 250 × 300 × 900 mm                                           |
| Weight of apparatus             | 14 kg                                                        |



Fig. 117. IIP-60 Apparatus for Diffused Light Illumination, with shutters

### РД-5 APPARATUS FOR DIFFUSED LIGHT ILLUMINATION

The P $\overline{\text{H}}$ -5 Apparatus for Diffused Light Illumination (Fig. 118 and 119) is designed for general illumination of large sets indoors and outdoors. The Apparatus is suitable for black-and-white as well as colour filming.

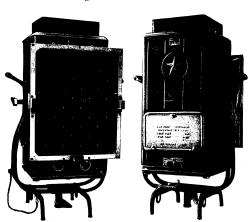



Fig. 118, P.Д-5 Apparatus for Diffused Fig. 119, P.Д-5 Apparatus for Diffused Light Illumination, rear view

The Apparatus includes the following assemblies: apparatus body with arc lamp mechanisms and arcuated support;

prote; reflector installed in frame; diffuser with frame; electric motors with reduction gearing;

132

voltage divider; ballast rheostat; 10-metre length of connecting cord.



Fig. 120. РД-5 Apparatus for Diffused Light Illumination, rear view with cover removed

Automatic striking and constant operation of both arc lamps are maintained with two electric motors reduction gearing with (Fig. 120).

Styling of body and structural features provide maximum operating convenience.

Heat and sound insulation is ensured by asbestos sheathing of inner surface of body casing.

The apparatus is designed for use with tripod but may be operated set on floor or suspended. Tilting may be effected to an angle  $\pm$  60°.

Two series-connected arc lamps and reflector with light diffuser are supplied with the apparatus.

## SPECIFICATIONS

| Power supply — from 110—115 V D. Conditions of arc lamp operation: Voltage at each arc Current | 34—36 V<br>40—42 A<br>15,000 candles                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| rate with carbons                                                                              | type "8-40" Positive carbon with 8-mm diameter and 300-mm length burns at rate of 110 mm per hour Negative carbon with 8-mm diameter and 220-mm length burns at rate of 65 mm per hour |  |  |  |  |
| Distance of luminous centre of apparatus (less tripod) from floor level                        | 450 × 560 × 925 mm                                                                                                                                                                     |  |  |  |  |

### КПД-15 ARC LAMP SPOTLIGHT

The KH $\beta$ -15 Arc Lamp Spotlight (Fig. 121) is designed for illumination of portrait subjects, defining details of filmed objects and producing exaggerated light contrasts during synchronous colour filming, etc.



Fig. 121. КПД-15 Arc Lamp Spotlight

The spotlight apparatus includes the following assemblies: spotlight with 150-mm diameter echelon lens; ballast rheostat;

tripod; 10-metre length of cable for connection to mains; shutter and set of snouts, supplied for every five devices; set of spare parts.

Design and workmanship of tripod provide for smooth lifting and lowering of the extension rod, and easy, noiseless shifting of the spotlight.

Handling of spotlight, setting of lens into mount are effected quickly and easily.

134

The arcuated support allows endless horinzontal motion over 360  $^\circ;$  vertical tilting is possible up to 180  $^\circ.$ 

Locking devices secure the apparatus in any desired position.

### SPECIFICATIONS

Power supply — from 110—115 V D. C. line, with tripod:
minimum height . 1,400 mm
maximum height . 2,100 mm

Weight of spotlight . . . . 13.5 kg

Weight of apparatus with tripod,
rheostat and shutters . . . . 39 kg

### КПД-25 ARC LAMP SPOTLIGHT

The KПД-25 Arc Lamp Spotlight (Fig. 122) is designed for illumination for synchronous colour filming.

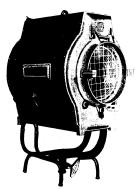



Fig. 122. КПД-25 Arc Lamp Spotlight

The Spotlight includes the following main assemblies (Fig. 123): body with mount and 250-mm diameter echelon lens;

supporting device for installation and shifting of lamp along its optical axis; apparatus control instruments;

arcuated support for mounting of apparatus; semi-automatic intensity arc lamp with instantaneous arc lighting; ballast rheostat with cable:

shutter and set of snouts (set supplied with every five devices);

10-metre length of cable with contactor for connection with ballast rheostat and switchboards; set of spare parts and accessories. Handling of spotlight, setting of lens in mount is effected quickly and easily.



Fig. 123. КПД-25 Arc Lamp Spotlight, complete set

The arcuated support is designed to allow endless horizontal motion of  $360\,^\circ$ ; vertical tilt is possible to an angle of  $180\,^\circ$ . Locking devices secure the apparatus in any desired position.

### SPECIFICATIONS

Power supply — from 105, 115 and 125 V D. C. line.

The Arc Lamp is designed to operate with:

"11—75" positive carbon of 11-mm diameter and 400-mm length;

"Extra-K" negative carbon of 9-mm diameter and 165-mm length. 

#### КПД-М ARC LAMP SPOTLIGHT

The KПД-M Arc Lamp Spotlight (Fig. 124) is used for synchronous black-and-white and colour filming indoors and outdoors.

The apparatus is adapted for illumination of actors and background settings, as well as distant sets.

The apparatus includes the following assemblies:

device consisting of arcuated support and cylindrical body with 500-mm diameter lens;



Fig. 124. КПД-М Arc Lamp Spotlight

semi-automatic intensity arc lamp with instantaneous arc lighting;

ballast rheostat with cable;

tripod;

shutter and snouts.

#### SPECIFICATIONS

 $\begin{array}{cccc} current & & 150 \ A \\ Continuous operation of Arc Lamp must not exceed 30 minutes. \\ Maximum light intensity & 5,200,000 candles \\ Diffusion angle & 8° \\ Overall dimensions of apparatus & 1,635 <math>\times$  800  $\times$  2,260 mm \\ Weight of apparatus & 95 kg \\ \end{array}

### КПЛ-25 INCANDESCENT LAMP SPOTLIGHT

The KIIJI-25 Spotlight (Fig. 125) is used during indoor and outdoor filming for illumination of actors and sets as well as theatre and club stages.



Fig. 125. KIIJI-25 Incandescent Lamp Spotlight

Fig. 126. KIIJI-25 Incandescent Lamp Spotlight, with stand

The apparatus consists of a cylindrical body with a 250-mm diameter lens, a focusing device for a 2,000 W, 110 V incandescent lamp, reflector, arcuated support and 25 A switch.

140

A stand (Fig. 126) and 15 metres of special  $2\!\times\!4$   $mm^2$  cable are supplied with the apparatus.

### SPECIFICATIONS

#### KIIJI-35 INCANDESCENT LAMP SPOTLIGHT

The KIIJI-35 Spotlight (Fig. 127) is used during indoor and outdoor filming for illumination of actors and sets, as well as theatre and club stages.



Fig. 127. КПЛ-35 Incandescent Lamp Spotlight

Fig. 128. KIIJI-35 Incandes-cent Lamp Spotlight with stand

The apparatus includes: cylinder with 350-mm diameter lens; focusing device for a spotlight incandescent 5,000 W, 110 V lamp; reflector; arcuated support and a  $60\,A$  switch.

A stand (Fig. 128) 15 metres of special  $2\times16$  mm<sup>2</sup> cable and a set of spare parts and accessories are supplied with the apparatus.

142

¹ The above characteristics are true when a 2,000 W, 110 V incandescent lamp of 23 lm/W light efficiency is used with the apparatus.

#### SPECIFICATIONS

¹ The above characteristics are true when a 5,000 W, 110 V incandescent lamp of 26.5 lm/W efficiency is used with the apparatus.

## КПЛ-50 INCANDESCENT LAMP SPOTLIGHT

The KПЛ-50 Spotlight (Fig. 129) is for indoor and outdoor illumination of actors and sets as well as theatre stages.



Fig. 129. KIIJI-50 Incandescent Lamp Spotlight

Fig. 130. KII.I-50 Incandescent Lamp Spotlight, with stand

The Spotlight includes the following assemblies:

cylinder with 500-mm diameter lens; focusing device for incandescent 5,000 or 10,000 W, 110 V spotlight lamp; reflector; arcuated support and special throw-over switch for starter resistance which reduces starting current when lamp is switched on.

20 metres of special 2×25 mm² cable, stand (Fig. 130), a set of spare parts and accessories are supplied.

144

.............

Sanitized Copy Approved for Release 2010/10/19 : CIA-RDP81-01043R000800160002-0

#### SPECIFICATIONS

 $^{\rm 1}$  The above characteristics are true when a 10,000 W, 110 V incandescent lamp of 27.8 lm/W light efficiency is used.

THE VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE

## "STANKOIMPORT"

### EXPORTS AND IMPORTS:

Machine Tools

Wood-Working Machinery

Metal-Working Machinery (Presses, Hammers, Shears, Cold Roll Forming Machines, Punching Machines)

Rolling Mills (imports)

Measuring Instruments and Tools (for Metal Industry)

Testing Machines and Apparatus (for metals)

Optical Instruments and Equipment

Portable Electric and Pneumatic Tools (for Metal and Wood-Working)

Metal and Wood Cutting Tools

Mechanic's Tools

Lathe and Drill Chucks

Sintered Carbide and Hard-Alloy Products

Abrasive Products

Ball and Roller Bearings

Microscopes of all types

Motion Picture Equipment and Accessories

Geodetic Instruments and Equipment

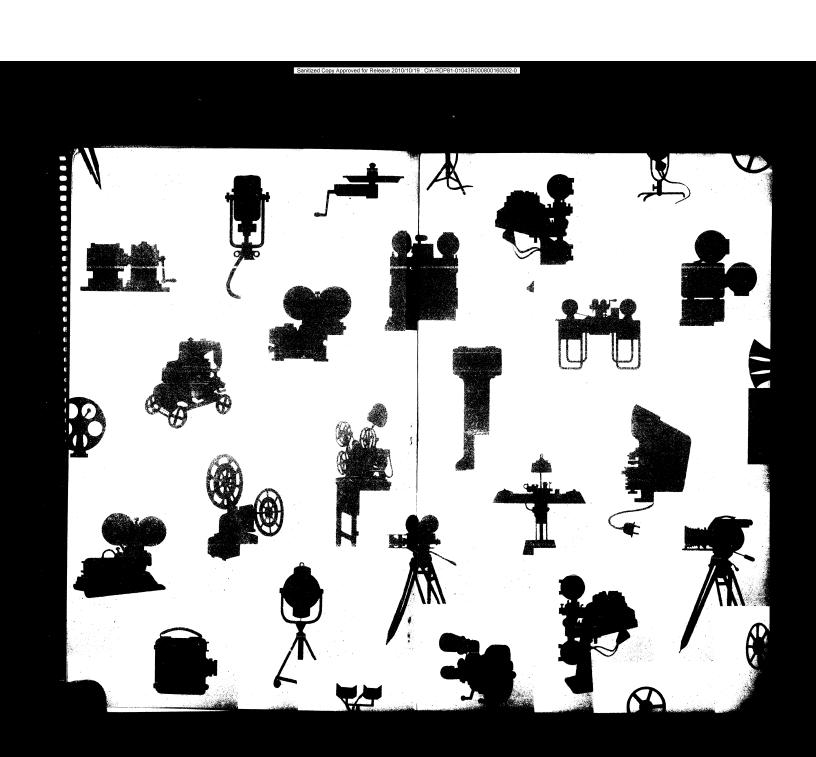
 $\label{thm:photographic Cameras, Binoculars, Magnifiers, Lenses} \\ Crude Optical Glass and Blanks.$ 

All inquiries and correspondence to be forwarded to:

Vsesojuznoje Exportno-Importnoje Objedinenije

"Stankoimport"

32/34, Smolenskaja-Sennaja Pl., Moscow, USSR For cables: Stankoimport Moscow


Phone: Γ 4-21-32

Design and specifications of the equipment illustrated herein are subject to change without notice.

146

Vneshtorgizdat. Order No. 2864

Vneshtorgizdat. Order No. 2864

